

LP8358

150mA, µCap, Low Dropout Voltage Regulator with Power Good

General Description

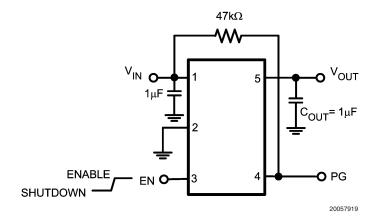
The LP8358 is a μ Cap, precise CMOS voltage regulator with low Power good output R_{DSON}.

It provides up to 150mA and consumes a typical of 10nA in shutdown mode. The LP8358 output stage is designed with a push pull output for faster transient recovery response.

The LP8358 is optimized to work with low value, low cost ceramic capacitors. The output typically require only $1\mu F$ of output capacitance for stability. The enable pin can be tied to V_{IN} for easy board layout.

The LP8358 is designed for portable, battery powered equipment applications with small space requirements.

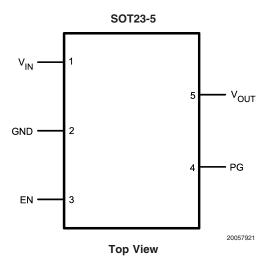
The LP8358 is available in a 5-pin SOT-23 package. Performance is specified for the -40°C to +125°C temperature range and is available in a fixed 1.2V. For other output voltage options, please contact National Semiconductor.


Features

- Low power good R_{DSON}: 20Ω
- Power good indicator
- Stability with low ESR capacitors
- Low ground current: 120µA
- 150mA output current
- "Zero" shutdown current mode
- Fast transient recovery response
- Auto discharge
- Thermal shutdown
- Current limiting

Applications

- Processor power-up sequencing
- Laptop, notebook and palm top computer
- PCMCIA V_{CC} and V_{PP} regulation switching


Typical Application

Ordering Information

Package	Part Number	Package Marking	Transport Media	NSC Drawing	
5-Pin SOT-23	LP8358MF-1.2	LH2B	1k Units Tape and Reel	MF05A	
	LP8358MFX-1.2	LNZD	3k Units Tape and Reel	WIFUSA	

Connection Diagram

Pin Description

Pin Number	Pin Name	Pin Function	
1	V _{IN} Input Voltage		
2	GND	Ground	
3	EN	Enable Input Logic,	
		Logic High = Enabled	
		Logic Low = Shutdown	
		(Do not leave open)	
4	PG	Power Good Output	
5	V _{OUT}	Output Voltage	

Block Diagram ν_{IN} [EN [STARTUP/ REFERENCE QUICKSTART SHUTDOWN VOLTAGE CONTROL **FAULT** THERMAL SENSOR PULL UP **ERROR** CURRENT **₽** ∨_{out} **AMPLIFIER AMPLIFIER** PULL dow N **ACTIVE SHUTDOWN** UNDER-**VOLTAGE** LOCKOUT OUT OF REGULATION DETECTION 🗖 PG OVERCURRENT DELAY DROPOUT DETECTION GND 20057920

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

ESD Tolerance (Note 2)

Human Body Model 2000V

Junction Temperature 150°C -0.3 TO 6.5V

 V_{IN}, V_{OUT}, V_{EN}

Soldering Information

Infrared or Convection (20 sec) 235°C

Wave Soldering (10 sec) 260°C (lead temp)

Operating Ratings

Supply Voltages

2.7V to 6V V_{IN} V_{EN} 0V to VIN Junction Temp. Range (Note 3) -40°C to +125°C Storage Temperature Range -65°C to 150°C

Package Themal Resistance

SOT23-5 235°C/W

Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_J = 25^{\circ}C$, $V_{IN} = 2.7V$, $I_L = 100\mu A$, $C_{OUT} = 1\mu F$, $V_{EN} \ge 2.0V$. Boldface limits apply over the entire operating temperature range, -40°C to 125°C.

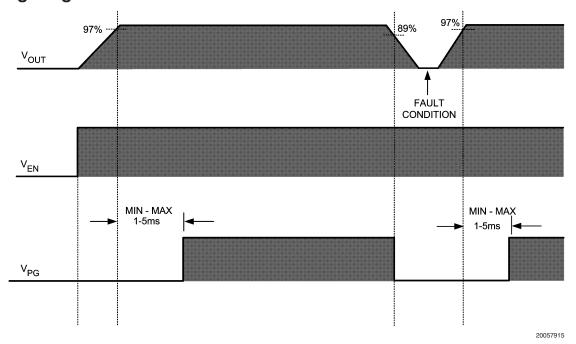
Symbol	Parameter	Conditions	Min	Тур	Max	Units
			(Note 5)	(Note 4)	(Note 5)	
V _O	Output Voltage Accuracy	$I_L = 100\mu A$	-3		3	%
			-4		4	
$\Delta V_{O}/V_{O}$	Line Regulation	$V_{IN} = 2.7V$ to 6V	-0.3		0.3	%
$\Delta V_{O}/V_{O}$	Load Regulation	$I_L = 0.1$ mA to 150mA (Note 6)		1	4	%
IQ	Quiescent Current	$V_{EN} \le 0.4V$ (Shutdown), PG = NC		0.01	1	μΑ
I _{GND}	Ground Pin Current (Note 5)	$I_L = 0$ mA, $V_{EN} \ge 2.0$ V (active), $V_{IN} = 6$ V		120	180	μΑ
		I_L = 150mA, $V_{EN} \ge 2.0V$ (active), V_{IN} = 6V		160	225	
PSRR	Power Supply Rejection Ratio	$f = 120Hz, C_{OUT} = 4.7\mu F,$ $I_L = 150mA$		62		dB
I _{LIMIT}	Current Limit	$V_{OUT} = 0V$	160	350		mA
Thermal Pr	otection		•			
	Thermal Shutdown			150		°C
	Temperature					
Enable Inpu	ut					
V_{IL}	Enable Input Voltage Level	Logic Low (off) , V _{IN} = 5.5V			0.4	V
V_{IH}		Logic High (on), V _{IN} = 5.5V	2			V
I _{IL}	Enable Input Current	$V_{IL} \le 0.4V, V_{IN} = 5.5V$		0.01		μΑ
I _{IH}		$V_{IH} \ge 2.0V, V_{IN} = 5.5V$		0.01		μΑ
Power Goo	d					
V _{PG}	Low Threshold	% of V _{OUT} (PG ON)	89			%
	High Threshold	% of V _{OUT} (PG OFF)			97	70
V _{OL}	PG Output Logic-Low Voltage	I _{POWERGOOD} = 100μA, Fault Condition		2.0	10.0	mV
R _{DSON}	Power Good Output On - Resistance	I _{POWERGOOD} = 1mA, Fault Condition		20		Ω
I _{PG}	Power Good Leakage Current	Power Good Off, V _{PG} = 5.5V		0.01		μΑ
V _{PG} Delay	Delay Time to Power Good	See Timing Diagram	1	2.1	5	ms
	+	1				

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.

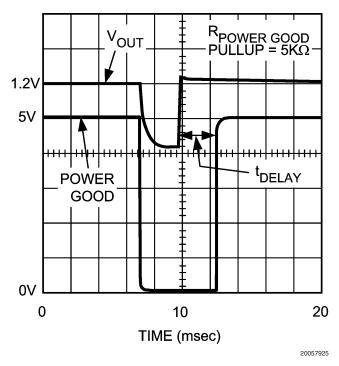
Note 2: Human body model, $1.5k\Omega$ in series with 100pF.

Note 3: The maximum power dissipation is a function of $T_{J(max)}$, θ_{JA} , and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(max)} - T_A)/\theta_{JA}$. All numbers apply for packages soldered directly into a PC board.

Note 4: Typical Values represent the most likely parametric norm.

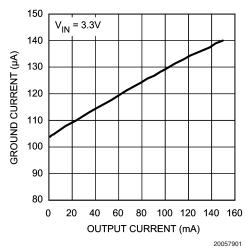

Note 5: All limits are guaranteed by testing or statistical analysis.

Note 6: Regulation is measured at constant junction temperature using low duty cycle pulse testing.

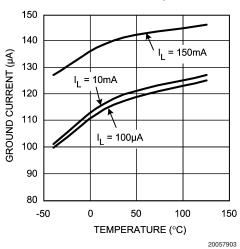

Electrical Characteristics (Continued)

Note 7: Ground pin current is the regulator quiescent current. The total current drawn from the supply is the sum of the load current plus the ground pin current.

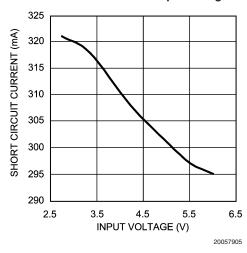
Timing Diagram

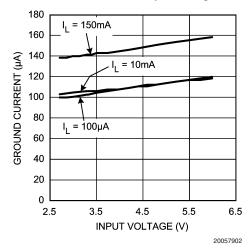


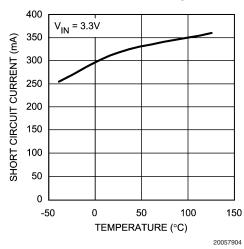
Typical delay time to power good

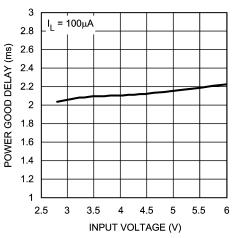


Typical Performance Characteristics Unless otherwise specified, $V_{IN}=3.3V$, $C_{OUT}=1\mu F$, $T_A=25^{\circ}C$ and powergood pull up resistor = $47k\Omega$.


Ground Current vs. Output Current

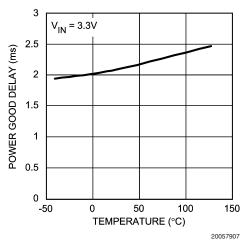

Ground Current vs. Temperature


Short Circuit Current vs. Input Voltage

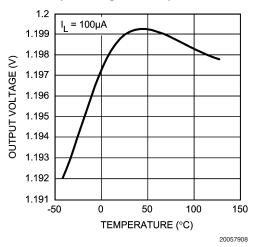

Ground Current vs. Input Voltage

Short Circuit Current vs. Temperature

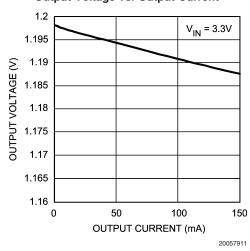
Power Good Delay vs. Input Voltge

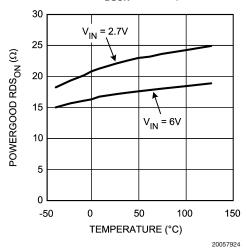


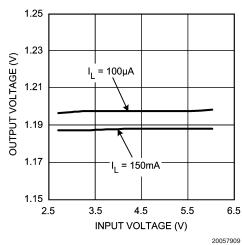
20057906

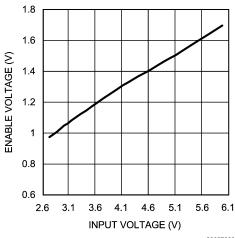

www.national.com

Typical Performance Characteristics Unless otherwise specified, V_{IN} = 3.3V, C_{OUT} = 1 μ F, T_A = 25°C and powergood pull up resistor = 47 $k\Omega$. (Continued)

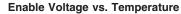

Power Good Delay vs. Temperature

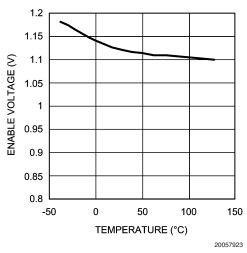

Output Voltage vs. Temperature

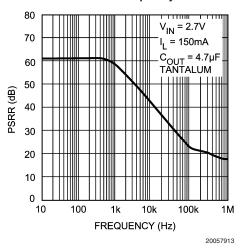

Output Voltage vs. Output Current


Power Good $R_{\mbox{\scriptsize DSON}}$ vs. Temperature

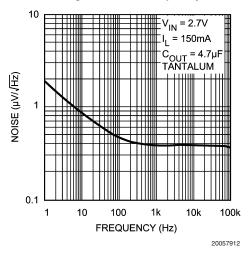
Output Voltage vs. Input Voltage

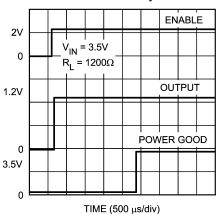



Enable Voltage vs. Input Voltage


20057922

Typical Performance Characteristics Unless otherwise specified, V_{IN} = 3.3V, C_{OUT} = 1 μ F, T_A = 25°C and powergood pull up resistor = 47 $k\Omega$. (Continued)




PSRR vs. Frequency

Voltage Noise vs. Frequency

Power On Reset Delay Time

20057914

www.national.com

Application Notes

The LP8358 is a linear regulator with power good output designed to be used with a low ESR, low cost ceramic capacitors.

EXTERNAL CAPACITORS

The LP8358 regulator requires an output capacitor to maintain stability. The capacitor must be at least $1\mu F$ or greater. The capacitor can be low-ESR ceramic chip capacitor, however for improved capacitance over temperature, tantalum capacitors can be used.

A $1\mu F$ input capacitor is recommend when the supply capacitance is more than 10 inches away from the device, or when the supply is a battery.

X7R dielectric ceramic capacitors are recommended because of their temperature performance. X7R-type capacitor change capacitance by 15% over their operating temperature range and are the most stable type of ceramic capacitors. Z5U and Y5V dielectric capacitors change value by as much 50% and 60% respectively over their operating temperature range. To use a ceramic chip capacitor with Y5V dielectric, the value must be much higher than a X7/R ceramic or a tantalum capacitor to ensure the same minimum capacitance value over the operating temperature range. Tantalum capacitors have a very stable dielectric (10% over their operating temperature range) and can also be used with this device.

ENABLE/SHUTDOWN

The LP8358 has an active high enable pin that allows the regulator to be disabled. Applying a Logic Level low (<0.4 V) to the Shutdown pin will cause the output to turn off, in this state current consumed by the regulator goes nearly to zero. Applying a Logic Level high (>2.0V) enables the output voltage. The enable/shutdown pin must not be left floating; a floating enable pin may cause an indeterminate state on the output.

ACTIVE SHUTDOWN

The LP8358 is designed with a N-channel MOSFET that acts as a shutdown clamp. The N-channel turns on when the device is disabled to allow the output capacitor and load to discharge

POWER GOOD

The power good output is an open-drain output with extreme low R_{DSON}. It is designed essentially to work as a power-on reset generator once the regulated voltage is up and/ or a

fault condition. When a fault condition occurs, the output of the power good pin goes low. The power good output comes back up once the output has reached 97% of its nominal value and 1ms to 5ms delay has passed , see timing diagram.

The LP8358 internal circuit monitors overcurrent, temperature and falling output voltage. If one of these conditions is flagged this indicates a fault condition.

The flagged condition output is fed into an onchip delay circuit that drives the open drain output transistor.

TRANSIENT RESPONSE

The LP8358 implements a unique output stage to dramatically improve transient response recovery time. The output is a totem-pole configuration with a P-channel MOSFET pass device and a N-channel MOSFET clamp. The N-channel clamp is a significantly smaller device that prevents the output voltage from overshooting when a heavy load is removed. This feature helps to speed up the transient response by significantly decreasing transient response recovery time during the transition from heavy load to light load.

THERMAL BEHAVIOR

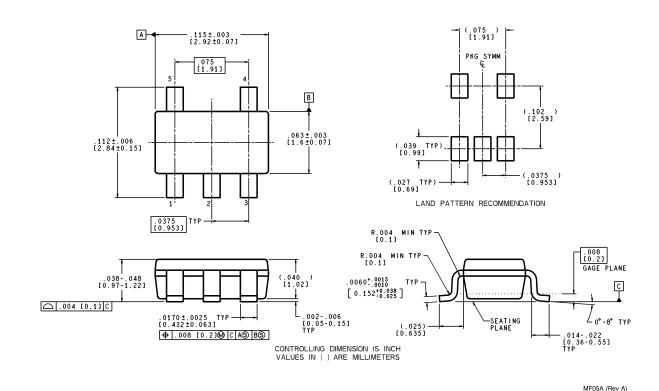
The LP8358 regulator has internal thermal shutdown to protect the device from over heating. Under all operating conditions, the maximum junction temperature of the LP8358 must be below 125°C. Maximum power dissipation can be calculated based on the output current and the voltage drop across the part. The maximum power dissipation is

$$P_{D(MAX)} = (T_{J(MAX)} - T_A)/\theta_{JA}$$

 θ _{JA} is the junction-to-ambient thermal resistance, 235°C/W for the LP8358 in the SOT23-5 package. T_A is the maximum ambient temperature T _{J(MAX)} is the maximum junction temperature of the die, 125°C.

When operating the LP8358 at room temperature, the maximum power dissipation is 425mW.

The actual power dissipated by the regulator is


$$P_{D} = (V_{IN} - V_{OUT})I_{L} + V_{IN} I_{GND}$$

Substituting $P_{D(MAX)}$, determined above, for P_D and solving for the operating condition that is critical to the application will give the maximum operating condition for the regulator circuit. To prevent the device from entering thermal shutdown, maximum power dissipation cannot be exceeded.

www.national.com

Physical Dimensions inches (millimeters)

unless otherwise noted

5-Pin SOT23-5 **NSC Package Number MF05A**

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Americas Customer Support Center

Email: new.feedback@nsc.com Tel: 1-800-272-9959

www.national.com

National Semiconductor Europe Customer Support Center

Fax: +49 (0) 180-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171

Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Support Center Fax: +65-6250 4466

Email: ap.support@nsc.com Tel: +65-6254 4466

National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560