NPN Silicon Transistors . . . fast switching speeds and high current capacity ideally suit these parts for use in switching regulators, inverters, wide-band amplifiers and power oscillators in industrial and commercial applications. - High Speed $t_f = 0.5 \mu s$ (Max) - High Current IC(max) = 30 Amps Low Saturation VCE(sat) = 2.5 V (Max) @ IC = 20 Amps # 2N5038* 2N5039 *Motorola Preferred Device 20 AMPERE **NPN SILICON POWER TRANSISTORS 75 and 90 VOLTS 140 WATTS** #### *MAXIMUM RATINGS | Rating | Symbol | 2N5038 | 2N5039 | Unit | |--|----------------------|-------------|--------|---------------| | Collector-Base Voltage | V _{CBO} | 150 | 120 | Vdc | | Collector-Emitter Voltage | VCEV | 150 | 120 | Vdc | | Emitter-Base Voltage | VEBO | 7 | | Vdc | | Collector Current — Continuous
Peak (1) | I _C | 20
30 | | Adc | | Base Current — Continuous | IB | 5 | | Adc | | Total Device Dissipation @ T _C = 25°C Derate above 25°C | PD | 140
0.8 | | Watts
W/°C | | Operating and Storage Junction Temperature Range | TJ, T _{Stg} | -65 to +200 | | °C | #### THERMAL CHARACTERISTICS | Characteristic | Symbol | Max | Unit | |--------------------------------------|----------------|------|------| | Thermal Resistance, Junction to Case | $R_{ heta JC}$ | 1.25 | °C/W | ^{*} Indicates JEDEC Registered Data. ⁽¹⁾ Pulse Test: Pulse Width \leq 10 ms, Duty Cycle \leq 50%. Figure 1. Switching Time Test Circuit Preferred devices are Motorola recommended choices for future use and best overall value. REV 7 *ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted) | | Characteristic | | Symbol | Min | Max | Unit | |---|---|--------------------------------------|----------------------|------------------|----------------------|------| | OFF CHARACTERIS | STICS | | | | | | | Collector–Emitter S
(I _C = 200 mAdc, | ustaining Voltage (1)
I _B = 0) | 2N5038
2N5039 | VCEO(sus) | 90
75 | _ | Vdc | | $(V_{CE} = 110 \text{ Vdc}, (V_{CE} = 100 \text{ Vdc}, $ | rrent
VBE(off) = 1.5 V)
VBE(off) = 1.5 V)
VBE(off) = 1.5 Vdc, T _C = 150°C)
/BE(off) = 1.5 Vdc, T _C = 150°C) | 2N5038
2N5039
2N5038
2N5039 | ICEX | _
_
_
_ | 50
50
10
10 | mAdc | | Emitter Cutoff Curre
(VEB = 5 Vdc, I _C
(VEB = 7 Vdc, I _C | = 0) | 2N5038
2N5039
Both | I _{EBO} | _
_
_ | 5
15
50 | mAdc | | ON CHARACTERIS | TICS (1) | | | | | | | DC Current Gain
(I _C = 12 Adc, V _C
(I _C = 10 Adc, V _C | | 2N5038
2N5039 | hFE | 20
20 | 100
100 | _ | | Collector–Emitter S
(I _C = 20 Adc, I _B = | <u> </u> | | V _{CE(sat)} | _ | 2.5 | Vdc | | Base–Emitter Satur
(I _C = 20 Adc, I _B = | • | | V _{BE(sat)} | _ | 3.3 | Vdc | | DYNAMIC CHARAC | TERISTICS | | | | | | | Forward Current | non–Emitter Small–Signal Short–Circuit
Transfer Ratio
= 10 Vdc, f = 5 MHz) | | h _{fe} | 12 | _ | _ | | SWITCHING CHARA | ACTERISTICS | | | | | | | RESISTIVE LOAD | | | | | | | | Rise Time | (V _{CC} = 30 Vdc) | | t _r | _ | 0.5 | μs | | Storage Time | $(I_C = 12 \text{ Adc}, I_{B1} = I_{B2} = 1.2 \text{ Adc})$ | 2N5038 | t _S | _ | 1.5 | μs | | Fall Time | $(I_C = 10 \text{ Adc}, I_{B1} = I_{B2} = 1 \text{ Adc})$ | 2N5039 | tf | | 0.5 | μs | ^{*} Indicates JEDEC Registered Data. ⁽¹⁾ Pulse Test: Pulse Width \leq 300, μ s, Duty Cycle \leq 2%. Figure 2. Forward Bias Safe Operating Area There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC – VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. Second breakdown pulse limits are valid for duty cycles to 10%. At high case temperatures, thermal limitations may reduce the power that can be handled to values less than the limitations imposed by second breakdown. ### **PACKAGE DIMENSIONS** - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. ALL RULES AND NOTES ASSOCIATED WITH REFERENCED TO-204AA OUTLINE SHALL APPLY. | | INCHES | | MILLIMETERS | | | |-----|-----------|-------|-------------|-------|--| | DIM | MIN | MAX | MIN | MAX | | | Α | 1.550 REF | | 39.37 REF | | | | В | - | 1.050 | | 26.67 | | | С | 0.250 | 0.335 | 6.35 | 8.51 | | | D | 0.038 | 0.043 | 0.97 | 1.09 | | | Е | 0.055 | 0.070 | 1.40 | 1.77 | | | G | 0.430 BSC | | 10.92 BSC | | | | Н | 0.215 | BSC | 5.46 BSC | | | | K | 0.440 | 0.480 | 11.18 | 12.19 | | | L | 0.665 BSC | | 16.89 BSC | | | | N | | 0.830 | | 21.08 | | | ø | 0.151 | 0.165 | 3.84 | 4.19 | | | U | 1.187 BSC | | 30.15 BSC | | | | V | 0 131 | 0.188 | 3 33 | 4 77 | | STYLE 1: PIN 1. BASE 2. EMITTER CASE: COLLECTOR **CASE 1-07** TO-204AA (TO-3) ISSUE Z #### 2N5038 2N5039 Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (A) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. How to reach us: **USA/EUROPE**: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609 INTERNET: http://Design-NET.com JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, Toshikatsu Otsuki, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-3521-8315 **HONG KONG:** Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298