DESCRIPTION The NE592 is a monolithic, two-stage, differential output, wideband video amplifier. It offers fixed gains of 100 and 400 without external components and adjustable gains from 400 to 0 with one external resistor. The input stage has been designed so that with the addition of a few external reactive elements between the gain select terminals, the circuit can function as a high-pass, low-pass, or band-pass filter. This feature makes the circuit ideal for use as a video or pulse amplifier in communications, magnetic memories, display, video recorder systems, and floppy disk head amplifiers. Now available in an 8-pin version with fixed gain of 400 without external components and adjustable gain from 400 to 0 with one external resistor. ### **FEATURES** - 120MHz unity gain bandwidth - Adjustable gains from 0 to 400 - Adjustable pass band - No frequency compensation required - Wave shaping with minimal external components - MIL-STD processing available ### **PIN CONFIGURATIONS** ## **APPLICATIONS** - Floppy disk head amplifier - Video amplifier - Pulse amplifier in communications - Magnetic memory - Video recorder systems # **BLOCK DIAGRAM** ## ORDERING INFORMATION | DESCRIPTION | TEMPERATURE RANGE | ORDER CODE | DWG# | |---|-------------------|------------|-------| | 14-Pin Plastic Dual In-Line Package (DIP) | 0 to +70°C | NE592N14 | 0405B | | 14-Pin Small Outline (SO) package | 0 to +70°C | NE592D14 | 0175D | | 8-Pin Plastic Dual In-Line Package (DIP) | 0 to +70°C | NE592N8 | 0404B | | 8-Pin Small Outline (SO) package | 0 to +70°C | NE592D8 | 0174C | # NOTES: N8, N14, D8 and D14 package parts also available in "High" gain version by adding "H" before package designation, i.e., NE592HDB # **ABSOLUTE MAXIMUM RATINGS** T_A=+25°C, unless otherwise specified. | SYMBOL | PARAMETER | RATING | UNIT | |--------------------|-------------------------------------|-------------|------| | V _{CC} | Supply voltage | ±8 | V | | V _{IN} | Differential input voltage | ±5 | V | | V _{CM} | Common-mode input voltage | ±6 | V | | l _{OUT} | Output current | 10 | mA | | T _A | Operating ambient temperature range | 0 to +70 | °C | | T _{STG} | Storage temperature range | -65 to +150 | °C | | P _{D MAX} | Maximum power dissipation, | | | | | T _A =25°C (still air)¹ | | | | | D-14 package | 0.98 | W | | | D-8 package | 0.79 | W | | | N-14 package | 1.44 | W | | | N-8 package | 1.17 | W | # NOTES: N-8 package at 9.3mW/°C ^{1.} Derate above 25°C at the following rates: D-14 package at 7.8mW/°C D-8 package at 6.3mW/°C N-14 package at 11.5mW/°C ## DC ELECTRICAL CHARACTERISTICS $T_A=+25^{\circ}C\ V_{SS}=\pm6V,\ V_{CM}=0,\ unless\ otherwise\ specified.$ Recommended operating supply voltages $V_S=\pm6.0V.$ All specifications apply to both standard and high gain parts unless noted differently. | CVMDOL | DADAMETER | NE592 | | UNIT | | | |--------------------|--------------------------------|-------------------------------------|------|------|------|---------------| | SYMBOL | PARAMETER | TEST CONDITIONS | Min | Тур | Max | וואט ך | | A _{VOL} | Differential voltage gain, | | | | | | | | standard part | | | | | | | | Gain 1 ¹ | $R_L=2k\Omega$, $V_{OUT}=3V_{P-P}$ | 250 | 400 | 600 | V/V | | | Gain 2 ^{2, 4} | | 80 | 100 | 120 | V/V | | R _{IN} | Input resistance | | | | | | | | Gain 1 ¹ | | | 4.0 | | kΩ | | | Gain 2 ^{2, 4} | | 10 | 30 | | kΩ | | C _{IN} | Input capacitance ² | Gain 2 ⁴ | | 2.0 | | pF | | Ios | Input offset current | | | 0.4 | 5.0 | μА | | I _{BIAS} | Input bias current | | | 9.0 | 30 | μΑ | | V _{NOISE} | Input noise voltage | BW 1kHz to 10MHz | | 12 | | μV_{RMS} | | V _{IN} | Input voltage range | | ±1.0 | | | V | | CMRR | Common-mode rejection ratio | | | | | | | | Gain 2 ⁴ | V _{CM} ±1V, f<100kHz | 60 | 86 | | dB | | | Gain 2 ⁴ | V _{CM} ±1V, f=5MHz | | 60 | | dB | | PSRR | Supply voltage rejection ratio | | | | | | | | Gain 2 ⁴ | ΔV _S =±0.5V | 50 | 70 | | dB | | V _{OS} | Output offset voltage | | | | | | | | Gain 1 | R _L =∞ | | | 1.5 | V | | | Gain 2 ⁴ | R _L =∞ | | | 1.5 | V | | | Gain 3 ³ | R _L =∞ | | 0.35 | 0.75 | V | | V_{CM} | Output common-mode voltage | R _L =∞ | 2.4 | 2.9 | 3.4 | V | | V _{OUT} | Output voltage swing | $R_L=2k\Omega$ | 3.0 | 4.0 | | V | | | differential | | | | | | | R _{OUT} | Output resistance | | | 20 | | Ω | | I _{CC} | Power supply current | R _L =∞ | | 18 | 24 | mA | - NOTES: 1. Gain select Pins G_{1A} and G_{1B} connected together. 2. Gain select Pins G_{2A} and G_{2B} connected together. 3. All gain select pins open. 4. Applies to 14-pin version only. ### DC ELECTRICAL CHARACTERISTICS DC Electrical Characteristics $V_{SS}=\pm6V$, $V_{CM}=0$, $0^{\circ}C \le T_A \le 70^{\circ}C$, unless otherwise specified. Recommended operating supply voltages $V_S=\pm6.0V$. All specifications apply to both standard and high gain parts unless noted differently. | OVMDOL | DADAMETED | TEST CONDITIONS | NE592 | | | | |-------------------|---|-------------------------------------|-------|-----|-------------------|------| | SYMBOL | PARAMETER | TEST CONDITIONS | Min | Тур | Max | UNIT | | A _{VOL} | Differential voltage gain, | | | | | | | | standard part | | | | | | | | Gain 1 ¹ | $R_L=2k\Omega$, $V_{OUT}=3V_{P-P}$ | 250 | | 600 | V/V | | | Gain 2 ^{2, 4} | | 80 | | 120 | V/V | | R _{IN} | Input resistance | | | | | | | | Gain 2 ^{2, 4} | | 8.0 | | | kΩ | | los | Input offset current | | | | 6.0 | μΑ | | I _{BIAS} | Input bias current | | | | 40 | μΑ | | V _{IN} | Input voltage range | | ±1.0 | | | V | | CMRR | Common-mode rejection ratio | | | | | | | | Gain 2 ⁴ | V _{CM} ±1V, f<100kHz | 50 | | | dB | | PSRR | Supply voltage rejection ratio | | | | | | | | Gain 2 ⁴ | $\Delta V_S = \pm 0.5 V$ | 50 | | | dB | | V _{OS} | Output offset voltage
Gain 1
Gain 2 ⁴
Gain 3 ³ | R _L =∞ | | | 1.5
1.5
1.0 | V | | V _{OUT} | Output voltage swing differential | $R_L=2k\Omega$ | 2.8 | | | V | | I _{CC} | Power supply current | R _L =∞ | | | 27 | mA | - Gain select Pins G_{1A} and G_{1B} connected together. Gain select Pins G_{2A} and G_{2B} connected together. All gain select pins open. Applies to 14-pin versions only. # **AC ELECTRICAL CHARACTERISTICS** T_A=+25°C V_{SS}=±6V, V_{CM}=0, unless otherwise specified. Recommended operating supply voltages V_S=±6.0V. All specifications apply to both standard and high gain parts unless noted differently. | SYMBOL | PARAMETER | TEST CONDITIONS | | NE/SA592 | | UNIT | |-----------------|--|-------------------------------------|-----|-------------|-----|------------| | | | | Min | Тур | Max | | | BW | Bandwidth
Gain 1 ¹
Gain 2 ^{2, 4} | | | 40
90 | | MHz
MHz | | t _R | Rise time
Gain 1 ¹
Gain 2 ^{2, 4} | V _{OUT} =1V _{P-P} | | 10.5
4.5 | 12 | ns
ns | | t _{PD} | Propagation delay
Gain 1 ¹
Gain 2 ^{2, 4} | V _{OUT} =1V _{P-P} | | 7.5
6.0 | 10 | ns
ns | - Gain select Pins G_{1A} and G_{1B} connected together. Gain select Pins G_{2A} and G_{2B} connected together. All gain select pins open. - 4. Applies to 14-pin versions only. ### TYPICAL PERFORMANCE CHARACTERISTICS April 15, 1992 254 # TYPICAL PERFORMANCE CHARACTERISTICS (Continued) April 15, 1992 255 **TEST CIRCUITS** T_A = 25°C, unless otherwise specified. # **TYPICAL APPLICATIONS** # **FILTER NETWORKS** | Z NETWORK | FILTER
TYPE | V ₀ (s) TRANSFER
V ₁ (s) FUNCTION | |-----------|----------------|--| | 0R0 | LOW PASS | $\frac{1.4 \times 10^4}{L} \qquad \left[\frac{1}{s + R/L}\right]$ | | R C ○ | HIGH PASS | $\frac{1.4 \times 10^4}{R} \qquad \left[\frac{s}{s + 1/RC} \right]$ | | R L C | BAND PASS | $\frac{1.4 \times 10^4}{L} \qquad \left[\frac{s}{s^2 + R/Ls + 1/LC} \right]$ | | R C C | BAND REJECT | $\frac{1.4 \times 10^4}{R} \qquad \left[\frac{s^2 + 1/LC}{s^2 + 1/LC + s/RC} \right]$ | ### NOTES In the networks above, the R value used is assumed to include $2r_{\mbox{e}}$, or approximately 32Ω . $S = j\omega$ $\omega = 2\pi f$ April 15, 1992 257