DS1232 MicroMonitor Chip #### **FEATURES** - Halts and restarts an out-of-control microprocessor - Holds microprocessor in check during power transients - Automatically restarts microprocessor after power failure - Monitors pushbutton for external override - Accurate 5% or 10% microprocessor power supply monitoring - Eliminates the need for discrete components - Space-saving, 8-pin mini-DIP - Optional 16-pin SOIC surface mount package - Industrial temperature -40°C to +85°C available, designated N #### PIN ASSIGNMENT #### PIN DESCRIPTION PBRST – Pushbutton Reset Input TD – Time Delay Set TOL – Selects 5% or 10% V_{CC} Detect GND - Ground RST – Reset Output (Active High) RST - Reset Output (Active Low, open drain) ST — Strobe Input V_{CC} — +5 Volt Power NC — No Connections #### DESCRIPTION The DS1232 MicroMonitor Chip monitors three vital conditions for a microprocessor: power supply, software execution, and external override. First, a precision temperature-compensated reference and comparator circuit monitors the status of V_{CC} . When an out-of-tolerance condition occurs, an internal power fail signal is generated which forces reset to the active state. When V_{CC} returns to an in-tolerance condition, the reset signals are kept in the active state for a minimum of 250 ms to allow the power supply and processor to stabilize. The second function the DS1232 performs is pushbutton reset control. The DS1232 debounces the pushbutton input and guarantees an active reset pulse width of 250 ms minimum. The third function is a watchdog timer. The DS1232 has an internal timer that forces the reset signals to the active state if the strobe input is not driven low prior to time-out. The watchdog timer function can be set to operate on time-out settings of approximately 150 ms, 600 ms, and 1.2 seconds. ### **OPERATION - POWER MONITOR** The DS1232 detects out-of-tolerance power supply conditions and warns a processor-based system of impending power failure. When V_{CC} falls below a preset level as defined by TOL (Pin 3), the V_{CC} comparator outputs the signals RST (Pin 5) and \overline{RST} (Pin 6). When TOL is connected to ground, the RST and \overline{RST} signals become active as V_{CC} falls below 4.75 volts. When TOL is connected to V_{CC} , the RST and \overline{RST} signals become active as V_{CC} falls below 4.5 volts. The RST and \overline{RST} are excellent control signals for a microprocessor, as processing is stopped at the last possible moments of valid V_{CC} . On power-up, RST and \overline{RST} are kept active for a minimum of 250 ms to allow the power supply and processor to stabilize. ### **OPERATION - PUSHBUTTON RESET** The DS1232 provides an input pin for direct connection to a pushbutton (Figure 2). The pushbutton reset input requires an active low signal. Internally, this input is debounced and timed such that RST and RST signals of at least 250 ms minimum are generated. The 250 ms delay starts as the pushbutton reset input is released from low level. ### **OPERATION - WATCHDOG TIMER** A watchdog timer function forces RST and RST signals to the active state when the ST input is not stimulated for a predetermined time period. The time period is set by the TD input to be typically 150 ms with TD connected to ground, 600 ms with TD left unconnected, and 1.2 seconds with TD connected to V_{CC}. The watchdog timer starts timing out from the set time period as soon as RST and RST are inactive. If a high-to-low transition occurs on the ST input pin prior to time-out, the watchdog timer is reset and begins to time-out again. If the watchdog timer is allowed to time-out, then the RST and RST signals are driven to the active state for 250 ms minimum. The ST input can be derived from microprocessor address signals, data signals, and/or control signals. When the microprocessor is functioning normally, these signals would, as a matter of routine, cause the watchdog to be reset prior to time-out. To guarantee that the watchdog timer does not time-out, a high-to-low transition must occur at or less than the minimum shown in Table 1. A typical circuit example is shown in Figure 3. ### MICROMONITOR BLOCK DIAGRAM Figure 1 # **PUSHBUTTON RESET** Figure 2 # WATCHDOG TIMER Figure 3 # TIMING DIAGRAM: PUSHBUTTON RESET Figure 4 # TIMING DIAGRAM: STROBE INPUT Figure 5 ### **WATCHDOG TIMEOUTS** Table 1 | | TIME-OUT | | | | | |-----------------|----------|---------|---------|--|--| | TD PIN | MIN | TYP | MAX | | | | GND | 62.5 ms | 150 ms | 250 ms | | | | Float | 250 ms | 600 ms | 1000 ms | | | | V _{CC} | 500 ms | 1200 ms | 2000 ms | | | # TIMING DIAGRAM: POWER DOWN Figure 6 # TIMING DIAGRAM: POWER UP Figure 7 ### **ABSOLUTE MAXIMUM RATINGS*** Voltage on V_{CC} Pin Relative to Ground Voltage on I/O Relative to Ground Operating Temperature Operating Temperature (Industrial Version) Storage Temperature Soldering Temperature -0.5V to +7.0V -0.5V to V_{CC} + 0.5V 0°C to 70°C -40°C to +85°C -55°C to +125°C 260°C for 10 seconds * This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability. #### RECOMMENDED DC OPERATING CONDITIONS (0°C to 70°C) | PARAMETER | SYMBOL | MIN | TYP | MAX | UNITS | NOTES | |-------------------------------|-----------------|------|-----|----------------------|-------|-------| | Supply Voltage | V _{CC} | 4.5 | 5.0 | 5.5 | V | 1 | | ST and PBRST Input High Level | V _{IH} | 2.0 | | V _{CC} +0.3 | V | 1 | | ST and PBRST Input Low Level | V_{IL} | -0.3 | | +0.8 | V | 1 | ### DC ELECTRICAL CHARACTERISTICS $(0^{\circ}\text{C to } 70^{\circ}\text{C}; V_{CC} = 4.5 \text{ to } 5.5\text{V})$ | | | | | (| -, -, | | |---|-------------------|-----------------------|-----------------------|------|-------|-------| | PARAMETER | SYMBOL | MIN | TYP | MAX | UNITS | NOTES | | Input Leakage | I _{IL} | -1.0 | | +1.0 | μΑ | 3 | | Output Current @ 2.4V | I _{OH} | -8 | -10 | | mA | 5 | | Output Current @ 0.4V | I _{OL} | 8 | 10 | | mA | | | Low Level @ RST | V _{OL} | | | 0.4 | V | 1 | | Output Voltage @ -500 μA | V _{OH} | V _{CC} -0.5V | V _{CC} -0.1V | | V | 1, 7 | | Operating Current | Icc | | 0.5 | 2.0 | mA | 2 | | V _{CC} Trip Point (TOL = GND) | V _{CCTP} | 4.50 | 4.62 | 4.74 | V | 1 | | V _{CC} Trip Point (TOL = V _{CC}) | V_{CCTP} | 4.25 | 4.37 | 4.49 | V | 1 | ### **CAPACITANCE** $(t_A = 25^{\circ}C)$ | PARAMETER | SYMBOL | MIN | TYP | MAX | UNITS | NOTES | |--------------------|------------------|-----|-----|-----|-------|-------| | Input Capacitance | C _{IN} | | | 5 | pF | | | Output Capacitance | C _{OUT} | | | 7 | pF | | 4 ### **AC ELECTRICAL CHARACTERISTICS** | $(0^{\circ}\text{C to } 70^{\circ}\text{C}; V_{\text{CC}} = 5\text{V} \pm 10\%$ | | | | | | | |---|------|-------|-------|--|--|--| | | MAX | UNITS | NOTES | | | | | | | ms | | | | | | | 1000 | ms | | | | | | | | ns | 6, 8 | | | | | | 175 | μs | | | | | μs ms μs ms ### NOTES: RST sition **PARAMETER** PBRST = V_{II} ST Pulse Width **RESET Active Time** 1. All voltages referenced to ground. V_{CC} Fail Detect to RST and RST V_{CC} Detect to RST and RST Tran- PBRST Stable Low to RST and V_{CC} Slew Rate 4.75V to 4.25V V_{CC} Slew Rate 4.25V to 4.75V - 2. Measured with outputs open. - 3. $\overline{\text{PBRST}}$ is internally pulled up to V_{CC} with an internal impedance of 10K typical. SYMBOL t_{PR} t_{RST} t_{ST} t_{RPD} tϝ t_{RPU} t_R **t**PDLY MIN 20 250 20 40 300 250 0 TYP 610 100 610 5 1000 20 - 4. $t_R = 5 \mu s$. - 5. RST is an open drain output. - 6. Must not exceed t_{TD} minimum. See Table 1. - 7. RST remains within 0.5V of V_{CC} on power-down until V_{CC} drops below 2.0V. \overline{RST} remains within 0.5V of GND on power-down until V_{CC} drops below 2.0V. - 8. Watchdog can not be disabled. It must be strobed to avoid resets.