

MM54C173/MM74C173 TRI-STATE® Quad D Flip-Flop

General Description

The MM54C173/MM74C173 TRI-STATE quad D flip-flop is a monolithic complementary MOS (CMOS) integrated circuit constructed with N- and P-channel enhancement transistors. The four D-type flip-flops operate synchronously from a common clock. The TRI-STATE output allows the device to be used in bus-organized systems.

The outputs are placed in the TRI-STATE mode when either of the two output disable pins are in the logic "1" level. The input disable allows the flip-flops to remain in their present states without disrupting the clock. If either of the two input disables are taken to a logic "1" level, the Q outputs are fed back to the inputs and in this manner the flip-flops do not change state.

Clearing is enabled by taking the input to a logic "1" level. Clocking occurs on the positive-going transition.

Features

- Supply voltage range
- Tenth power TTL compatible
- High noise immunity
- Low power
- Medium speed operation
- High impedance TRI-STATE
- Input disable without gating the clock

Applications

- Automotive
- Data terminals
- Instrumentation
- Medical electronics
- Alarm systemsIndustrial electronics
- Remote metering
- Computers

Connection Diagram

Dual-In-Line Package

Truth Table

(Both Output Disables Low)

tn	t _{n+1}	
Data Input Disable	Data Input	Output
Logic "1" on One or Both Inputs	Х	Qn
Logic "0" on Both Inputs	1	1
Logic "0" on Both Inputs	0	0

TRI-STATE® is a registered trademark of National Semiconductor Corporation.

© 1995 National Semiconductor Corporation TL/F/5898

RRD-B30M105/Printed in U. S. A.

MM54C173/MM74C173 TRI-STATE Quad D Flip-Flop

February 1988

3V to 15V

0.45 V_{CC} (typ.)

Drive 2 LPTTL loads

Absolute Maximum F If Military/Aerospace specified please contact the National Office/Distributors for availabili	Ratings (Note 1) devices are required, Semiconductor Sales ty and specifications.	Maximum V _{CC} Voltage Power Dissipation (P _D) Dual-In-Line	18V 700 mW
Voltage at Any Pin	$-0.3V$ to $V_{\mbox{CC}}$ $+0.3V$	Small Outline	500 mW
Operating Temperature Range MM54C173 MM74C173	-55°C to +125°C -40°C to +85°C	Operating V _{CC} Range Lead Temperature (Soldering, 10 seconds)	3V to 15V 260°C
Storage Temperature Range	-65°C to +150°C		

DC Electrical Characteristics Min/Max limits apply across temperature range unless otherwise si

Symbol	Parameter	Conditions	Min	Тур	Max	Units
CMOS TO CMOS						
V _{IN(1)}	Logical "1" Input Voltage	$V_{CC} = 5V$ $V_{CC} = 10V$	3.5 8.0			V V
V _{IN(0)}	Logical "0" Input Voltage	$V_{CC} = 5V$ $V_{CC} = 10V$			1.5 2.0	V V
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 5V$ $V_{CC} = 10V$	4.5 9.0			V V
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 5V$ $V_{CC} = 10V$			0.5 1.0	V V
I _{IN(1)}	Logical "1" Input Current	$V_{CC} = 15V$		0.005	1.0	μΑ
I _{IN(0)}	Logical "0" Input Current		-1.0	0.005		μA
I _{OZ}	Output Current in High Impedance State	$V_{CC} = 15V, V_O = 15V$ $V_{CC} = 15V, V_O = 0V$	-1.0	0.001 0.001	1.0	μΑ μΑ
ICC	Supply Current	$V_{CC} = 15V$		0.05	300	mA
LOW POWER	R TTL/CMOS INTERFACE	-				
V _{IN(1)}	Logical "1" Input Voltage	$54C, V_{CC} = 4.5V$ 74C, V _{CC} = 4.5V	V_{CC} -1.5 V_{CC} -1.5			V V
V _{IN(0)}	Logical "0" Input Voltage	54C, $V_{CC} = 4.5V$ 74C, $V_{CC} = 4.75V$			0.8 0.8	V V
V _{OUT(1)}	Logical "1" Output Voltage	54C, $V_{CC} = 4.5V$, $I_O = -360 \ \mu A$ 74C, $V_{CC} = 4.75V$, $I_O = -360 \ \mu A$	2.4 2.4			V V
V _{OUT(1)}	Logical "0" Output Voltage	54C, $V_{CC} = 4.5V$, $I_O = 360 \ \mu A$ 74C, $V_{CC} = 4.75V$, $I_O = 360 \ \mu A$			0.4 0.4	V V
t _{pd0} , t _{pd1}	Propagation Delay Time to a Logical "0" or Logical "1" from Clock	$V_{CC} = 5V, C_L = 50 \text{ pF},$ $T_A = 25^{\circ}C$		500		ns
OUTPUT DRI	VE (See 54C/74C Family Chara	acteristics Data Sheet) (Short Circuit C	urrent)			
ISOURCE	Output Source Current	$V_{CC} = 5V, V_{IN(0)} = 0V$ $T_A = 25^{\circ}C, V_{OUT} = 0V$	-1.75			mA
ISOURCE	Output Source Current	$V_{CC} = 10V, V_{IN(0)} = 0V$ $T_A = 25^{\circ}C, V_{OUT} = 0V$	-8.0			mA
I _{SINK}	Output Sink Current	$V_{CC} = \frac{1}{5V}, V_{IN(1)} = 5V$ $T_A = 25^{\circ}C, V_{OUT} = V_{CC}$	1.75			mA
I _{SINK}	Output Sink Current	$V_{CC} = 10V, V_{IN(1)} = 10V$ $T_A = 25^{\circ}C, V_{OUT} = V_{CC}$	8.0			mA
Note 1: "Abs	Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range"					

Note 1: Absolute maximum namps are mose values beyond which the safety of the device cannot be guaranteed. Except of operating temperature name they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{pd0} , t _{pd1}	Propagation Delay Time to a Logical "0" or Logical "1" from Clock to Output	$V_{CC} = 5V$ $V_{CC} = 10V$		220 80	400 200	ns ns
ts	Input Data Set-up Time	$V_{CC} = 5V$ $V_{CC} = 10V$		40 15	80 30	ns ns
t _H	Input Data Hold Time	$V_{CC} = 5V$ $V_{CC} = 10V$		0	0 0	ns ns
ts	Input Disable Set-up Time, t _{S DISS}	$V_{CC} = 5V$ $V_{CC} = 10V$		100 35	200 70	ns ns
t _H	Input Disable Hold Time, t _{H DISS}	$V_{CC} = 5V$ $V_{CC} = 10V$		0 0	0 0	ns ns
t _{1H} , t _{0H}	Delay from Output Disable to High Impedance State (from Logical "1" or Logical "0" Level)	$V_{CC} = 5V, R_L = 10k$ $V_{CC} = 10V, R_L = 10k$		170 70	340 140	ns ns
t _{H1}	Delay from Output Disable to Logical "1" Level (from High Impedance State)	$V_{CC} = 5V$ $V_{CC} = 10V$		170 70	340 140	ns ns
t _{H0}	Delay from Output Disable to Logical "0" Level (from High Impedance State)	$V_{CC} = 5V$ $V_{CC} = 10V$		170 70	340 140	ns ns
t _{pd0} , t _{pd1}	Propagation Delay from Clear to Output	$V_{CC} = 5V$ $V_{CC} = 10V$		240 90	490 180	ns ns
f _{MAX}	Maximum Clock Frequency	$V_{CC} = 5V$ $V_{CC} = 10V$	3 7.0	4 12		MHz MHz
t _W	Minimum Clear Pulse Width	$V_{CC} = 5V$ $V_{CC} = 10V$		150 70		ns ns
t _r , t _f	Maximum Clock Rise and Fall Time	$V_{CC} = 5V$ $V_{CC} = 10V$	10 5			μs μs
C _{IN}	Input Capacitance	(Note 2)		5		pF
CPD	Power Dissipation Capacitance	(Note 3)				

*AC Parameters are guaranteed by DC correlated testing.

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Capacitance is guaranteed by periodic testing.

Note 3: C_{PD} determines the no load AC power consumption of any CMOS device. For complete explanation see 54C/74C Family Characteristics application note AN-90.

 $\frac{0.065}{(1.651)}$

ŧ

ŧ

N16E (REV F)

)	National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0.180-530 85 86 Email: cnjwge@tevm2.nsc.com Deutsch Tei: (+49) 0.180-530 85 85 English Tei: (+49) 0.180-532 78 32 Français Tei: (+49) 0.180-532 93 58	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tei: (852) 2737-1600	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408
		Italiano Tel: (+49) 0-180-532 95 58	Fax: (852) 2736-9960	

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.