
By: Brian Miller

Regardless of the success of various music file shar-
ing services, it’s a safe bet that many computer users
are converting their record and CD collections to MP3
files and storing them on the ridiculously large hard
drives available in modern computers. Tiny MP3 play-
ers compete with CD and tape walkmans for portable
use. With many computers powered up continuously
for Internet access, it occurred to me that it would be
nice if my computer could act as the “server” for a
wireless MP3 jukebox.

Let me explain the concept in more detail. The idea is
to allow you to listen to MP3 music files at any loca-
tion within the home where there is an FM receiver
(which could be a walkman, for example). This is made
possible by feeding the server computer’s audio out-
put to a low-power FM broadcaster. A portable unit
displays the contents of the server’s MP3 file folders to
allow you to browse through your music collection.

For convenience, you can scroll through up to four dif-
ferent folders containing lists of songs. The functions
of picking a particular song, starting, stopping, and
skipping a song are accomplished using a universal IR
remote control. These commands are then forwarded
to the MP3 server computer via a 433-MHz wireless
link. Photo 1 shows all the components of the system.

For the server end, I designed two modules, a 433
MHz receiver and FM broadcaster. The receiver picks
up commands sent by the remote control unit and
feeds them to the server computer via a serial port. A
dedicated PC application running in the background
receives these commands and dispatches them to the
Windows Media Player, which then plays the request-
ed selection. The second module, the FM broadcaster,
gets audio from the sound card output of the comput-
er and broadcasts it.

To reduce cost and simplify the design, the 433 MHz
wireless link operates in one direction only. That is,
after you have selected a function, that command is
sent to the MP3 server computer via the wireless link.
If that transmission never makes it to the server, you
will hear that nothing has happened and can issue the
command again. However, to ensure that spurious
commands don’t disrupt operation, a dedicated
decoder/encoder chipset is used. This performs all
necessary functions to ensure that only legitimate
packets are passed to the MP3 server.

For the remote unit to be able to display the contents
of the MP3 folders on the server, it must have the con-
tents of those folders downloaded to it prior to use.

This is done via the serial port on the MP3 server com-
puter using the same application software that passes
the incoming wireless commands to the Microsoft
Media Player. The firmware in the remote unit can
handle up to four different music folders.

To avoid the need to constantly update the remote
unit’s flash memory, it’s recommended that four stable
folders are chosen for remote playing, with other fold-
ers used for newly downloaded music or selections
that are always changing. The remote unit contains a
32K x 8 flash memory, which can hold up to 200 song
titles per folder (800 total). Because flash memory is
nonvolatile, it will hold this song database even when
the unit is off, which is important because the remote
unit is battery-operated.

Remote Control Unit
The heart of the system is the remote control unit
shown in Figure 1. It is built around an Atmel
AT90S2313-4PC which has 15 I/O lines (12 of which
are used) as well as an internal hardware UART.
Because the unit requires so little power to operate, I
chose to power it with four AA cells followed by an
LM2936CZ5 low-dropout regulator.

It became obvious early on that the song display would
not be useful unless it was able to display the com-
plete song title and/or artist’s name. Because there
can be a lot of songs to scroll through, I also decided
that four songs should be displayed simultaneously.
Therefore, I chose a 4 x 40 LCD panel. This unit has a
different wiring scheme than most common LCDs. It
contains two HD44780 controller LSIs, one for the top
two lines and another for the bottom two. The LCD

www.atmel.com page 31

Wireless MP3 Remote Jukebox with
Atmel AT90S2313-4PC

Photo 1: This photo shows the various parts of the
system. The mini-box to the left houses the
433-MHz receiver. The case with the large LCD is the
MP3 remote control unit. Sitting above it are the RCA
remote control and the FM broadcaster module. In
normal use, only the FM broadcaster and receiver
are located with the host computer, the remote con-
troller is placed wherever you want to listen to the
MP3 music.

WE’VE GONE FROM RECORDS AND

8-TRACKS TO CDS AND MP3S.

CONVERTING TO MP3S HAS BECOME

POPULAR, AND HOW TO STORE THE

FILES IS AN INTERESTING TOPIC THESE

DAYS. TUNE IN, BECAUSE THIS PROJECT

COVERS A STORAGE SCHEME AND

EXTENDS YOUR CURRENT MP3

LISTENING AREA.

Reprinted from
Circuit Cellar #134

My other experience with small wireless modules was
with the more costly Linx HP-II series (900 MHz). These
are FSK units, the transmitter can be fed directly from
a UART, and the receiver is a squelched unit that feeds
a UART directly.

Luckily Abacom’s technical staff pointed out that the
low-cost units I had chosen can’t be directly interfaced
to a UART port. However, Abacom has designed a
combo chip called the NKM2401-N, which can function
as either a data encoder or decoder depending on the
wiring of the mode pin. For this project, I use one of
these devices at each end of the wireless data link.

In the remote unit, the NKM2401 accepts an 8-byte
packet from the UART of the ’2313 (at 2400 bps), adds
sync, pre-/post-amble bytes and CRC, and performs
Manchester encoding on the resulting data. Because
the NKM2401 requires an 8-byte packet and my com-
mands are only 2 bytes long, I add my own sync and
filler bytes to make up an 8-byte packet. The MK2401’s
data output is connected directly to the data input of the
AM-RT5-433 transmitter. For an antenna, I use a 1/4
wave whip.

I was hoping to be able to do without the encoded
NKM2401 in the remote unit, instead depending on
some ’2313 firmware routines to perform the same
functions. The remote unit’s firmware is written in
assembly language and uses only about one-third of
the AT90S2313’s 2 KB flash memory. There would
have been plenty of room for the necessary routines
there. However, at the receive end, I didn’t plan to use
a microcontroller, so I had to use an NKM2401 for

decoding there. I was unable to convince Abacom to
give me the exact protocol it uses for communication,
which is understandable. Therefore, I wasn’t able to
write routines to do the encoding of the packets. Given
more time, I could have captured the datastream using
a digital scope or a program running on a micro and
reverse-engineered it, but it wasn’t in the cards.

Before moving on, let me mention a few miscellaneous
details about the remote unit. The AT90S2313 operates
at 4 MHz using a ceramic resonator. This is accurate
enough for the slow serial data communications rate
used. I had to set the UART to receive at 1200 bps (dur-
ing data download) but transmit at 2400 bps (sending
commands via NKM2401 and transmitter). The two
rates are necessary because the NKM2401 works only
at 2400 bps, and 1200 bps is the highest speed that
can be used for downloads (considering the write cycle
time of the serial flash EEPROM).

Lastly, there is a jumper labeled J1 Link Test on the
remote control unit. When in place, the NMK2401-N
sends out a constant “ABACOM” message, which can
be used to check the wireless link.

Wireless Receiver Module
The job of the wireless receiver is to pick up the 433-
MHz signal transmitted by the MP3 remote control unit
and convert that signal to RS-232 level data for the
server PC.

The Abacom AM-HRR3-433 receiver is shown in Figure
2. The receiver module is connected to the same type
of 1/4 wave whip antenna as the remote transmitter.

www.atmel.com page 32

connection to the micro is made through seven lines of
port B using the common 4-bit data interface. The con-
trol lines consist of an RS line and two ENABLE lines,
one for each controller LSI. The LCD is sent commands
only, no status is read back, so the R/*W line is tied low.

Rather than putting a keypad or a lot of switches on the
front panel, I chose instead to install an IR detector
module and use a universal IR remote control for the
user interface. The IR remote is a commonly available
RCA model CRCU410 set to emulate a Quasar TV (code
054). I chose this because it’s a simple IR code that is
easy to decode in software. The keys that are decoded
and their functions are shown in Table 1.

Nonvolatile memory storage of the song lists is provid-
ed by a serial flash memory EEPROM. I used
Microchip’s 24LC256I/P8EA because it’s commonly
available. This chip is an I2C device, therefore it needs
only a two-wire interface to the ’2313 micro.
Unfortunately, the ’2313 doesn’t contain a hardware
I2C port, so a bit-banged software routine must be used
instead. However, fortunately Atmel provides an app
note describing I2C read/write routines for the ’2313
when used as the master device.

Note that 2.2 kW pull-up resistors are required on both
the SDA and SCL lines per the I2C specifications. The
24LC256I can assume up to eight different I2C address-
es allowing for flash memory expansion to 256 KB,
depending on the state of the A0 through A2 pins.
Because you’re using only one device, all three address
lines are tied low.

The datasheet for this memory device states a 5-ms
flash memory write cycle time. The flash memory is
written to only during a data download, at which time
the data comes in via the receive section of the UART
of the ’2313. My download protocol is strictly one-way
from the server PC to the remote unit, using no hand-
shaking. Therefore, a data rate of 1200 bps was cho-
sen, which places the incoming data characters 8.3 ms
apart. This period allows sufficient time to send the data
to the I2C flash memory, even using software I2C rou-
tines, and have 5 ms to spare for the actual EEPROM
write.

I didn’t use a full-blown RS-232 interface like a
MAX232. Instead, I converted RS-232 levels of the host
computer to TTL with a single 2N3904 NPN transistor
and a few passive components.

I chose an Abacom AM-RT5-433 for the wireless trans-
mitter module. Conveniently, the AM-RT5-433 is con-
tained in a small SIP package that’s easy to mount.
Abacom was kind enough to send me a sample of both
the transmitter and receiver modules. These inexpen-
sive modules are meant to cover a distance of 100 feet
or so, using simple carrier on/off modulation for data
transmission.

Figure 1: The MP3 remote controller is run by a AVR device.

www.atmel.com page 33

The output of the receiver module is full of spikes and
noise in the absence of an actual signal coming in from
the transmitter. I monitored it using an oscilloscope, and
I live in a “quiet” RF rural area! For that reason, using
Abacom’s NKM2401-N decoder chip was a necessity.
In the receiver, the NKM2401-N has its mode pin (pin 4)
tied to ground to place it in Decode mode. A simple PNP
transistor inverter is used to provide pseudo-RS-232
level signals to the server PC. An LM2936CZ5 low-
dropout regulator is used to provide the 5 VDC needed
for the receiver.

Most of the time this receiver module is left connected
to a serial port on the MP3 server computer. However,
from time to time, the remote control unit must be con-
nected to the PC in its place (i.e., when the song lists
are being downloaded to it). For that reason, I made up
a short cable to connect the DB9 male socket on the
PC to a five-pin DIN plug. Both the receiver and remote
control unit use matching five-pin DIN sockets, and you
simply hook up the proper unit as needed.

The Abacom receiver/transmitter modules, when used
with NKM2401-N devices, are reliable. The wireless
link for the command transmission was one of the
smoother aspects of the project. The only complication
I ran into was that I wasn’t able to place the 433 MHz
receiver and FM broadcaster modules in the same
case. When the FM broadcast transmitter was placed
next to the receiver, its RF output slightly desensitized
the receiver. The result was that the wireless link would
work for a distance of only about 20 feet, which was
too short for my purpose. However, when I placed the
FM broadcaster in its own case and moved it several
feet away from the 433 MHz receiver, the problem dis-
appeared and the range increased to about 50 feet
(keep in mind, that’s still within the house).

FM Broadcaster
When I originally conceived this project, I anticipated
some challenging design or programming problems. I
assumed getting a small FM broadcaster module would
be easy, so I tackled that job last. However, of course,
Murphy’s Law dictated that this would turn out to be the
most frustrating and time-consuming part of the proj-
ect!

I had heard rumors that stereo FM transmitter kits
based on the Rohm BA1404 IC were too unstable to be
useful. Not easily deterred, I bought such a kit anyway.
Alas, the rumors were true—its frequency stability is
too poor to work with modern, digitally-tuned FM
receivers. Even when I replaced the cheap RF tuning
components with high-quality parts, the problem
remained. In fairness to Rohm, I expect that this IC was

designed before the advent of digital FM receivers.
Older analog FM receivers had an automatic frequency
control circuit that likely would have tracked the fre-
quency changes that occur with this transmitter kit.

I found a PLL-stabilized FM broadcaster kit, but it cost
about $200, which was too steep for this project. A
number of years ago, I built several PLL-based fre-
quency generators in the 10 to 400 MHz range, so I
thought I’d try to roll my own FM broadcaster.

That’s when the trouble began. The PLL chips that I had
used in the past were no longer available. Most of the
currently available PLLs are meant for cell phones and
the like and won’t work reliably below 100 MHz. I found
some that were targeted for the FM broadcast band,
but they were in such tiny packages that I couldn’t sol-
der anything to them.

At this point, I decided to try something different.
Because I needed a microcontroller to load the PLL chip
anyway, why not try to let the microcontroller measure
and control the oscillator frequency and dispense with
the PLL chip entirely? What I had in mind could be con-
sidered an automatic frequency stabilizer.

The basic concept is demonstrated in Figure 3. The
oscillator frequency is determined primarily by the val-
ues of the inductor and variable capacitor. For this
design, I chose an overall tuning range of roughly 88 to
92 MHz for two reasons. First, there are fewer com-
mercial FM stations at the bottom of the band. More
importantly, 96 MHz is the highest frequency that can
be measured using this circuit.

Fine-tuning of the oscillator, both for stabilization and
FM modulation purposes, is handled by a varactor
diode. The bias on the varactor sets its capacitance.
This bias has two components. A DC voltage level is
applied by a 12-bit DAC, and an AC signal is superim-

Figure 2: The 433-MHz receiver receives the wireless commands sent by the remote controller and passes
them to the server computer for execution.

DAC7611

2N5485 74F161 AT90S231 - 10PC

FET
OSCILLATOR
88-92 MHz

PRESCALER
DIV BY 16

8 bit Timer

16 bit counter

SPI

CPU

12 BIT
Serial DAC

AF
T

Co
nt

ro
lle

r V
ol

ta
ge

M
AN

. T
un

ni
ng

Figure 3: The block diagram shown here outlines the FM broadcaster.

www.atmel.com page 34

posed on it to perform the frequency modulation. The
DAC output voltage is initially set to a middle range
(2 V) and you manually tune the oscillator to the desired
frequency by adjusting the variable (trimmer) capacitor.
Thereafter, the microcontroller will adjust the DAC volt-
age up and down slightly to maintain the proper fre-
quency.

For the microcontroller to measure the oscillator fre-
quency, it must first be prescaled by a factor of 16. This
is done using a common 74F161 4-bit divider chip.
The prescaler output is in the 5 to 6 MHz range, which
can be directly counted by the microcontroller using its
16-bit counter/timer.

To determine the oscillator frequency, clear the 16-bit
timer and then read it after a fixed interval. This fixed
interval is provided for by another counter/timer in the
microcontroller, which is programmed to provide a peri-
odic interrupt every 5.461 ms. Using this arrangement,
the expected value in the 16-bit counter equals:

In operation, the microcontroller reads the count in the
16-bit timer and compares it to a fixed constant
derived from this equation using the FM broadcast fre-
quency chosen by you. If the oscillator frequency is too
low, it bumps up the DAC value by one and tries again.
Conversely, if the oscillator frequency is too high, it
decreases the DAC value by one. This process is
repeated until the oscillator frequency falls within a
narrow band around your set point frequency.

The circuit described here
normally would be hunting
constantly for two reasons.
First, there always would
be a one-count bobble in
the counter/timer value
because of variations in the
position of the sampling
interval with respect to the
oscillator signal. Secondly,
because the oscillator is
being frequency-modulated
by an audio signal, its fre-
quency will vary from this
modulation voltage.

This hunting is undesirable
because it produces arti-
facts in the music heard
through the FM receiver. To
prevent this, as soon as the
microcontroller has tuned
the oscillator so that the
16-bit counter/timer is

within two counts of ideal (an accuracy of about 6 kHz),
it will “go to sleep” for 10 minutes, after which time it
will check the frequency again. Unless the room tem-
perature changes significantly, the frequency of the
oscillator will require little correction, and this circuit will
apply it as necessary.

AVR AFC
While I describe how I implemented the automatic fre-
quency-controlled FM broadcaster in detail, refer to
Figure 4 on page 35for a visual representation.

To begin, I needed a microcontroller that could count
pulses at a 6 MHz rate, also containing another timer to
generate the periodic interrupt needed to read and clear
this counter. I chose the Atmel AT90S2313-10PC
because it has the required functionality. However, I
have to run the device at 12 MHz instead of its rated 10
MHz to achieve the 6 MHz counting rate. By the way, I
have not experienced any problems “over-clocking” the
’2313 by this modest amount.

The setting of the FM oscillator frequency will be per-
formed only once, when the unit is first set up and a
clear channel is found on the FM dial. Therefore, to
make things simple, the desired broadcast frequency is
entered into the program code as a constant at the
beginning of the program. The program is then com-
piled and downloaded into the ’2313, resulting in a
fixed-frequency FM transmitter.

Ten years ago, you could find prescaler chips readily
available that would divide by 256 at frequencies up to
1 GHz, but these are no longer manufactured. So, I used
a 74F161 four-stage counter to implement a divide by
16 prescaler. It handles frequencies greater than 100
MHz, costs less than $1, and is readily available.

I built my own VCO around a 2N5485 FET device. The
resonant frequency of the VCO is largely determined by
the values of L1 and C12. The latter is a trimmer
capacitor that is adjusted manually when the unit is first
powered up to achieve roughly the desired frequency.
This tuning is performed with jumper J1 in place, which
causes the microcontroller to set the DAC to mid-scale.

Thereafter, the jumper is removed. And when the unit is
powered up again, the automatic frequency stabiliza-
tion circuit starts to operate and the oscillator is fine-
tuned to the desired frequency by D1, the varactor
diode. The 74F161 prescaler requires several volts of
signal for proper clocking. The FET oscillator can pro-
vide this (most other oscillator configurations are not
capable).

The RF output from the oscillator is taken from a tap on
L1 to reduce loading effects. This is capacitor-coupled
to the clock input of the first stage of the 74F161
prescaler. Potentiometer R7 is adjusted to provide the
proper bias on the clock input pin, allowing the oscilla-
tor signal to properly trigger the input divider stage. It
should be set for around 2 to 2.5 V, but is best set up
by using an oscilloscope and looking for a clean 5 to 6
MHz waveform on pin 11 of the 74F161.

The 12-bit DAC (U4) that controls the VCO’s fine-tuning
is a TI DAC7611, with an SPI interface. Although the
’2313 doesn’t have a user SPI port (its SPI port works
strictly for flash memory programming), it’s simple to
bit bang the SPI data out to the DAC using I/O lines PB1
through PB4.

Shown just below the ’2313 in Figure 4 is jumper J1,
which is connected to port line PD6. At reset, the
microcontroller checks the state of this line; if the
jumper is in place, it merely sets the DAC to mid-scale
(2.048 V) and waits. This allows you to set the mechan-
ical trimmer capacitor (C12) for an oscillator frequency
as close as possible to the desired FM broadcast fre-
quency. In North America, all FM broadcasting is done
at odd multiples of 100 kHz, so pick a frequency
accordingly.

Having accomplished this, next you remove the jumper
and powerup the unit again. The device should home in
on the desired frequency within a few seconds by
repeatedly adjusting the DAC voltage and measuring
the resulting frequency via the prescaler. This is the
normal operating mode when subsequently being used
as an FM broadcaster module.

Line-level stereo audio from the host computer’s sound
card line out is first run through a pre-emphasis net-
work (for each channel), and then mixed down to a
monaural signal. This low-level AC signal is superim-
posed on the DC control voltage of the DAC and used
to frequency-modulate the oscillator.

The RC values in the pre-emphasis network were

Photo 2: This is the PC application program that controls the playing of MP3 files
through the Media Player, from wireless commands received from the MP3 remote
controller. The code’s other main function is to allow you to choose up to four
music folders and then download the song titles (file names) to the flash memory
in the remote controller.

www.atmel.com page 35

picked by monitoring the output of a stereo receiver
and aiming at a flat-frequency response. The values
shown in Figure 4 come pretty close. Don’t expect the
chosen component values to provide a time constant of
75 µs, which is the standard pre-emphasis used by
broadcasters. Consider that there are many other fac-
tors in the VCO that affect the modulation characteris-
tics. My values provide an overall flat-frequency
response as measured with a high-quality FM receiver.

Note that no antenna is illustrated in Figure 4. If the
project is placed in a plastic enclosure, it will radiate
enough signal to cover a 50¢ radius. This works out
well, because government regulations prevent using a
transmitter capable of covering a much greater range
than this.

I built the VCO section of the circuit (shown within the
dashed lines in Figure 4) on a small, single-sided PC
board with dimensions of about 1.5” x 1”. The remain-
ing part of the circuit was hand-wired on a Simm-Stick
protocard. The VCO PCB is designed like a SIP package
and mounts vertically on the Simm-Stick.

Software and Firmware
The application software consists of a server applica-
tion running on a computer and client firmware running
on the remote controller. At the PC end, the server soft-
ware is written in Visual Basic 6.

The remote controller firmware is written in AVR
assembly language. The FM broadcaster is frequency
stabilized by another AT90S2313. The program
required for this is trivial, so I used the BASCOM-AVR
compiler for that application.

Client Application Software
The client application running on the PC has two main
functions. Most of the time it is polling the COM1 seri-
al port looking for commands that have been sent to it
by the remote controller. Its other main function is to
allow you to browse through your directory structure
and designate up to four folders as jukebox folders.

The file names in these folders are then converted into
a database record and sent to the remote controller
using the transmit section of the COM1 serial port. This
download is performed only once unless the contents
of the folders change, because this data is stored in the
song list flash memory within the remote controller
(Photo 2).

Let’s look at the first function in more detail. As men-
tioned earlier, the connection between the computer
and remote controller is a 433 MHz wireless link. At the
PC end, the 433 MHz receiver takes the RF signal and
converts it into serial data at 2400 bps, which is fed
into the COM1 port. All data formatting and error
checking are performed in the hardware using the
NKM2401 encoder/decoder chips. This method

ensures that any command received by the client appli-
cation will be legitimate.

The NKM2401 uses 8-byte packets. All commands
sent by the remote controller consist of a 2-byte sync
pattern (0xAA, 0x55) followed by a 16-bit command
word and four dummy bytes. Two bits of the command
word are used to designate the four commands: Play
(Stop), Play Next, Play Last, and Pause. The other 14
bits are used to select both the active folder and offset
of the song’s file name within that folder.

Earlier, when you picked out the folder for use by this
application, that folder was parsed and a fixed record
length database was generated, a copy of which is
maintained both by this application (in a file) and in the
remote controller (in the song list flash memory). Doing
it this way allows you to see all of the song names on
the remote LCD readout. In addition, it means you can
select songs to play by merely sending a number cor-
responding to the song’s position in the database file.

After the client program knows what song to play, how
does it actually get the computer to play that particular
song? If the songs were in WAV format, it would be
easy, as Visual Basic has built-in support for multi-
media functions including the playback of WAV files.
However, it does not support the playing of MP3 files, at
least not the version that I have. I looked around for a
shareware/freeware ActiveX control that plays MP3 files

but wasn’t able to find one that was free or reasonably
priced.

I took a different tack at this point. I had just down-
loaded the Windows Media Player V.7 that Microsoft
distributes for free. This multi-purpose program han-
dles MP3 files nicely and has all the bells and whistles
people want. Like many Windows programs, it allows
for keyboard shortcuts, an advantageous capability. My
idea then was to run my MP3 Jukebox client applica-
tion and the Windows Media Player concurrently and let
my client application send keyboard strokes to the
Media Player to control it.

This is done using a couple of Visual Basic commands.
The Shell command transfers program flow over to the
Media Player, and the Sendkeys command sends the
proper codes to the Media Player, causing it to select
the desired song and play it or do some other functions.
To check that the client program is actually communi-
cating with the Windows Media Player, I added the
capability of picking a specific song from a folder and
playing it (without a command coming in from the
remote control). As Photo 2 demonstrates, you may
choose the song to be played using the drive, folder,
and file windows on the right, and the transport controls
located along the bottom will play or stop it.

The second function, used occasionally, chooses the
desired music folders (up to four) and downloads the

Figure 4: The FM broadcaster unit is automatically fine-tuned.

www.atmel.com page 36

contents into the remote controller’s flash memory. You
do this by picking out a specific folder and then click-
ing on one of the four numbered buttons located to the
left of the form. A window keeps track of the space
remaining in the song list flash
memory. Each folder can contain
almost 200 songs before its flash
memory allocation is exceeded.

To simplify the firmware in the
remote controller, I make the
assumption that all four folders
will be used, and therefore down-
loaded. If you have fewer folders,
the remaining folders should be
designated as duplicates of the
desired folder(s).

Before pushing the Download
button, the remote controller
must be plugged into the COM1
port of the PC, temporarily dis-
placing the 433 MHz receiver. I
use the custom cable described
earlier, which stays plugged into
the PC. The other end of the cable is a five-pin DIN
plug, which fits sockets on either the receiver or the
remote controller. The download time is dictated by the
write timing of the flash memory in the remote con-
troller. Download time is about 4 minutes if all four
directories contain the maximum of about 200 songs.
The download progress is indicated by check boxes
appearing next to the client program’s folder list as well
as messages on the remote controller’s LCD screen.

AVR Firmware
I already outlined the automatic frequency control of
the FM broadcaster. The program that accomplishes
this is simple, and therefore was written in Basic and
compiled using the BASCOM-AVR compiler. For more
details, download the program listing contained in the
file MP3FM.bas, which is available on Circuit Cellar’s
web site as well as my personal web site.

The remote controller firmware was much more
involved. I first tried to write it in Basic using the BAS-
COM-AVR compiler, but the program code generated
would not fit into the flash memory of the ’2313. Using
assembly language, I accomplished the same thing in
less than half of the flash memory space.

As with the PC client software, the remote controller
performs two functions, one of which happens infre-
quently. When turned on, it displays the first four songs
in folder one. It then goes into a polling loop to detect
IR commands sent by the RCA universal remote and
received by the IR receiver module. This IR signal
comes into port D6 of the ’2313, which is the INPUT
CAPTURE pin.

The IR codes are deciphered by using the input capture
feature of timer1, a 16-bit timer/counter. I chose a sim-
ple IR command structure (RCA code 54, Quasar TV) to
make my job easier. This command structure has a

fixed-length start pulse at the beginning of each com-
mand sent, followed by 8 bits of data. The data bits are
represented by two different intervals between pulses.
After recognizing the fixed length start pulse, you have
to do only two things. You must capture the timing of
the eight subsequent pulses and, from the interval sep-
arating them, assign the proper bit values. As men-
tioned earlier, the remote control constantly polls the IR
receiver for commands and then performs the proper
function. Many keys allow for navigation only through
the song lists and moving from one folder to another. Do
this by adjusting pointers into the storage flash chip,
reading the song names, and transferring these ASCII
characters to the LCD screen.

The keys used for Play, Play Next, Play Last, and Pause
actually send out the proper command via the UART
transmit port of the ’2313. Again, the NKM2401 uses
8-byte packets, so sync and filler bytes are added to the
16-bit command word as needed.

There is a key dedicated to the download function.
When pressed, it shifts program execution to a routine
that accepts characters coming into the UART receive
port of the ’2313. The database generated by the PC is
transferred into the song flash memory using this func-
tion.

The Atmel 24C256 flash memory chip is an I2C device
with a 32K x 8 storage capacity. Its 5 ms write timing
isn’t a problem, because the data coming in from the
server computer is sent at 1200 bps, which is an 8.3
ms per character rate. The ’2313 doesn’t have a dedi-
cated I2C port so this function must be done in

firmware. The master I2C routines were taken directly
from Atmel’s application note and work fine.

The LCD is a 4 x 40 unit that uses the ubiquitous
Hitachi HD44780 con-
troller. Actually it con-
tains two controller LSIs,
with a common data/
control interface in addi-
tion to two enable lines. I
had to rewrite my trusty
4-bit LCD driver routines
to handle the fact that
lines one and two use
controller one and lines
three and four use con-
troller two.

All Played Out
I found this project to be
very interesting, partly
because of the wireless
aspect. The Abacom
rece i ve r / t ransmi t te r
modules coupled with

the company’s encoder and decoder devices work well.
Moreover, the user-friendly flash programming capabil-
ity of the AVR device made writing the assembly lan-
guage firmware nearly painless for me.

However, there was one disappointment. I didn’t antic-
ipate spending so much time coming up with a satis-
factory FM broadcaster module. Although too late for
this project, I recently came across the Rohm BH1416F
Wireless Audio Link IC, which contains a complete PLL-
stabilized FM transmitter and FM stereo modulator in a
SOP22 package. I bought a few of these to try out later.
If you’re not a big music fan, maybe you’ll be able to
apply some of the ideas mentioned here for other use-
ful remote control concepts.

Key Function

One through four Play one of the four songs currently shown on display
Five Skip to next song
Six Jump back to previous song
Seven Stop/start again
Enter Prepare for song download from host PC
CH+ Scroll to next screen of four songs
CH– Scroll to previous screen
Left VOL Select previous folder (four total)
Right VOL Select next folder (four total)

Table 1: I defined the buttons of the RCA universal IR remote control to function properly with the MP3
remote controller. The remote control must be set up to emulate a Quasar TV remote for this application
(code 54).

Stay informed!
Subscribe NOW to The

Atmel Applications Journal.
www.atmel.com/
journal/mail.asp

