
Algorithm Builder for AVR
The most commonly used programming tools for AVR Microcontrollers are a C
language compiler or assembler. Each approach has relative strengths and lim-
itations. Assembly language programs typically produce smaller code size but
there an overhead associated with programming in Assembly language. Issues
associated with programming in Assembly are non-visual listing and redundant
detailing. Therefore, software developed in assembly language is time
consuming. Programmers demand more efficient tools. C language for the
8-bit AVR Microcontroller is gaining in popularity because of code maintain-
ability, portability and programming speed. When C language is used, the pro-
grammer has a visual listing and is released from redundant detailing. This
appreciably accelerates code development. There is a penalty associated with
C Language programming: less efficient code. There is a solution the algorithm
tool for the AVR. Algorithm builder fits between the Assembler and C compiler.
Code is still written in Assembly but the improve graphical used interface devel-
opment time can be reduced 3-5 X and code size reduced 2 to 3X. This pro-
vides benefits of both approaches Development time is similar to C language
programming while code density is improved. This is a result of the graphical
used interface, which allows use of flow charts and tree like branch structures.
Additionally the instruction notation form was simplified and the mnemonics of
the Assembler was changed to visual notation:

in place of: use’s:
MOV R0,R1 R1 -> R0
LDI R20,$5E $5E -> r20
ADD R0,R1 R0 + R1
ANDI R20,25 R20 & 25
SBIW X,15 X + 15
LSR R7 R7 >>
SBI PortB,3 1 -> PortB.3

The large instructions set, such as MOV, LD, LDI, LDD, ST, STD, IN, OUT, CBI,
SBI etc., are changed to only one notation: “ -> “. Using this notation is more
convenient than mnemonics, and the operation matter is easy to understand,
but the main in AB is a graphic interface. The main problem of classical assem-
bler is limitations of the text editor. The written program is built as a continu-
ous vertical line. The logical structure of program is hidden and can be built
only in a programmer’s imagination or on a paper.

Any program can be divided into the some logical accomplished fragments.
These fragments (blocks) are terminated by operations after which, the linear
program execution is unambiguously ended. There are subroutine return
(“RET”, “RETI”) and unconditional branches. Below is example of subprogram
containing three such blocks:

Sub: ldi XL,$60
ldi XH,$00

M0: ld r16,X
cpi r16,1
breq M1
cpi r16,2
brne M2
sbiw X,2
rjmp M0

M1: sbi PortC,0
cbi PortC,1
ret

M2: sbi PortC,2
cbi PortC,3
ret

The first block is begins from the “Sub” label and terminated by uncondition-
al branch (‘rjmp”). The second and third blocks are begin from the “M1” and
“M2” labels and terminate at the subroutine return operators (“ret”).

The “Algorithm Builder” allows visual segregation of these blocks and places
them on a plane. In result, the logical structure of program becomes visual.

The above subroutine example will be looked in the following way in AB:
Five base elements are used in Algorithm Builder for the building of program
construction. There are:
• LABEL,
• VERTEX,
• FIELD,
• CONDITIONAL BRANCH and
• UNCONDITIONAL BRANCH.

The “LABEL” element is represented as a short vertical line in the block. Label
can have an optional name at left or right side of the line. The label purpose
is like to label purpose in a classical assembler. It is a marking of places in the
program for the branches.

The image and purpose of “VERTEX” is similar to “LABEL”, but the vertex is
always begins a block and determines this geometrical placing.

The “FIELD“ element is most used. It is represented by the in-block centered
string. The “FIELD” is used for writing down the most operations of microcon-
troller except the branches.

The image of CONDITIONAL BRANCH is an oval with an entered branch condi-
tion and a vector as an outgoing line with an arrow at the end. The end of line
should terminate at LABEL or VERTEX to which the branch will be carried out
when the entered condition is fulfilled.

The image of UNCONDITIONAL BRANCH is an outgoing from the block axis line
with an arrow at the end similar to CONDITIONAL BRANCH vector.

www.atmel.com
page 6

A T M E L A P P L I C A T I O N S J O U R N A L

by Gennady Gromov, Tula Telecom

 Sub

$60 –> XL

$00 –> XH

[X] –> r16

r16 = 1
=

r16 = 2

– =

X + 2
1 –> PortC. 0
0 –> PortC. 1

Ret

1 –> PortC. 2
0 –> PortC. 3

Ret

 Sub

$60 –> XL

$00 –> XH

[X] –> r16

r16 = 1
=

r16 = 2

– =

X + 2
1 –> PortC. 0
0 –> PortC. 1

Ret

1 –> PortC. 2
0 –> PortC. 3

Ret

www.atmel.com
page 7

Note the example of algorithm in AB contains only one label name: “Sub”,
and the “M0”, “M1”, and “M2” names are absent. In the classical assembler
the branch addressing is carried out by labels’ names. The use on multiple
branch and label names result in a listing crammed with vast number of labels
names which are inevitable ballast.

In AB the branches are defined graphically by vectors. Therefore the necessity
of labels’ names is absent. This eliminates the names of subroutines’ entries
only. In above example it is a “Sub”.

The editor allows the arbitrary placing of program blocks on a plane according
to programmer’s design. For example, the above subroutine can be redesigned
as below:

In any case, the compilation result will be equal.

The editor allows ending a vector at segment of another vector, end of which
is as shown below:

The AB environment is all-sufficient. It contains the editor, compiler, simulator
(debugger) and in-circuit serial programmer of a chip. I.e. this tool covers the
whole design cycle including programming of a chip. The Capability of the
simulator are similar to AVR Studio. In-circuit programming is provided by con-
necting the chip directly to LPT without additional devices. But the manual con-
tains the recommended scheme of optical isolator.

The opened simulator:

The programmer window:

The Algorithm Builder supports most of AVR chips

The using of AB is very simply. It can be recommended both for beginners and
for professional programmers.

This article covers only base aspects of work in AB. This environment allows
the design in macro-level with operating of multi-byte values with sign; it sup-
ports the special inclusions into the algorithm providing the convenient setting
of peripheral components; and others.

You can find the Algorithm Builder on AVR freaks web page
(http://www.avrfreaks.net/) and at: (http://home.tula.net/algrom/eng-
lish.html/).

The additional possibilities of AB will be stated in a following article in the next
issue.

❑

 Sub

$60 –> XL

$00 –> XH

[X] –> r16

r16 = 1
=

r16 = 2

– =

X + 2
1 –> PortC. 0
0 –> PortC. 1

Ret

1 –> PortC. 2
0 –> PortC. 3

Ret

Vertex

Field

Unconditional branch

Label

Vertex

Field

Conditional branch

 Sub

$60 –> XL

$00 –> XH

[X] –> r16

r16 = 1
=

r16 = 2

– =

X + 2

1 –> PortC. 0
0 –> PortC. 1

Ret

1 –> PortC. 2
0 –> PortC. 3

Ret

A T M E L A P P L I C A T I O N S J O U R N A L

 Sub

$60 –> XL

$00 –> XH

[X] –> r16

r16 = 1
=

r16 = 2

– =

X + 2

1 –> PortC. 0
0 –> PortC. 1

Ret

1 –> PortC. 2
0 –> PortC. 3

Ret

