

LMX2377U PLLatinum[™] Ultra Low Power Dual Frequency Synthesizer for RF Personal Communications 2.5 GHz/1.2 GHz

General Description

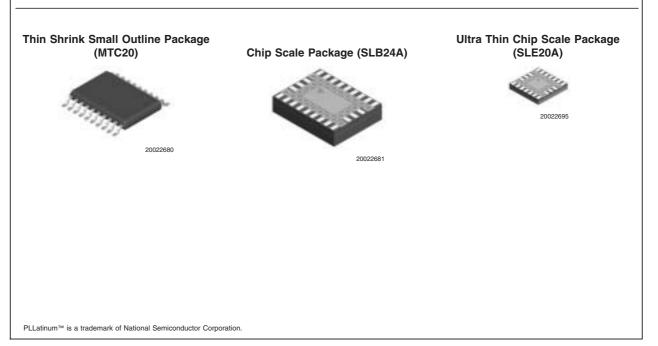
The LMX2377U device is a high performance frequency synthesizer with integrated dual modulus prescalers. The LMX2377U device is designed for use as a local oscillator for the first and second RF of a dual conversion radio transceiver.

A 16/17 or a 32/33 prescale ratio can be selected for the Main synthesizer. An 8/9 or a 16/17 prescale ratio can be selected for the Aux synthesizer. Using a proprietary digital phase lock technique, the LMX2377U device generates very stable, low noise control signals for UHF and VHF voltage controlled oscillators. Both the Main and Aux synthesizers include a two-level programmable charge pump. The Main synthesizer has dedicated Fastlock circuitry.

Serial data is transferred to the devices via a three-wire interface (Data, LE, Clock). The low voltage logic interface allows connection to 1.8V devices. Supply voltages from 2.7V to 5.5V are supported. The LMX2377U features ultra low current consumption, typically 3.5 mA at 3.0V.

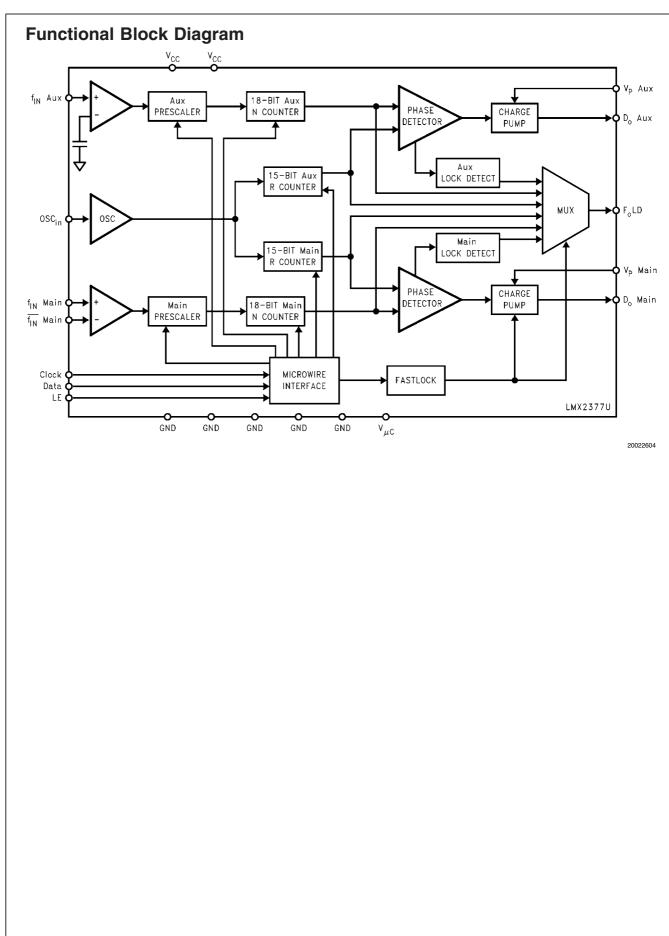
The LMX2377U devices are available in 20-Pin TSSOP, 24-Pin CSP, and 20-Pin UTCSP surface mount plastic packages.

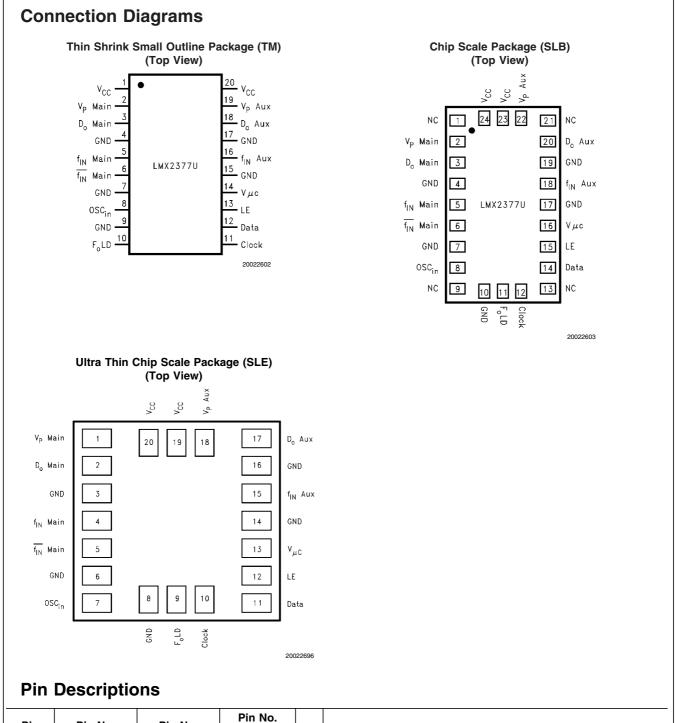
Features


- Ultra Low Current Consumption
- Upgrade and Compatible to the LMX2370
- 2.7V to 5.5V Operation
- 2.77 to 5.57 Operation
 1.8V to 5.0V MICROWIRE Logic Interface
- Selectable Synchronous or Asynchronous Powerdown Mode:

 $I_{CC-PWDN} = 1 \ \mu A \ typical$

- Selectable Dual Modulus Prescaler: Main: 16/17 or 32/33 Aux: 8/9 or 16/17
- Selectable Charge Pump TRI-STATE® Mode
- Programmable Charge Pump Current Levels Main and Aux: 0.95 or 3.8 mA
- Selectable Fastlock[™] Mode for the Main Synthesizer
- Open Drain Analog Lock Detect Output
- Available in 20-Pin TSSOP, 24-Pin CSP, and 20-Pin UTCSP

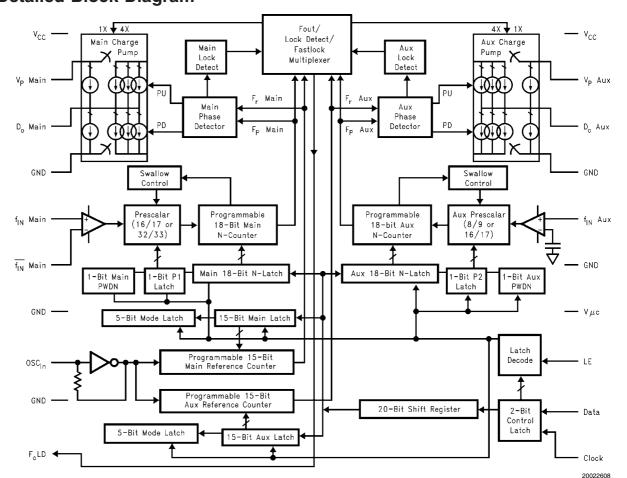

Applications


- Mobile Handsets (GSM, GPRS, W-CDMA, CDMA, PCS, AMPS, PDC, DCS)
- Cordless Handsets (DECT, DCT)
- Wireless Data
- Cable TV Tuners

© 2002 National Semiconductor Corporation DS200226

Pin Name	Pin No. 20-Pin UTCSP	Pin No. 24-Pin CSP	Pin No. 20-Pin TSSOP	1/0	Description
V _{cc}	20	24	1	_	Power supply bias for the Main PLL analog and digital circuits. V_{CC} may range from 2.7V to 5.5V. Bypass capacitors should be placed as close as possible to this pin and be connected directly to the ground plane.
V _P Main	1	2	2	—	Main PLL charge pump power supply. Must be $\geq V_{CC}$.
D _o Main	2	3	3	0	Main PLL charge pump output. The output is connected to the external loop filter, which drives the input of the VCO.
GND	3	4	4	—	Ground for the Main PLL digital circuitry.
f _{IN} Main	4	5	5		Main PLL prescaler input. Small signal input from the VCO.

3


www.national.com

Pin Descriptions (Continued)

Pin Name	Pin No. 20-Pin UTCSP	Pin No. 24-Pin CSP	Pin No. 20-Pin TSSOP	I/O	Description
f _{IN} Main	5	6	6	I	Main prescaler complementary input. For single ended operation, this pin should be AC grounded. The LMX2377U Main PLL can be driven differentially when the bypass capacitor is omitted.
GND	6	7	7	-	Ground for the Main PLL analog circuitry.
OSC _{in}	7	8	8	I	Reference oscillator input. It has an approximate $V_{\rm CC}/2$ input threshold and can be driven from an external CMOS or TTL logic gate.
GND	8	10	9	-	Ground for the Aux PLL digital circuitry, MICROWIRE, FoLD, and oscillator circuits.
F _o LD	9	11	10	0	Programmable multiplexed output pin. Functions as a general purpose CMOS TRI-STATE output, Main/Aux PLL open drain analog lock detect output, N and R divider output or Fastlock output, which connects a parallel resistor to the external loop filter.
Clock	10	12	11		MICROWIRE Clock input. High impedance CMOS input. Data is clocked into the 22-bit shift register on the rising edge of Clock.
Data	11	14	12	I	MICROWIRE Data input. High impedance CMOS input. Binary serial data. The MSB of Data is shifted in first. The last two bits are the control bits.
LE	12	15	13	I	MICROWIRE Latch Enable input. High impedance CMOS input. When LE transitions HIGH, Data stored in the shift register is loaded into one of 4 internal control registers.
Vµc	13	16	14	-	Power supply bias for the MICROWIRE circuitry. Must be $\leq V_{CC}$. Typically connected to the same supply level as the microprocessor or baseband controller to enable programming at low voltages.
GND	14	17	15		Ground for the Aux PLL analog circuitry.
${\rm f}_{\rm IN}$ Aux	15	18	16		Aux PLL prescaler input. Small signal input from the VCO.
GND	16	19	17	-	Ground for the Aux PLL digital circuitry, MICROWIRE, $\rm F_oLD,$ and oscillator circuits.
D _o Aux	17	20	18	0	Aux PLL charge pump output. the output is connected to an external loop filter, which drives the input of the VCO.
V_P Aux	18	22	19	—	Aux PLL charge pump power supply. Must be $\geq V_{CC}$.
V _{cc}	19	23	20	-	Power supply bias for the Aux PLL analog and digital circuits, F_oLD , and oscillator circuits. V_{CC} may range from 2.7V to 5.5V. Bypass capacitors should be placed as close as possible to this pin and be connected directly to the ground plane.
NC		1, 9, 13, 21	_	1_	No Connect

Model	Temperature Range	Package Description	Packing	NS Package Number
LMX2377USLEX	-40°C to +85°C	Ultra Thin Chip Scale	2500 Units Per Reel	SLE20A
		Package (UTCSP)		
		Tape and Reel		
LMX2377USLBX	-40°C to +85°C	Chip Scale Package	2500 Units Per Reel	SLB24A
		(CSP) Tape and Reel		
LMX2377UTM	-40°C to +85°C	Thin Shrink Small	73 Units Per Rail	MTC20
		Outline Package		
		(TSSOP)		
LMX2377UTMX	-40°C to +85°C	Thin Shrink Small	2500 Units Per Reel	MTC20
		Outline Package		
		(TSSOP) Tape and		
		Reel		

Detailed Block Diagram

Notes:

1. V_{CC} supplies power to the Main and Aux prescalers, Main and Aux feedback dividers, Main and Aux reference dividers, Main and Aux phase detectors, the OSC_{in} buffer, and F_oLD circuitry. 2. Vµc supplies power to the MICROWIRE circuitry. 3. V_P Main and V_P Aux supply power to the charge pumps. They can be run separately as long as V_P Main \ge V_{CC} and V_P Aux \ge V_{CC}.

Absolute Maximum Ratings (Notes 1,

2, 3)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Power Supply Voltage	
V _{CC} to GND	-0.3V to +6.5V
V _P Main to GND	-0.3V to +6.5V
V _P Aux to GND	-0.3V to +6.5V
Voltage on any pin to GND (V _I)	
V_1 must be < +6.5V	–0.3V to V _{CC} +0.3V
Storage Temperature Range (T _S)	–65°C to +150°C
Lead Temperature (solder 4 s) (T_L)	+260°C
TSSOP θ_{JA} Thermal Impedance	114.5°C/W

Recommended Operating Conditions (Note 1)

Power Supply Voltage

+2.7V to +5.5V
$V_{\rm CC}$ to +5.5V
$V_{\rm CC}$ to +5.5V
–40°C to +85°C

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Recommended Operating Conditions indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, refer to the Electrical Characteristics section. The guaranteed specifications apply only for the conditions listed.

Note 2: This device is a high performance RF integrated circuit with an ESD rating <2 kV and is ESD sensitive. Handling and assembly of this device should only be done at ESD protected work stations. Note 3: GND = 0V

Electrical Characteristics

 V_{CC} = V_{P} Main = V_{P} Aux = Vµc = 3.0V, $-40^{\circ}C \leq T_{A} \leq +85^{\circ}C,$ unless otherwise specified

Symbol	Parameter	Conditions		Value		Units
Symbol	Parameter	Conditions	Min	Тур	Max	
I _{CC} PARAM	ETERS					
I _{CCMain + Aux}	Power Supply Current, Main + Aux Synthesizers	Clock, Data and $LE = GND$ OSC _{in} = GND PWDN Main Bit = 0 PWDN Aux Bit = 0		3.5	4.6	mA
I _{CCMain}	Power Supply Current, Main Synthesizer Only	Clock, Data and LE = GND OSC _{in} = GND PWDN Main Bit = 0 PWDN Aux Bit = 1		2.3	3.0	mA
I _{CCAux}	Power Supply Current, Aux Synthesizer Only	Clock, Data and LE = GND OSC _{in} = GND PWDN Main Bit = 1 PWDN Aux Bit = 0		1.0	1.6	mA
I _{CC-PWDN}	Powerdown Current	Clock, Data and LE = GND OSC _{in} = GND PWDN Main Bit = 1 PWDN Aux Bit = 1		1.0	10.0	μA
MAIN SYNT	HESIZER PARAMETERS					
f _{IN} Main	Main Operating Frequency		500		2500	MHz
N _{Main}	Main N Divider Range	Prescaler = 16/17 (Note 4)	48		131087	
		Prescaler = 32/33 (Note 4)	96		262143	
R _{Main}	Main R Divider Range		2		32767	
$F_{\phi Main}$	Main Phase Detector Frequency				10	MHz
Pf _{IN} Main	Main Input Sensitivity	$2.7V \le V_{CC} \le 3.0V$ (Note 5)	-15		0	dBm
		3.0V < V _{CC} ≤ 5.5V (Note 5)	-10		0	dBm

0	Demonster	O an dition o		Value		11
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		1				
ID _o Main SOURCE	Main Charge Pump Output Source Current	VD _o Main = V _P Main/2 ID _o Main Bit = 0 (Note 6)		-0.95		mA
		VD_{o} Main = V_{P} Main/2 I D_{o} Main Bit = 1 (Note 6)		-3.80		mA
ID _o Main SINK	Main Charge Pump Output Sink Current	VD _o Main = V _P Main/2 ID _o Main Bit = 0 (Note 6)		0.95		mA
		VD _o Main = V _P Main/2 ID _o Main Bit = 1 (Note 6)		3.80		mA
ID _o Main TRI-STATE	Main Charge Pump Output TRI-STATE Current	$0.5V \le VD_o$ Main $\le V_P$ Main - 0.5V (Note 6)	-2.5		2.5	nA
ID _o Main SINK Vs ID _o Main SOURCE	Main Charge Pump Output Sink Current Vs Charge Pump Output Source Current Mismatch	VD_{o} Main = V_{P} Main/2 $T_{A} = 25^{\circ}C$ (Note 7)		3	10	%
ID _o Main Vs VD _o Main	Main Charge Pump Output Current Magnitude Variation Vs Charge Pump Output Voltage	$0.5V \le VD_{o}$ Main $\le V_{P}$ Main - 0.5V T _A = 25°C (Note 7)		10	15	%
ID _o Main Vs T _A	Main Charge Pump Output Current Magnitude Variation Vs Temperature	VD _o Main = V _P Main/2 (Note 7)		10		%
AUX SYNTH	ESIZER PARAMETERS				•	
f _{IN} Aux	Aux Operating Frequency		45		1200	MHz
N _{Aux}	Aux N Divider Range	Prescaler = 8/9 (Note 4)	24		65559	
		Prescaler = 16/17 (Note 4)	48		131087	
R _{Aux}	Aux R Divider Range		2		32767	
F _{¢Aux}	Aux Phase Detector Frequency				10	MHz
Pf _{IN} Aux	Aux Input Sensitivity	$2.7V \le V_{CC} \le 5.5V$ (Note 5)	-10		0	dBm

Ourseland	Devenuetor	O a raditti a rad		Value		L la la
Symbol	Parameter	Conditions	Min	Тур	Мах	Units
AUX SYNTH	ESIZER PARAMETERS	•				•
ID _o Aux SOURCE	Aux Charge Pump Output Source Current	$VD_o Aux = V_P Aux/2$ $ID_o Aux Bit = 0$ (Note 6)		-0.95		mA
		$VD_o Aux = V_P Aux/2$ $ID_o Aux Bit = 1$ (Note 6)		-3.80		mA
ID _o Aux SINK	Aux Charge Pump Output Sink Current	$VD_o Aux = V_P Aux/2$ $ID_o Aux Bit = 0$ (Note 6)		0.95		mA
		$VD_o Aux = V_P Aux/2$ $ID_o Aux Bit = 1$ (Note 6)		3.80		mA
ID _o Aux TRI-STATE	Aux Charge Pump Output TRI-STATE Current	$0.5V \le VD_o Aux \le V_P Aux - 0.5V$ (Note 6)	-2.5		2.5	nA
ID _o Aux SINK Vs ID _o Aux SOURCE	Aux Charge Pump Output Sink Current Vs Charge Pump Output Source Current Mismatch	$VD_{o} Aux = V_{P} Aux/2$ $T_{A} = 25^{\circ}C$ (Note 7)		3	10	%
ID _o Aux Vs VD _o Aux	Aux Charge Pump Output Current Magnitude Variation Vs Charge Pump OutputVoltage	$0.5V \le VD_o Aux \le V_P Aux - 0.5V$ $T_A = 25^{\circ}C$ (Note 7)		10	15	%
ID _o Aux Vs T _A	Aux Charge Pump Output Current Magnitude Variation Vs Temperature	$VD_{o} Aux = V_{P} Aux/2$ (Note 7)		10		%
OSCILLATO	R PARAMETERS	1	1			
F _{osc}	Oscillator Operating Frequency		2		40	MHz
V _{osc}	Oscillator Sensitivity	(Note 8)	0.5		V _{CC}	V _{PP}
l _{osc}	Oscillator Input Current	$V_{OSC} = V_{CC} = 5.5V$ $V_{OSC} = 0V, V_{CC} = 5.5V$			100	μA

www.national.com

 t_{ES}

 t_{EW}

Symbol	Parameter	Conditions		Value		Units
Symbol	Parameter	Conditions	Min	Тур	Max	Units
DIGITAL INT	ERFACE (Data, LE, Clock, F _o LD)		· · ·			
V _{IH}	High-Level Input Voltage	$1.72V \le V\mu c \le 5.5V$	0.8 Vµc			V
V _{IL}	Low-Level Input Voltage	$1.72V \le V\mu c \le 5.5V$			0.2 Vµc	V
I _{IH}	High-Level Input Current	$V_{IH} = V\mu c = 5.5V$	-1.0		1.0	μA
I _{IL}	Low-Level Input Current	$V_{IL} = 0V, V\mu c = 5.5V$	-1.0		1.0	μA
V _{OH}	High-Level Output Voltage	I _{OH} = -500 μA	V _{cc} -			V
			0.4			
V _{OL}	Low-Level Output Voltage	I _{OL} = 500 μA			0.4	V
MICROWIRE	INTERFACE		· · ·			
t _{cs}	Data to Clock Set Up Time	(Note 9)	50			ns
t _{сн}	Data to Clock Hold Time	(Note 9)	20			ns
t _{сwн}	Clock Pulse Width HIGH	(Note 9)	50			ns
t _{CWL}	Clock Pulse Width LOW	(Note 9)	50			ns

(Note 9)

(Note 9)

50

50

ns

ns

Clock to Load Enable Set Up Time

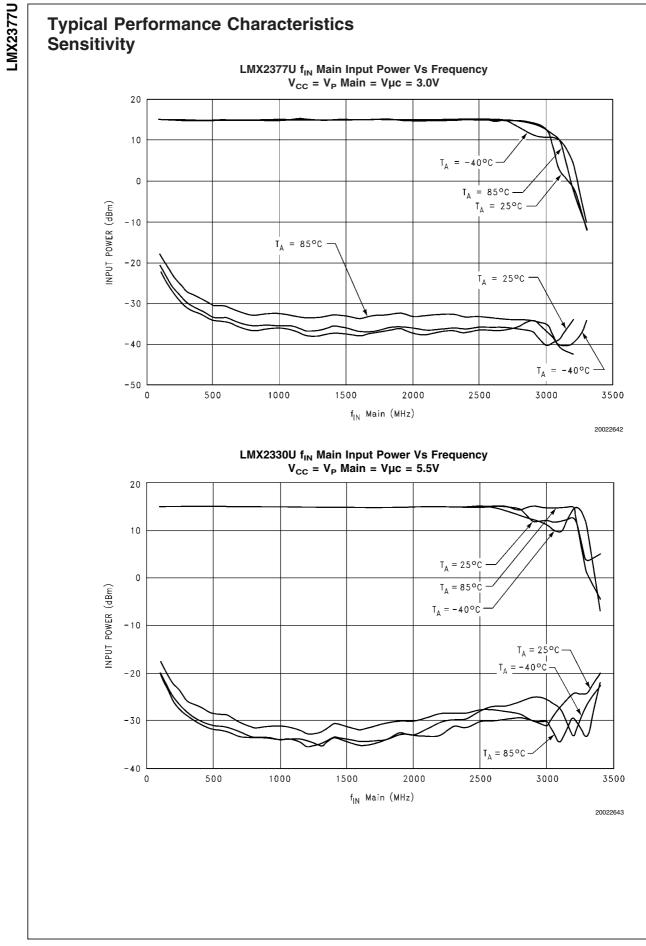
Latch Enable Pulse Width

Cumhal	Devementer	Conditions		Value		Linite
Symbol	Parameter	Conditions	Min	Тур	Max	Units
PHASE NO	SE CHARACTERISTICS					
L _N (f) Main	Main Synthesizer Normalized Phase	TCXO Reference Source		-212.0		dBc/
	Noise Contribution	ID_o Main Bit = 1				Hz
L(f) Main	(Note 10) Main Synthesizer Single Side Band	f _{IN} Main = 2450 MHz		-77.24		dBc/
	Phase Noise Measured	f = 1 kHz Offset		-//.24		Hz
	Filase Noise measured	$F_{\phi Main} = 200 \text{ kHz}$				
		Loop Bandwidth = 7.5 kHz				
		N = 12250				
		$F_{OSC} = 10 \text{ MHz}$				
		$V_{OSC} = 0.632 V_{PP}$				
		ID_{o} Main Bit = 1				
		PWDN Aux Bit = 1				
		$T_A = 25^{\circ}C$				
		(Note 11)				
L _N (f) Aux	Aux Synthesizer Normalized Phase	TCXO Reference Source		-212.0		dBc/
	Noise Contribution	ID_{o} Aux Bit = 1				Hz
	(Note 10)					
L(f) Aux	Aux Synthesizer Single Side Band	f _{IN} Aux = 900 MHz		-85.94		dBc/
	Phase Noise Measured	f = 1 kHz Offset				Hz
		$F_{\phi Aux} = 200 \text{ kHz}$				
		Loop Bandwidth = 12 kHz				
		N = 4500				
		F _{OSC} = 10 MHz				
		$V_{OSC} = 0.632 V_{PP}$				
		ID_{o} Aux Bit = 1				
		PWDN Main Bit = 1				
		$T_A = 25^{\circ}C$				
		(Note 11)				

Note 4: Some of the values in this range are illegal divide ratios (B < A). To obtain continuous legal division, the Minimum Divide Ratio must be calculated. Use N \geq P * (P-1), where P is the value of the prescaler selected.

Note 5: Refer to the LMX2377U f_{IN} Sensitivity Test Setup section

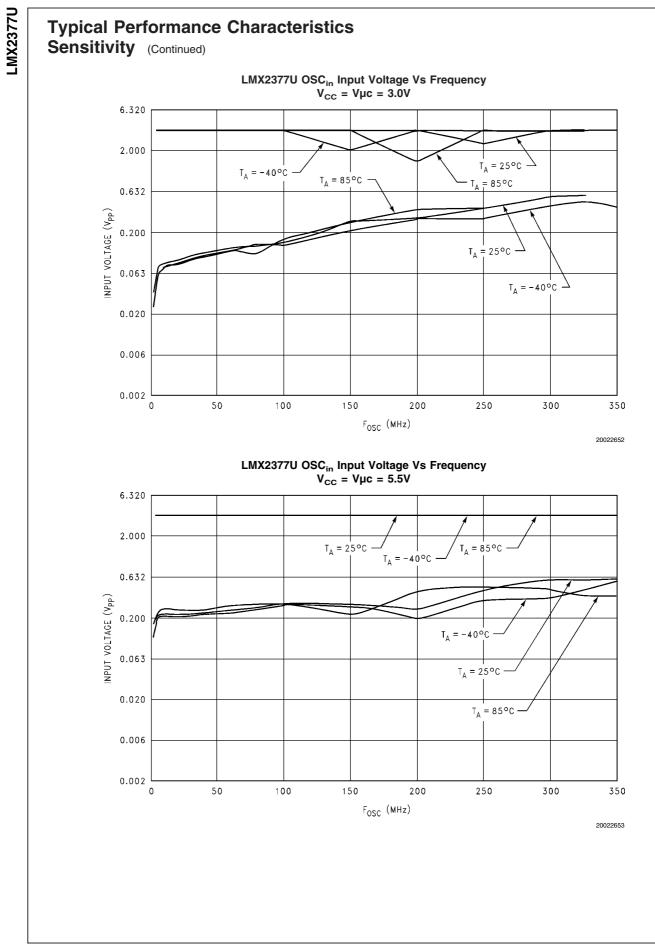
Note 6: Refer to the LMX2377U Charge Pump Test Setup section

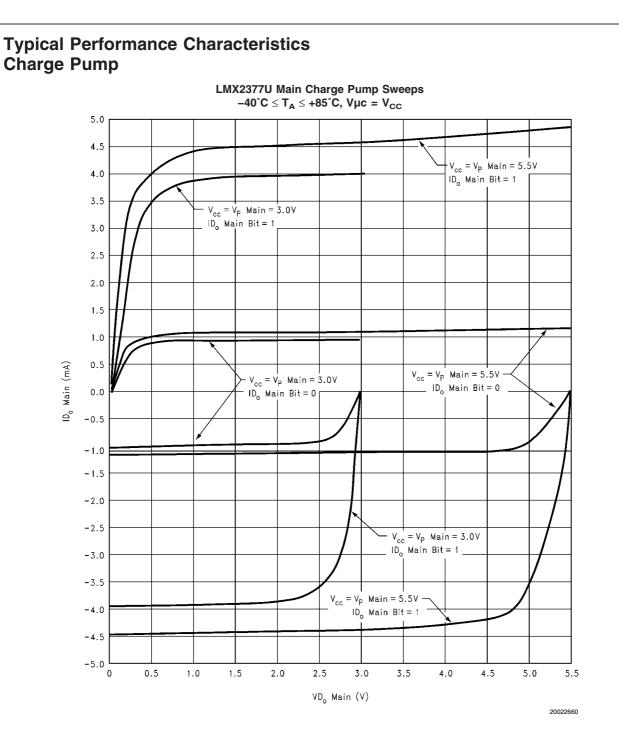

Note 7: Refer to the Charge Pump Current Specification Definitions for details on how these measurements are made.

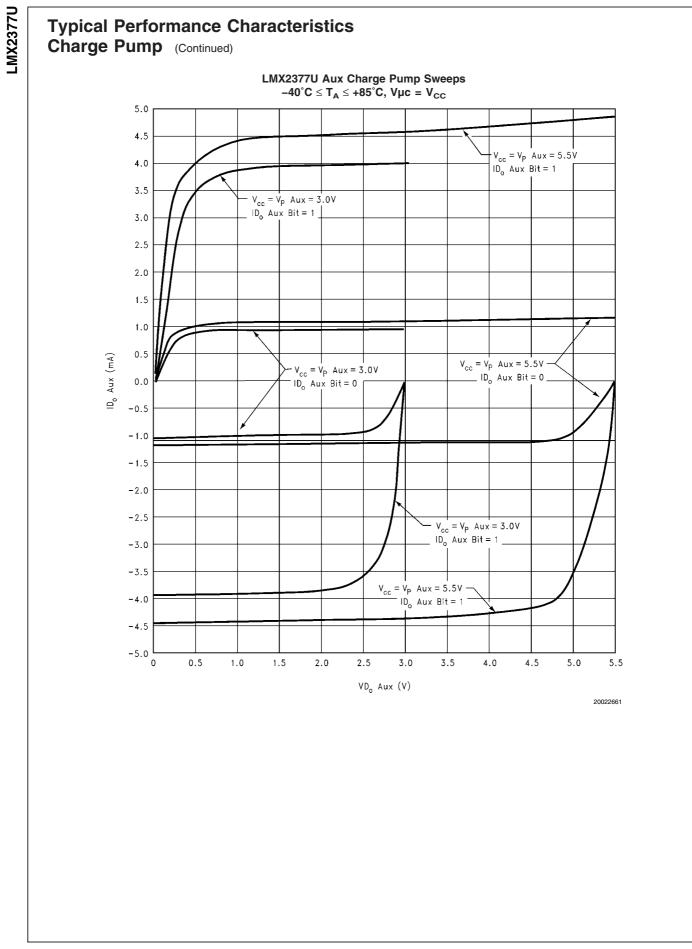
Note 8: Refer to the LMX2377U OSC_{in} Sensitivity Test Setup section

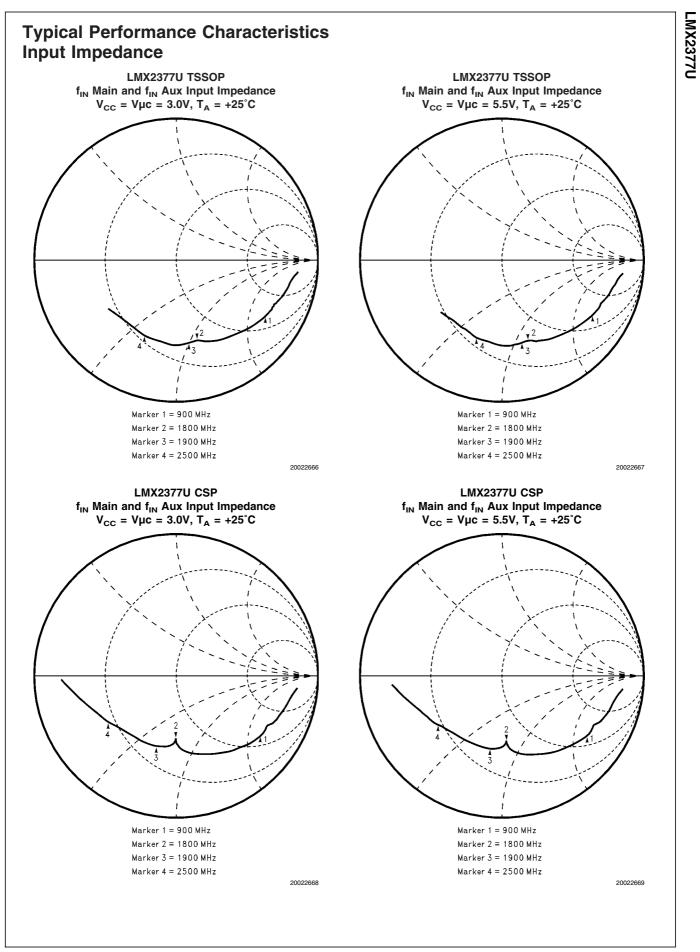
Note 9: Refer to the LMX2377U Serial Data Input Timing section

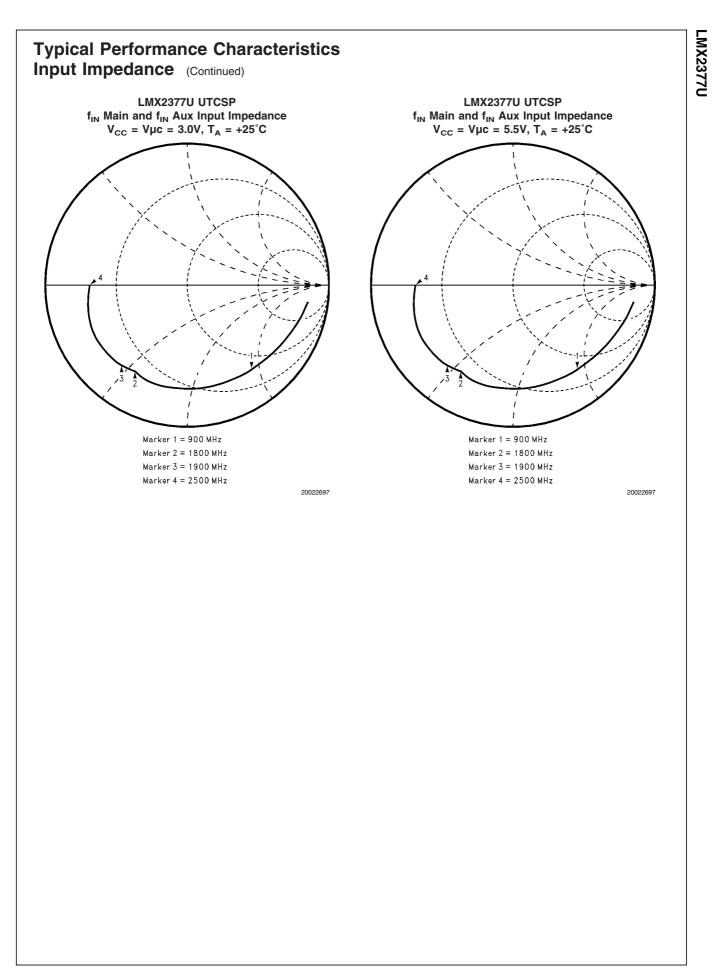

Note 10: Normalized Phase Noise Contribution is defined as : $L_N(f) = L(f) - 20 \log (N) - 10 \log (F_{\phi})$, where L(f) is defined as the single side band phase noise measured at an offset frequency, f, in a 1 Hz bandwidth. The offset frequency, f, must be chosen sufficiently smaller than the PLL's loop bandwidth, yet large enough to avoid substantial phase noise contribution from the reference source. N is the value selected for the feedback divider and F_{ϕ} is the Main/Aux phase detector comparison frequency.


Note 11: The synthesizer phase noise is measured with the LMX2370TMEB/LMX2370SLBEB/LMX2370SLEEB Evaluation boards and the HP8566B Spectrum Analyzer.




www.national.com


12

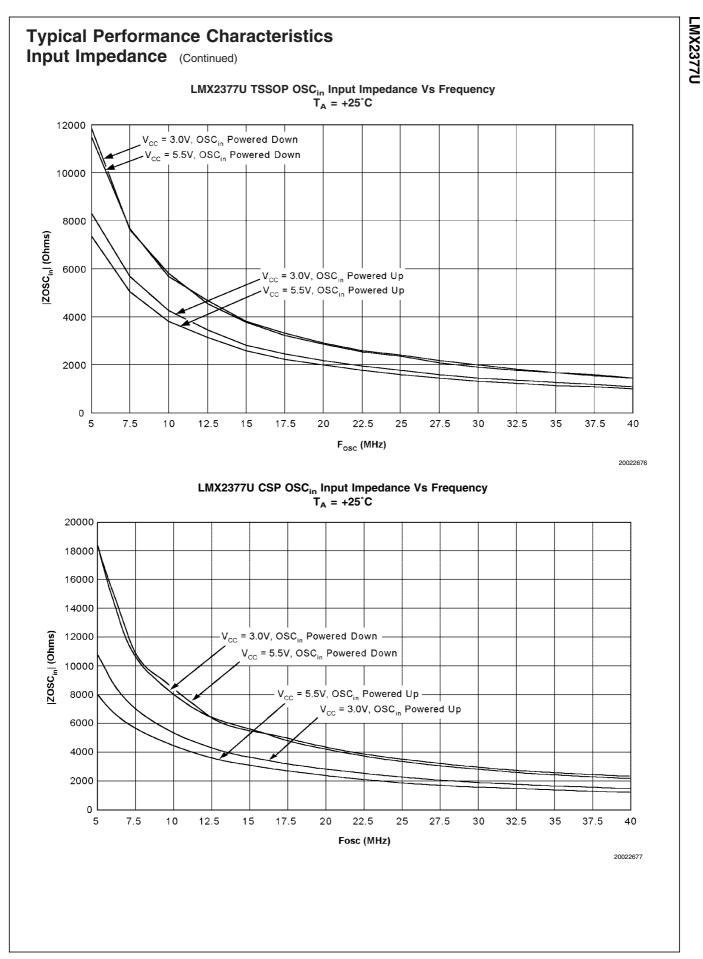

Typical Performance Characteristics Input Impedance (Continued)

LMX2377U TSSOP and LMX2377U CSP $f_{\rm IN}$ Main and $f_{\rm IN}$ Aux Input Impedance Table

			5	LMX2377U	1550P (Zim Main and Zim Aux)	Ten Mat	Z pue u	(MM MIC)						LMX2377U CSP	CSP (ZIm	Wat Mat	n and 2	Main and Zhu Aux)		
	Vco	= V, M	ain = V+ Aux (T_A = 25°C)	n Vµ	1 = 3.0V	Vec	= Ve M	ain = V _P Aux (T _A = 25°C)	$V_{ee} = V_{e}$ Main = V_{e} Aux = $V_{\mu e} = 5.5V$ ($T_{A} = 25^{\circ}$ C)	V2.8 = 5.5V	Vcc	= V, M	In = V. Aux (T_A = 25°C)	$V_{cc} = V_s$ Main = V _s Aux = V _{µc} = 3.0V ($T_A = 25^{\circ}C$)	= 3.0V	va	N N = 3	fain = V., Aux (TA = 25°C)	$V_{EC} = V_{\mu} Main = V_{\mu} Aux = V_{\mu C} = (T_{A} = 25^{\circ}C)$	= 5.5V
La Porte	E	Þ	\$\$	120		E	17	a 22	143	1 ¹⁴ 121	Ē	4	8 1 3	143	1 ⁷⁶ 121	Ē	4	4 1 3	120	1 ^M 121
100	0.862	-6.23	439.774	439,774 -319,866	543.798	0.862	-6.07	448.230	-318,841	550.064	0.864	-6.44	431.004	-330.013	642.838	0.864	-6.30	438.240	-327,814	647.281
200	0.834	-9.30	307.614	0.834 -9.30 307.614 -272.274	410.803	0.834	-9.00	316.479	0.834 -9.00 316.479 -271.581	417.031 0.836 -9.88	0.836	-9,88		291.252 -277.923 402.577 0.636	402.577	0.636	-9.57	300.190	-9.57 300.190 -277.552	406.838
300	0.820	-12.11	0.820 -12.11 237.700 -249.291	-249.291	344,452		-11.66	247.264	-251.098	0.821 -11.66 247.264 -251.098 352.406	0.821	0.821-13.24		215,318 -248,361 328,702	328.702	_	0.821 -12.76	224.624	-249.637	335,819
400	0.808	-15.25	185.048	0.808 -15.25 165.048 -227.171	293.001	_	-14.61	194.668	0.808 -14.61 194.668 -229.054	300.601		0.808 -16.88	163.190	163.190 -219.893	273.832	0.808	-16.24	0.808 -16.24 171.345	-222.618	280.844
500	0.796	-18.51	147.785	0.796 -18.51 147.785 -203.823	251,843		-17.66	156.935	-207.313	0.796 17.66 156.935 -207.313 260.014	0.793	-20.90	126.193	-191.939	229.707	0.794	-20.00	133.885	0.793 20.90 126.193 -191.939 229.707 0.794 20.00 133.885 -196.200	237.528
600	0.781	-21.81	0.781 -21.81 122.091 -181.461	-181.461	218.710		20.70	130.906	-185.850	0.762 20.70 130.906 -185.860 227.325		0.775 -24.82		102.966 -168.026 197.060	090'261	-	-23.70	109.531	0.777 -23.70 109.531 -172.887	204.663
700	0.765	-24.72	106.107	0.785 -24.72 106.107 -163.758	196.129		0.767 -23.45		113,780 -168.514	203.329	_	0.749 -28.29	90.820	-146.582	172.437	0.752	0.752 -27.02	96.279	-151.333	179.363
600	0.760	-28.36	87.984	0.760 -28.35 87.984 -150.524	174.352		0.762 -26.97		94.255 -155.481	181,819	0.742	0.742 -31.22	0.00	79.737 -136.782 158.327	158.327	0.746	0.746 -29.85	84.470	-141.473	164.772
800	0.747	-32.60	73.777	0.747 -32.60 73.777 -134.500	153.405		0.750 -30.95	79.270	-139.668	160.596		0.739 -36.04	64.577	64.577 -123.961 139.764 0.742 -34.37	139.764	0.742	-34.37	69.006	-128.610	145.954
1000	0.732	0.732 -36.68	64.122	64.122 -120.906	136.859	_	0.736 -34.73	69.215	-126.104	143.851	0.719	0.719 41.44	66.019	-108.415	121.577	0.723	0.723 -39.46	58.684	-113.123	127.439
1100	0.717	41.25	55.780	0.717 -41.25 55.780 -108.398	121.906		0.720 -39.12	60.041	-113.215	128.151	0.694	0.694 47.27	48.066	94.403	105.931	0.698	0.698 -45.08	51,159	-98.547	111.035
1200	0.698	46.24	0.698 46.24 49.180 -96.606	-96.606	108.403	_	0.702 -43.84	52.848	-101.254	-101.254 114.216		0.669 -53.59	42.269	-82.401	92.610	0.674	0.674 -51.01	45.061	-86.388	97.434
1300	0.678	0.678 -51.43	43.982	-86.291	96.853	0.683	48.77	47.173	-90.676	102.212	0.641	60.42	37.856	-71.653	81.039	0.647	0.647 -57.50	40.230	-75.400	85,461
1400	0.663	-66.68	0.663 -66.68 39.397	106'11-	87.296	0.667 -53.71	63.71	42.317	82.070	92.337	0.610	0.610 -68.33	34.108	61.481	70.308	0.613	0.613 -64.90	36.477	-64.872	74.424
1500	0.649	-62.08	0.649 -62.08 35.566	-70.500	78.963	0.653	0.653 -58.74	38.281	-74.569	83.821	0.577	10.77-772.0	31.049	-62.388	60.898	0.581	0.581 -73.18	33.064	-55.554	64.649
1600	0.630	-67.58	0.630 -67.58 32.912	-63.544	71.562	0.634	-63.96	35.335	-67.423	76.121	0.539	84.86	29.732	44.952	53.895	0.543	0.543 -80.36	31,654	48.119	57.597
1700	0.608	-72.22	0.608 -72.22 31.565	-57.996	66.030	0.614	0.614 -68.51	33.590	-61.632	70.191	0.477	27.97	0.477 -27.97 100.359	-58.171	115.999		0.487 -84.99	33.106	-42,105	53.562
1800	0.596	-75.66	1800 0.596 -75.66 30.440 -54.462	-54.462	62.392	0.601	0.601 -71.81	32.358	-57.943	66.366	0.455	89.90	32.829	-37.624	49.933	0.468	-85.87	33.886	40.554	52.847
1900	0.598	0.598 -80.06	27.915	-51.164	58.284	0.602 -76.22	76.22	29.678	-54.335	61.912	0.493	87.34	29.357	-38.214	48.189	0.500	0.500 -88.90	29.576	-30.360	49.241
2000	0.607	-85.31	0.607 -85.31 24.914	47,651	53.771	0.607	0.607 -81.32	26.675	-50,603	57.203	0.520 79.89	79,89	25,120	-35.225	43.264	0.521	84.05	26.396	-37.576	45.921
2100		89.24	0.612 80.24 22.502	43.994	48.414	0.611	0.611-86.42	21.612	42.064	47.292	0.529	70.97	22.177	-30.771	37.930	0.525	76.52	23,566	-33.043	40.580
2200	0.605	0.605 84.09	21.289	-40.358	45.629	0.602	08.61	22,901	43.251	48.940	0.631	66.10	20.155	-26.331	33.159	0.524	66.93	21.544	-28.695	35.802
2300		0.594 78.44	20.367	-36.566	41,865	0.589	83.13	21.961	39.298	45.018	0.533	52.71	18.533	21.975	28.747	0.525	57.61	19.706	-24.119	31.146
2400	0.590	72.27	0.590 72.27 19.111	-32.907	38.064	0.584	77.11	20.598	36.536	41.074	0.550 43.18	43.18	16.578	-17.883	24.385	0.537	47.69	17,671	-19.749	26.501
0000		A 800 00 00																		

www.national.com

20022670

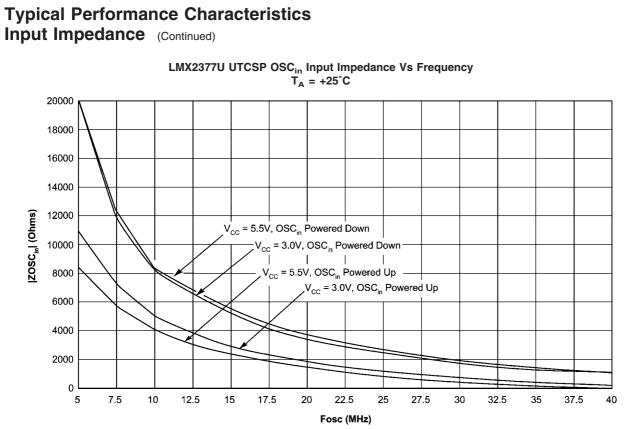


Typical Performance Characteristics Input Impedance (Continued)

LMX2377U UTCSP f_{in} Main and f_{in} Aux Input Impedance Table

							1 11	A	11 - 1 - 11 -	
		4A = 30A	(TA = 25°C)	$V_{00} = V_P Main = V_P Aux = V \mu G = 3.0V$ ($T_A = 25^{\circ}C$)			Vcc = Vr	(TA = 25°C)	$V_{CC} = V_P Main = V_P Aux = V_{BC} = 2.0 V$ ($T_A = 25^{\circ}C$)	
14 (MHz)	ŝ	¥	* 2 3	120	(C)	E	ч	** **	41 12 12	12
100	0.86	-857	305.53	-330.26	470.80	0.85	-8.61	333.98	-330.26	469.70
200	0.83	+13.59	206.36	-258.74	330,96	0.63	-13.55	207.11	258.92	331.57
300	0.61	-18.53	143,19	-214.36	257.79	0.81	-18.45	144.05	214.75	250.59
400	0.80	-23.67	103.09	-183.96	210,86	0.80	-23.63	103,36	-184.12	211.15
500	0.79	-29.24	76.58	-157.24	174,89	0.79	-29.07	77.30	-157.87	176.78
600	0.77	-34.87	61.79	-133.64	147.24	0.77	-34,64	62.46	-134.31	148.12
700	0.76	40.52	50.03	-116.97	127.23	0.76	-40,33	50.42	-117,43	127.80
000	0.76	-46.45	39.82	-103.86	111,24	0.76	-46.18	40.22	-104.42	111.09
900	0.75	-63.27	32.87	-90.33	96.13	0.75	-52,69	33.27	-90.97	96.86
1000	0.74	-60.04	27.98	-79.30	84.09	0.74	-69.70	28.24	-79.77	B4.63
1100	0.73	68.62	24.49	-70.27	74.42	0.73	66.10	24.81	-70.90	75.11
1200	0.73	-74.07	20.63	-62.00	65.34	0.73	-73.57	20.85	-62.52	85.94
1300	0.73	-81.87	17.67	-54.66	57.45	0.73	-81.15	17.85	-65.13	57.95
1400	0.73	69.69	15.34	-47.96	90.34	0.73	-68.94	15.51	-48.47	50.89
1500	0.73	-97.85	13,48	41.75	43.87	0.73	97.12	13.63	42.27	44,41
1600	0.73	-106.72	11.96	-35.80	37.74	0.73	-106.87	12.09	-36.34	38.30
1700	0.72	-115.82	11.22	-30.21	32.22	0.72	-114.76	11.35	-30,82	32.84
1800	0.70	-123.41	11.28	-25,85	28.20	0,70	-122.28	11,40	-26.45	28.80
1900	0.72	-130.68	9.80	-22.22	24.29	0.72	-129.92	9.86	-22.61	24.66
2000	0.74	-140.55	8.41	-17,48	19.39	0.74	-139.88	8.44	-17,80	19,70
2100	0.74	-150.74	7.97	-12.74	15.03	0,74	-150.01	7,89	-13.07	15.32
2200	0.73	-160.88	8.02	\$22	11,48	0.73	-160.03	8.04	8.58	11.76
2300	0.71	+170.43	8.64	4.06	9.46	0.71	-169.62	8.55	-4.41	9.62
2400	69'0	-179.08	9.17	-0.38	9.18	0.69	-178.32	9.17	12.0-	9.20
2500	0.67	470.000								

20022698



Typical Performance Characteristics Input Impedance (Continued)

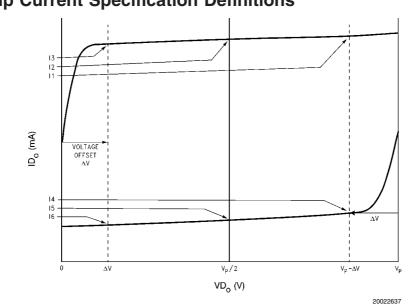
LMX2377U TSSOP and LMX2377U CSP OSC_{in} Input Impedance Table

					LMXC	TUTE	LMX2377U TSSOP 208Cn	08C.									LIN	LMX2377U CSP ZOSC	SOZ 4SC	đ				
		Voc = Vuc = 3.0V (TA = 25°C)	c = 3.0	V (TA=2	10,0			N.	= Vµc = 5.5V (T_a = 25°C)	- N (La	28,C)			Vcc =	Vuc = 3.	Vcc = Vµc = 3.0V (TA = 25*C)	25°C)			Von =	Vue= 5	Voc = Vie = 5.5V (TA = 25°C)	28°C)	
	POWE	OSC,, BUFFER POWERED UP	H	POWE	OSC., BUFFER POWERED DOWN	WN	88	OSC., BUFFER POWERED UP	Ha da	Poor	OSC., BUFFER POWERED DOWN	ER OWN	88	OSC., BUFFER POWERED UP	5	POW	OSC. BUFFER POWERED DOWN	OWN	80	OSC., BUFFER POWERED UP	54	POW	OSC., BUFFER POWERED DOWN	MN
Tose Z	20202	2050, 209	108021	zosc., 2	1000	10050,1	2090.	2080.	IZOSCI	208Ca	ZOSC.	(208C,)	2080. Kt	2060.	IZOSC.	209C,	ZOBC,	IZOSC.	208C	1000	cosc., i pa	10802	1002	2090,
5.0 22	08-011.0	2291 113 4000 319 8021 972 985 663 11805 299 11865 299 11865 294 2942 819 4074 525 7342 642	812 8	1- 099 5	1805 208 1	1004.234	28.32.878	6774.625	7342 562		1246.071 11436.400 11504.200 5107.468 4026.374 10009.27 4154.194 -19273.24 18544.50	11504 280	5107,566	ATC-2014	10809.27	4154,194	-19073.24		4666.960 45544.007 8056.318 4154.934-18073.24 19544.50	6544.007	0056.318	4154.104	10073.24	100544.50
7.5 10	102 100 -55	1202 350 -5538.107 5967 218 254 460 -7540.522 7545.594 1267 479 -4681.563 5003.570	210 25	PA.460 -7	1840.022	7845.004	1267.479	4861,050	84/510205		200 266 -7673 300 7562 310 2240 061 4544 473 9020 146 1571 331 -10205 48 10253 74 2555 259 4998 105 5645 119 1512 311 -19662 90 10796 66	7660.910	22940.061	6544.ATS	6900.146	10211231	10205.48	10325.74	2525.329	4998.105	5646L119	1812.311	106/20901	10/756 58
10.0 71	SP- 01814	TICE APPENDING CONTRACT STATE OF STATE	8 08	6 942 4	090'660	102.0012		736.826 -3754.673 3806.846	28006-8866	494.656	4000 07% NAME 200 1464 086 5170 000 5420 206 1064 061 4000 501 0413 400 1405 723 4209 219 4512 361 875 400 400 400 400 400 400 400	5660.388	1564.886	5170,800	5420 335	1066-061	100.020	8418.460	1625.723	4209.219	4512.261	876.600	005-0000	NICH 633
12.5 55	NC- 100/12	527.554 -3418.570 3458.455 197.574 4547.094 4551.307	14555 15	TLETA A	NOT 199	4551.397		544.250 -3078.545 3126.564	31255.584	1962.2081		-4045 150 4060.285 1040.750 -4245.537 4373.153	1048.750	4245.537	521 2125		6341.105	727.716 6341.105 6382.730 1182.342 3466.982 3460.045 800.607 4524.032 6313.347	1182.342	3456.500	Decounts	000.557	5248.932	6913.362
15.0 34	43,020 -28	345,020 2017 060 2030 794 191.001 -3741.006 3746.044 416.644 -2626.243 2570.238	794 14	11.801 4	0001184	3755.044	416.644	2500.243	2670.236		100.206 -3799.506 3600.003 872.509 -3558.406 2603.M11	3600.003	809 228	3558.406	2003.001	40.319	6454.273	442 319 -0434 273 5675 586 804 000 -2677 521 209 2096 519 426 -5712 708 5729 443	000.000	105 1182	3060.519	406.542	5712.708	5729.443
17.5 31	16.446 -24	316.446 -2433.647 2460.066		11.305 4	141.305 -3203.351 3206.467	1206.467		-2192.584	208.867 2192.564 2214.372	_	196.400 -3305.741 3311.570	3311.570		091.377 -3156.000 3020.605	200.002		110.0079-	296.061 4799.917 4909.000	197.789	007.7761 -2905.8660 25507.592	2667.682	309.616	309.516 4965.007 4994.513	400A.613
20.0 25	15 669 21	228.526 2179 146 2191.066 43.505 -3879.501 2980.601	999	3,605 3	189 676	2580 631		227 540 -1974 267 1967 347	1967,347	73.816	2017 261 2918.215 569 507 2791.912 2947.441	2918.215	569.567	2791.912	2847,441		4242,475	194.872 -042.475 4246.648	564.417	564.417 2319.901 2384.315 303.378 -4345.597 4364.174	2364.315	303.376	4345.597	42650.174
22.5 21	11.626 -192	211.028 -1032.538 1944.091 96.108 -2543.330 2545.222 214.873 -1741.101 1754.310	1001	6.100 -2	1002.040	2545.222	214.873	101.1911-	1754.310		103.121 -2008.411 2610.448 442.147 -2512.562 2561.129	2610.449	442.147	2512502	2201.125	186.123	STTT BAT	1061.123 JTTT DAT 37922.429 4955.427 2041.170 21568.100 168.163 3935.873 3956.873	403,457	2041.170	2006.100	168.163	3935.873	20000.464
25.0 14	11- 819.51	153.019 -1792.000 1770.400 59.270 -2340.221 -2341.553 169.812 -1560.814 1566.857	480 8	\$270 -3	122 (16)	2341.623	168.812	-1569.814	1566.857	61,246	\$7.246 200 500 500 200 011 444 504 201 104 200 301	2369.913	444.524	2391104	2004.307	170.072	3402 400	170.072 -3402.400 3406.648	204 500	404.586 -1065.270 1912.986	1912,986		174.460 -3506.095 3511.232	3511.232
27.5 N	101-101-101	103.733 -1588.620 1586.030	0000	a. 572.9	106.253	2907.405	106-001	69.675 -2106.253 2107.405 160.401 -1436.713 1444.545	1444.046	-	55.003 -2101.702 2142.532 367.246 -2000.013 2002.481 191.736 -3144.667 3120.763 379.066 -1714.703 1746.185	2162.632	367.245	210.0805-	2060.491	952161	3114,067	3120.763	379.066	1714.780	1756,195		150.273 -3213.476 3217.422	3217.422
30.0 14	18.446 -146	148,446 11400 501 1420 580 81 310 -1500 560 1925 504 141 501 -1214 929 1522 520	6 1095	1.310 -1	0.000 6420	1929 504	141,501	-1314.929	1522,529	67,843	67.843 -1994.766 1986.929	1985.929	399.660	295,8501 (244,1881- 598,846	1906.747	168.250	2837.817	168.2ND 2697 317 2943 557		367,340 -1567,679 1606,182	1606, 182		157.424 -2934.223 2938.443	2908.443
32.5 13	10000	100.001 -1340.256 1346.562		1- 0491	46.540 -1750.00A 1751.440	1751.443		121.512 -1213.400 1219.402	1219-402	01975	-1012.700	1813.090		348.916 -1775.540 1810.480	1010-480		2004 400	129-014 -2004 406 2067.000	330.005	302.065 -1461.571 1496.018	1406.018		157.369 -2750.403 2754.920	277BAL920
35.0 12	21-040 5	446, 5211 455-1511 456, 311 499 5861 402 5361 402 5861 400 451 400 451	349 3	1. 800.6	002 236	1952 666	116.395	1121.429	866' 0211		45.646 -1660.746 7690.305	1000,305	305 202	166 2131 645 5491- 205 202	186/5131		2471.170	95,454 2471 170 2472 611 246 815 136 136 136 136 136 556 260 402 250 402 250 550	219.913	1359 120	1360.840	125,550	2990.472	2603.500
37.5 11	11- 090 51	115.040 -1170-564 1164.032 37.202 -1547.016 1548.263 109.201 -1064.461 12070.066	1032 3	1- 202.7	547,816	1548.263	100.901	-1064.461	1000.066	36.346	36.346 -1584.439 1594.054 300.050 -1540.001 1578.77 117.722 -2231.694 2204.664 294.654 -1274.470 1305.774 144.727 -2419.304 2404.228	N20-1-025	300.000	109.6401-	112-8121	2027.111	2011094	2004.664	204.654	1274.370	1305.774	144.727	2419.504	942N-228
	and the second s																							

20022678

200226A1

LMX2377U


Typical Performance Characteristics Input Impedance (Continued)

LMX2377U UTCSP OSC_{in} Input Impedance Table

					-	LMX2377U UTCSP ZOSC.	TCSP ZOS	đ				
			Vec = 3.0V	Vcc = 3.0V (TA = 25°C)					Vcc = 5.5V	Voc = 5.5V (TA = 25°C)		
	0#	OSC., BUFFER POWERED UP	a d	00	OSC, BUFFER	RN NN	OR	OSC., BUFFER POWERED UP	œ٩	00	OSC, BUFFER	NN NN
Fosc (MHz)	208C	In ZOSC _{in} (Q)	IZOSC, I	70805 (0)	In ZOSC _{in} (2)	IZOSC, I	86 2080. (2)	In ZOŚĆ _{in} (2)	(D)	2080; (D)	In ZOSC _{in} (II)	LOSC, I
5.0	5918,57	-9897.80	11532.39	1822.62	-19947.73	20030.82	4982.73	-7668.32	9144,98	2478.02	-19591,11	19747.21
7.5	3097.45	-7441,43	8060.35	2238.93	-12114,22	12319.38	2742.97	-6062,16	6653.85	2483.54	-12531,99	12775.71
10.0	1695.22	-5720.83	5966.72	998.16	-9046.84	9101.74	1582.29	-4875.36	5125.70	1064.38	-9063.97	9126.25
12.5	1241.03	4759.14	4918.29	660.39	-7338.93	7368.58	1150.39	-4034.66	4195,46	621,48	-7679.86	7704.97
16.0	820.55	-3955.33	4039.55	471.57	-6142.40	6160.48	861.48	-3448.80	3664.76	591.34	-6481.87	6608.79
17.5	646.18	-3417.20	3477.76	317.24	-5165.41	5175.14	599.49	-3009.04	3068.18	154.67	-5518.01	5620.17
20.0	520.20	-3006.22	3060.90	223.35	-4567.95	4573.41	491.78	-2647.38	2692.67	120.99	-4867.07	4858.57
22.6	459.63	-2666.05	2705.38	219.57	-4040.96	4046.92	396.64	-2342.62	2375.96	137.85	-4301.63	4303.84
26.0	391.21	-2398.19	2429.89	172.20	3664.77	3668.81	323.46	-2108.25	2132.92	89.00	-3864.60	3865.62
27.5	348.79	-2210.66	2238.01	169.02	-3291.60	3295.84	312.14	-1920.70	1945.90	114.48	-3476.68	3478.56
30.0	285.07	-1996.71	2016.96	110.02	-3005.42	3007.43	260.59	-1763.82	1782.97	121.11	-3186.26	3187.56
32.5	267.83	-1847.30	1868.61	117.14	-2725.46	2727.97	239.41	-1612.35	1630.02	111.70	-2876.34	2878.50
35.0	252.27	-1719.32	1737.73	114.38	-2558.44	2561.00	222.16	-1503.76	1520.08	115.42	-2690.37	2692.84
37.5	224.94	-1639.80	1655.15	70.31	-2408.64	2409.67	191.46	-1422.88	1435.71	48.06	-2550.41	2550.86
40.0	208.95	-1512.91	1527.27	76.50	-2242.79	2244.09	180.75	-1329.24	1341.47	72.61	-2363.73	2354.85

200226A2

Charge Pump Current Specification Definitions

I1 = Charge Pump Sink Current at VD_o = V_P – Δ V

I2 = Charge Pump Sink Current at $VD_0 = V_P/2$

I3 = Charge Pump Sink Current at $VD_0 = \Delta V$

I4 = Charge Pump Source Current at VD_o = V_P – Δ V

I5 = Charge Pump Source Current at $VD_0 = V_P/2$

I6 = Charge Pump Source Current at $VD_0 = \Delta V$

 ΔV = Voltage offset from the positive and negative rails. Dependent on the VCO tuning range relative to V_{CC} and GND. Typical values are between 0.5V and 1.0V.

 V_{P} refers to either V_{P} Main or V_{P} Aux

VD_o refers to either VD_o Main or VD_o Aux

 $\rm ID_{o}$ refers to either $\rm ID_{o}$ Main or $\rm ID_{o}$ Aux

Charge Pump Output Current Magnitude Variation Vs Charge Pump Output Voltage

$$ID_{o} Vs VD_{o} = \frac{(|11| - |13|)}{(|11| + |13|)} \times 100\%$$
$$= \frac{(|14| - |16|)}{(|14| + |16|)} \times 100\%$$

Charge Pump Output Sink Current Vs Charge Pump Output Source Current Mismatch

$$ID_{o}$$
 SINK Vs ID_{o} SOURCE = $\frac{|12| - |15|}{\frac{1}{2}(|12| + |15|)} \times 100\%$

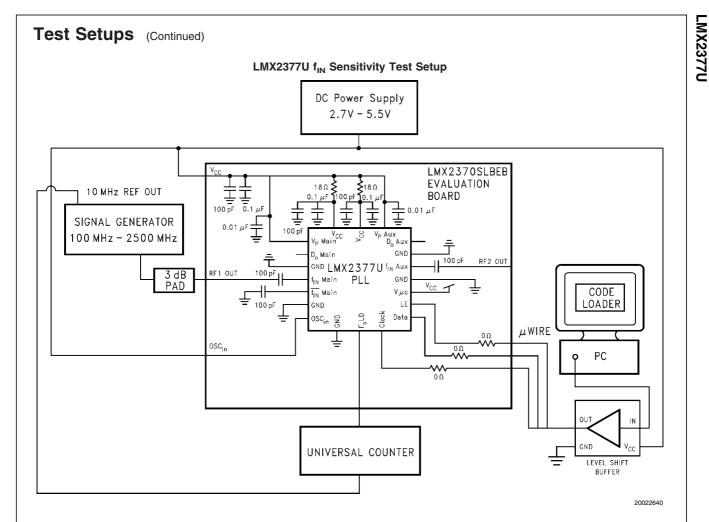
Charge Pump Output Current Magnitude Variation Vs Temperature

$$ID_{o} Vs T_{A} = \frac{|I_{2}||_{T_{A}} - |I_{2}||_{T_{A}} = 25^{\circ}c}{|I_{2}||_{T_{A}} = 25^{\circ}c} \times 100\%$$
$$= \frac{|I_{5}||_{T_{A}} - |I_{5}||_{T_{A}} = 25^{\circ}c}{|I_{5}||_{T_{A}} = 25^{\circ}c} \times 100\%$$

20022665

Test Setups

LMX2377U Charge Pump Test Setup DC Power Supply 2.7V - 5.5V Vcc LMX2370SLBEB **EVALUATION** 18Ω **≷**18Ω <u></u> .1 μF Ī 0.1 μF SEMICONDUCTOR BOARD PARAMETER 100 pF 0.01 µF Ŧ İ Ŧ I ANALYZER 0.01μ F 100 p , V⊳ Mair Au Ŧ D_o Main GNI 100 pF RF2 OUT GND LMX2377U f_{in} Au RF1 OUT 100 pF 3 dB f_{IN} Main PLL GNE PAD ╢ Vcc f_{IN} Mair ٧µ CODE Ē LE LOADER 100 pF GND lock OSC_{ir} QND 9 Data SIGNAL GENERATOR μ WIRE 10 MHz OSC; PC w 0.0 GND ÷ LEVEL SHIFT BUFFER 20022650

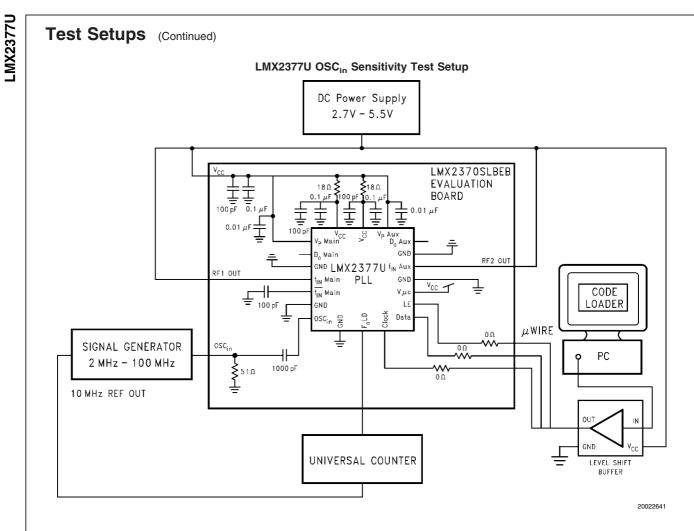

The block diagram above illustrates the setup required to measure the LMX2377U device's Main charge pump sink current. The same setup is used for the LMX2370TMEB/LMX2370SLEEB Evaluation Boards. The Aux charge pump measurement setup is similar to the Main charge pump measurement setup. The purpose of this test is to assess the functionality of the Main charge pump.

This setup uses an open loop configuration. A power supply is connected to V_{cc} and swept from 2.7V to 5.5V. The MI-CROWIRE power supply, Vµc, is tied to V_{cc}. By means of a signal generator, a 10 MHz signal is typically applied to the f_{IN} Main pin. The signal is one of two inputs to the phase detector. The 3 dB pad provides a 50 Ω match between the PLL and the signal generator. The OSC_{in} pin is tied to V_{cc}. This establishes the other input to the phase detector. Alternatively, this input can be tied directly to the ground plane. With the D_o Main pin connected to a Semiconductor Parameter Analyzer in this way, the sink, source, and TRI-STATE currents can be measured by simply toggling the **Phase Detector Polarity** and **Charge Pump State** states in Code Loader. Similarly, the LOW and HIGH currents can be measured by switching the **Charge Pump Gain's** state between **1X** and **4X** in Code Loader.

Let F_r represent the frequency of the signal applied to the OSC_{in} pin, which is simply zero in this case (DC), and let F_p represent the frequency of the signal applied to the f_{IN} Main pin. The phase detector is sensitive to the rising edges of F_r and F_p . Assuming positive VCO characteristics; the charge pump turns ON and sinks current when the first rising edge of F_p is detected. Since F_r has no rising edge, the charge pump continues to sink current indefinitely.

Toggling the **Phase Detector Polarity** state to negative VCO characteristics allows the measurement of the Main charge pump source current. Likewise, selecting **TRI-STATE** (TRI-STATE ID_o Main Bit = 1) for **Charge Pump State** in Code Loader facilitates the measurement of the TRI-STATE current.

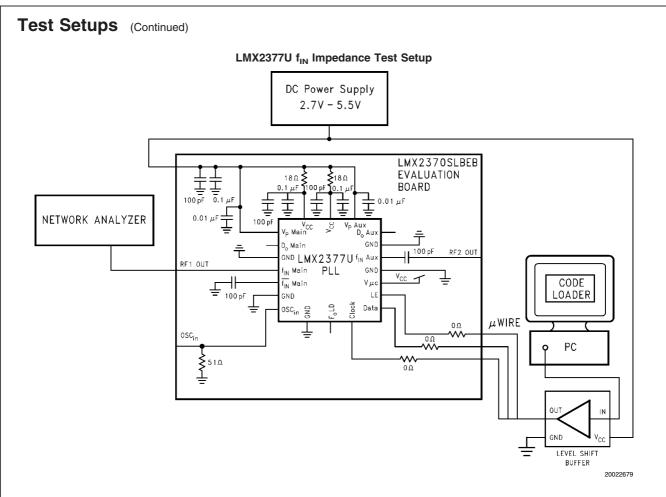
The measurements are repeated at different temperatures, namely $T_A = -40^{\circ}C$, +25°C, and +85°C.



The block diagram above illustrates the setup required to measure the LMX2377U device's Main input sensitivity level. The same setup is used for the LMX2370TMEB/LMX2370SLEEB Evaluation Boards. The Aux input sensitivity test setup is similar to the Main input sensitivity test setup. The purpose of this test is to measure the acceptable signal level to the $f_{\rm IN}$ Main input of the PLL chip. Outside the acceptable signal range, the feedback divider begins to divide incorrectly and miscount the frequency.

The setup uses an open loop configuration. A power supply is connected to V_{cc} and the bias voltage is swept from 2.7V to 5.5V. The MICROWIRE power supply, Vµc, is tied to V_{cc}. The Aux PLL is powered down (PWDN Aux Bit = 1). By means of a signal generator, an RF signal is applied to the f_{IN} Main pin. The 3 dB pad provides a 50 Ω match between the PLL and the signal generator. The OSC_{in} pin is tied to V_{cc}. The N value is typically set to 10000 in Code Loader, i.e. Main N_CNTRB Word = 312 and Main N_CNTRA Word = 16 for PRE Main Bit = 1. The feedback divider output is routed to the F_oLD pin by selecting the **Main PLL N Divider**

Output word (F_oLD Word = 6 or 14) in Code Loader. A Universal Counter is connected to the F_oLD pin and tied to the 10 MHz reference output of the signal generator. The output of the feedback divider is thus monitored and should be equal to f_{IN} Main/ N.


The $f_{\rm IN}$ Main input frequency and power level are then swept with the signal generator. The measurements are repeated at different temperatures, namely $T_{\rm A} = -40^{\circ}$ C, $+25^{\circ}$ C, and $+85^{\circ}$ C. Sensitivity is reached when the frequency error of the divided RF input is greater than or equal to 1 Hz. The power attenuation from the cable and the 3 dB pad must be accounted for. The feedback divider will actually miscount if too much or too little power is applied to the $f_{\rm IN}$ Main input. Therefore, the allowed input power level will be bounded by the upper and lower sensitivity limits. In a typical application, if the power level to the $f_{\rm IN}$ Main input approaches the sensitivity limits, this can introduce spurs and degradation in phase noise. When the power level gets even closer to these limits, or exceeds it, then the Main PLL loses lock.

The block diagram above illustrates the setup required to measure the LMX2377U device's OSC_{in} buffer sensitivity level. The same setup is used for the LMX2370TMEB/LMX2370SLEEB Evaluation Boards. This setup is similar to the f_{IN} sensitivity setup except that the signal generator is now connected to the OSC_{in} pin and both f_{IN} pins are tied to V_{CC}. The 51 Ω shunt resistor matches the OSC_{in} input to the signal generator. The R counter is typically set to 1000, i.e. Main R_CNTR Word = 1000 or Aux R_CNTR Word = 1000. The reference divider output is routed to the F_oLD pin by selecting the **Main PLL R Divider Output** word (F_oLD Word = 2 or 10) or the **Aux PLL R Divider Output** word (F_oLD Word = 1 or 9) in Code Loader. Similarly, a Universal

Counter is connected to the F_oLD pin and is tied to the 10 MHz reference output from the signal generator. The output of the reference divider is monitored and should be equal to $OSC_{in}/$ Main R_CNTR or $OSC_{in}/$ Aux $R_CNTR.$

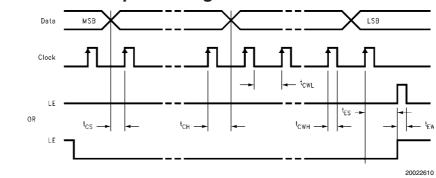
Again, V_{CC} is swept from 2.7V to 5.5V. The MICROWIRE power supply, Vµc, is tied to V_{cc} . The OSC_{in} input frequency and voltage level are then swept with the signal generator. The measurements are repeated at different temperatures, namely $T_A = -40^{\circ}$ C, +25°C, and +85°C. Sensitivity is reached when the frequency error of the divided input signal is greater than or equal to 1 Hz.

The block diagram above illustrates the setup required to measure the LMX2377U device's Main input impedance. The Aux input impedance and reference oscillator impedance setups are very much similar. The same setup is used for the LMX2370TMEB/ LMX2370SLEEB Evaluation Boards. Measuring the device's input impedance facilitates the design of appropriate matching networks to match the PLL to the VCO, or in more critical situations, to the characteristic impedance of the printed circuit board (PCB) trace, to prevent undesired transmission line effects.

Before the actual measurements are taken, the Network Analyzer needs to be calibrated, i.e. the error coefficients need to be calculated. Therefore, three standards will be used to calculate these coefficients: an **open**, **short** and a **matched load**. A 1-port calibration is implemented here.

To calculate the coefficients, the PLL chip is first removed from the PCB. The Network Analyzer port is then connected to the RF1 OUT connector of the evaluation board and the desired operating frequency is set. The typical frequency range selected for the LMX2377U device's Main synthesizer is from 100 MHz to 2500 MHz. The standards will be located down the length of the RF1 OUT transmission line. The transmission line adds electrical length and acts as an offset from the reference plane of the Network Analyzer; therefore, it must be included in the calibration. Although not shown, 0 Ω resistors are used to complete the RF1 OUT transmission line (trace).

To implement an **open** standard, the end of the RF1 OUT trace is simply left open. To implement a **short** standard, a 0 Ω resistor is placed at the end of the RF1 OUT transmission line. Last of all, to implement a **matched load** standard, two 100 Ω resistors in parallel are placed at the end of the RF1 OUT transmission line. The Network Analyzer calculates the calibration coefficients based on the measured S₁₁ parameters. With this all done, calibration is now complete.


The PLL chip is then placed on the PCB. A power supply is connected to V_{CC} and swept from 2.7V to 5.5V. The MI-CROWIRE power supply, Vµc, is tied to V_{cc} . The OSC_{in} pin is tied to the ground plane. Alternatively, the OSC_{in} pin can be tied to V_{CC} . In this setup, the complementary input ($\overline{f_{IN}}$ Main) is AC coupled to ground. With the Network Analyzer still connected to RF1 OUT, the measured f_{IN} Main impedance is displayed.

Note: The impedance of the reference oscillator is measured when the oscillator buffer is powered up (PWDN Main Bit = 0 or PWDN Aux Bit = 0), and when the oscillator buffer is powered down (PWDN Main Bit = 1 and PWDN Aux Bit = 1).

Test Setups (Continued)

LMX2377U

LMX2377U Serial Data Input Timing

Notes:

- 1. Data is clocked into the 22-bit shift register on the rising edge of Clock
- 2. The MSB of Data is shifted in first.

1.0 Functional Description

The basic phase-lock-loop (PLL) configuration consists of a high-stability crystal reference oscillator, a frequency synthesizer such as the National Semiconductor LMX2377U, a voltage controlled oscillator (VCO), and a passive loop filter. The frequency synthesizer includes a phase detector, current mode charge pump, programmable reference R and feedback N frequency dividers. The VCO frequency is established by dividing the crystal reference signal down via the reference divider to obtain a comparison reference frequency. This reference signal, Fr, is then presented to the input of a phase/frequency detector and compared with the feedback signal, $F_{\rm p}$, which was obtained by dividing the VCO frequency down by way of the feedback divider. The phase/frequency detector measures the phase error between the F_r and F_p signals and outputs control signals that are directly proportional to the phase error. The charge pump then pumps charge into or out of the loop filter based on the magnitude and direction of the phase error. The loop filter converts the charge into a stable control voltage for the VCO. The phase/frequency detector's function is to adjust the voltage presented to the VCO until the feedback signal's frequency and phase match that of the reference signal. When this "Phase-Locked" condition exists, the VCO frequency will be N times that of the comparison frequency, where N is the feedback divider ratio.

1.1 REFERENCE OSCILLATOR INPUT

The reference oscillator frequency for both the Main and Aux PLLs is provided from an external reference via the OSC_{in} pin. The reference buffer circuit supports input frequencies from 2 to 40 MHz with a minimum input sensitivity of 0.5 V_{PP}. The reference buffer circuit has an approximate V_{CC}/2 input threshold and can be driven from an external CMOS or TTL logic gate. Typically, the OSC_{in} pin is connected to the output of a crystal oscillator.

1.2 REFERENCE DIVIDERS (R COUNTERS)

The reference dividers divide the reference input signal, OSC_{in}, by a factor of R. The output of the reference divider circuits feeds the reference input of the phase detector. This reference input to the phase detector is often referred to as the comparison frequency. The divide ratio should be chosen such that the maximum phase comparison frequency ($F_{\phi Main}$ or $F_{\phi Aux}$) of 10 MHz is not exceeded.

The Main and Aux reference dividers are each comprised of 15-bit CMOS binary counters that support a continuous integer divide ratio from 2 to 32767. The Main and Aux reference divider circuits are clocked by the output of the reference buffer circuit which is common to both.

1.3 PRESCALERS

The f_{IN} Main and $\overline{f_{IN}}$ Main input pins drive the input of a bipolar, differential-pair amplifier. The output of the bipolar, differential-pair amplifier drives a chain of ECL D-type

flip-flops in a dual modulus configuration. The output of the prescaler is used to clock the subsequent feedback dividers. The Main PLL complementary inputs can be driven differentially, or the negative input can be AC coupled to ground through an external capacitor for single ended configuration. A 16/17 or a 32/33 prescale ratio can be selected for the LMX2377U Main synthesizer. On the other hand, the Aux PLL is only intended for single ended operation. An 8/9 or a 16/17 prescale ratio can be selected for the LMX2377U Aux synthesizer.

1.4 PROGRAMMABLE FEEDBACK DIVIDERS (N COUNTERS)

The programmable feedback dividers operate in concert with the prescalers to divide the input signal $f_{\rm IN}$ by a factor of N. The output of the programmable reference divider is provided to the feedback input of the phase detector circuit. The divide ratio should be chosen such that the maximum phase comparison frequency ($F_{\phi Main}$ or $F_{\phi Aux}$) of 10 MHz is not exceeded.

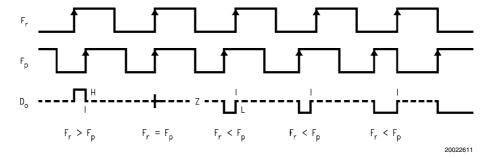
The programmable feedback divider circuit is comprised of an A counter (swallow counter) and a B counter (programmble binary counter). The Main N_CNTRA and the Aux N_CNTRA counters are both 5-bit CMOS swallow counters, programmable from 0 to 31. The Main N_CNTRB and Aux N_CNTRB counters are both 13-bit CMOS binary counters, programmable from 3 to 8191. A continuous integer divide ratio is achieved if $N \ge P^*$ (P-1), where P is the value of the prescaler selected. Divide ratios less than the minimum continuous divide ratio are achievable as long as the binary programmable counter value is greater than the swallow counter value (N_CNTRB \geq N_CNTRA). Refer to Sections 2.5.1, 2.5.2, 2.7.1 and 2.7.2 for details on how to program the N_CNTRA and N_CNTRB counters. The following equations are useful in determining and programming a particular value of N:

 $N = (P \times N_CNTRB) + N_CNTRA$

 $f_{IN} = N \times F_{\phi}$

Definitions:

- $\mathsf{F}_{\varphi}{:}$ Main or Aux phase detector comparison frequency
- f_{IN}: Main or Aux input frequency
- N_CNTRA: Main or Aux A counter value
- N_CNTRB: Main or Aux B counter value
- P: Preset modulus of the dual modulus prescaler Main synthesizer: P = 16 or 32


Aux synthesizer: P = 8 or 16

1.0 Functional Description (Continued)

1.5 PHASE/FREQUENCY DETECTORS

The Main and Aux phase/frequency detectors are driven from their respective N and R counter outputs. The maximum frequency for both the Main and Aux phase detector inputs is 10 MHz. The phase/frequency detector outputs control the respective charge pumps. The polarity of the pump-up or pump-down control signals are programmed using the **PD_POL Main** or **PD_POL Aux** control bits, depending on whether the Main or Aux VCO characteristics are positive or negative. Refer to **Sections 2.4.2** and **2.6.2** for more details. The phase/frequency detectors have a detection range of -2π to $+2\pi$. The phase/frequency detectors also receive a feedback signal from the charge pump in order to eliminate dead zone.

Notes:

- 1. The minimum width of the pump-up and pump-down current pulses occur at the D_o Main or D_o Aux pins when the loop is phase locked.
- 2. The diagram assumes positive VCO characteristics, i.e. PD_POL Main or PD_POL Aux = 1.
- 3. F_r is the phase detector input from the reference divider (R counter).
- 4. F_p is the phase detector input from the programmable feedback divder (N counter).
- 5. D_o refers to either the Main or Aux charge pump output.

1.6 CHARGE PUMPS

The charge pump directs charge into or out of an external loop filter. The loop filter converts the charge into a stable control voltage which is applied to the tuning input of the VCO. The charge pump steers the VCO control voltage towards V_P Main or V_P Aux during pump-up events and towards GND during pump-down events. When locked, D_o Main or D_o Aux are primarily in a TRI-STATE mode with small corrections occuring at the phase comparator rate. The charge pump output current magnitude can be selected by toggling the **ID_o Main** or **ID_o Aux** control bits.

1.7 MICROWIRE SERIAL INTERFACE

The programmable register set is accessed via the MI-CROWIRE serial interface. The supply for the MICROWIRE circuitry is separate from the rest of the IC to allow direct connection to 1.8V devices. The interface is comprised of three signal pins: Clock, Data and LE (Latch Enable). Serial data is clocked into the 22-bit shift register on the rising edge of Clock. The last two bits decode the internal control register address. When LE transitions HIGH, data stored in the shift register is loaded into one of four control registers depending on the state of the address bits. The MSB of Data is loaded in first. The synthesizers can be programmed even in power down mode. A complete programming description is provided in **Section 2.0 Programming Description**.

1.8 MULTI-FUNCTION OUTPUTS

The LMX2377U device's F_oLD output pin is a multi-function output that can be configured as the Main synthesizer Fast-Lock output, an open drain analog lock detect output, counter reset, or used to monitor the output of the various reference divider (R counter) or feedback divider (N counter) circuits. The F_oLD control word is used to select the desired output function. When the PLL is in powerdown mode, the F_oLD output is pulled to a LOW state. A complete programming description of the multi-function output is provided in **Section 2.8 F_oLD**.

1.8.1 Open Drain Analog Lock Detect Output

An analog lock detect status generated from the phase detector is available on the F_oLD output pin if selected. The lock detect output goes to a high impedance state when the charge pump is inactive. It goes low when the charge pump is active during a comparison cycle. When viewed with an oscilloscope, and when a pull-up resistor is used, narrow negative pulses are observed when the charge pump turns on. The lock detect output signal is an open drain configuration.

Three separate lock detect signals are routed to the multiplexer. Two of these monitor the 'lock' status of the individual synthesizers. The third detects the condition when both the Main and Aux synthesizers are in a 'locked state'. External circuitry however, is required to provide a steady DC signal to indicate when the PLL is in a locked state. Refer to **Section 2.8 F_oLD** for details on how to program the different lock detect options.

1.0 Functional Description (Continued)

1.8.2 Open Drain FastLock Output

The LMX233xU Fastlock feature allows faster loop response time during lock aguisition. The loop response time (lock time) can be approximately halved if the loop bandwidth is doubled. In order to achieve this, the same gain/ phase relationship at twice the loop bandwidth must be maintained. This can be achieved by increasing the charge pump current from 0.95 mA (ID_o Main Bit = 0) in the steady state mode, to 3.8 mA (ID_o Main Bit = 1) in Fastlock. When the F_oLD output is configured as a FastLock output, an open drain device is enabled. The open drain device switches in a parallel resistor R2' to ground, of equal value to resistor R2 of the external loop filter. The loop bandwidth is effectively doubled and stability is maintained. Once locked to the correct frequency, the PLL will return to a steady state condition. Refer to Section 2.8 FoLD for details on how to configure the FoLD output to an open drain Fastlock output.

1.8.3 Counter Reset

Three separate counter reset functions are provided. When the F_oLD is programmed to **Reset Aux PLL Counters**, both the Aux feedback divider and the Aux reference divider are held at their load point. When the **Reset Main PLL Counters** is programmed, both the Main feedback divider and the Main reference divider are held at their load point. When the **Reset All Counters** mode is enabled, all feedback dividers and reference dividers are held at their load point. When the device is programmed to normal operation, both the feedback divider and reference divider are enabled and resume counting in 'close' alignment to each other. Refer to **Section 2.8 F_bLD** for more details.

1.8.4 Reference Divider and Feedback Divider Output

The outputs of the various N and R divders can be monitored by selecting the appropriate F_oLD word. This is essential when performing OSC_{in} or f_{IN} sensitivity measurements. Refer to the **Test Setups** section for more details. Refer to **Section 2.8 F_oLD** for details on how to route the appropriate divder output to the F_oLD pin.

1.9 POWER CONTROL

Each synthesizer in the LMX2377U device is individually power controlled by device powerdown bits. The powerdown word is comprised of the **PWDN Main** (**PWDN Aux**) bit, in conjuction with the **TRI-STATE ID**_o **Main** (**TRI-STATE ID**_o **Aux**) bit. The powerdown control word is used to set the operating mode of the device. Refer to **Sections 2.4.4**, **2.5.4**, **2.6.4**, and **2.7.4** for details on how to program the Main or Aux powerdown bits.

When either the Main synthesizer or the Aux synthesizer enters the powerdown mode, the respective prescaler, phase detector, and charge pump circuit are disabled. The D_o Main (D_o Aux), f_{IN} Main (f_{IN} Aux), and $\overline{f_{IN}}$ Main pins are all forced to a high impedance state. The reference divider and feedback divider circuits are held at the load point during powerdown. The oscillator buffer is disabled when both the . Main and Aux synthesizers are powered down. The OSC_{in} pin is forced to a HIGH state through an approximate 100 k Ω resistance when this condition exists. When either synthesizer is activated, the respective prescaler, phase detector, charge pump circuit, and the oscillator buffer are all powered up. The feedback divider, and the reference divider are held at load point. This allows the reference oscillator, feedback divider, reference divider and prescaler circuitry to reach proper bias levels. After a finite delay, the feedback and reference dividers are enabled and they resume counting in 'close' alignment (the maximum error is one prescaler cycle). The MICROWIRE control register remains active and capable of loading and latching data while in the powerdown mode.

Synchronous Powerdown Mode

In this mode, the powerdown function is gated by the charge pump. When the device is configured for synchronous powerdown, the device will enter the powerdown mode upon completion of the next charge pump pulse event.

Asynchronous Powerdown Mode

In this mode, the powerdown function is NOT gated by the completion of a charge pump pulse event. When the device is configured for asynchronous powerdown, the part will go into powerdown mode immediately.

TRI-STATE ID _o	PWDN	Operating Mode
0	0	PLL Active, Normal Operation
1	0	PLL Active, Charge Pump Output in High Impedance State
0	1	Synchronous Powerdown
1	1	Asynchronous Powerdown

Notes:

1. TRI-STATE $\rm ID_o$ refers to either the TRI-STATE $\rm ID_o$ Main or TRI-STATE $\rm ID_o$ Aux bit .

2. PWDN refers to either the PWDN Main or PWDN Aux bit.

2.0 Programming Description

2.1 MICROWIRE INTERFACE

The 22-bit shift register is loaded via the MICROWIRE interface. The shift register consists of a 20-bit Data[19:0] Field and a 2-bit Address[1:0] Field as shown below. The Address Field is used to decode the internal control register address. When LE transitions HIGH, data stored in the shift register is loaded into one of 4 control registers depending on the state of the address bits. The MSB of Data is loaded in first. The Data field assignments are shown in **Section 2.3 CONTROL REGISTER CONTENT MAP**.

MSB			L	SB
	Data[19:0]		Address[1:0]	
21		2	1	0

2.2 CONTROL REGISTER LOCATION

The address bits Address[1:0] decode the internal register address. The table below shows how the address bits are mapped into the target control register.

Addre	ss[1:0]	Target
Fie	eld	Register
0	0	Aux R
0	1	Aux N
1	0	Main R
1	1	Main N

2.3 CONTROL REGISTER CONTENT MAP

The control register content map describes how the bits within each control register are allocated to specific control functions.

35

www.national.com

2.4 AUXILIARY R REGISTER

The Aux R register contains the Aux R_CNTR, PD_POL Aux, ID_o Aux, and TRI-STATE ID_o Aux control words, in addition to two bits that compose the F_oLD control word. The detailed description and programming information for each control word is discussed in the following sections.

eg.	Most						1	1	<u> </u>			1			1		-		L			Inifica	_
	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4		3	2	1	0
										Data	Field	1											dres
		1	1																				ield
R	F _o LD0	F ₀ LD2		IDo	PD_																		
n			STATE	Aux	POL						A	Aux R	_CNT	R[14:0	D]							0	0
			ID ₀ Aux		Aux																		
Au Th	i x R[2 e Aux	2:16]	ence c	-					e progi									-			-		han
I	Divide	e Rati	0								4	Aux R	_CNT	R[14:	0]								
				14	1		12	11	10	-	9	8	7	6		5	4	3		2		1	0
		2		0	0		0	0	0	-	0	0	0	0		0	0	0		0		1	0
		3		0	0		0	0	0	_	0	0	0	0		0	0	0		0		1	1
		•		•	-		•	•	•	_	•	•	•	•		•	•	•		•		•	•
	- 32	767		1	1		1	1	1		1	1	1	1		1	1	1		1		1	1
	e PD_ Cor	D_POL _POL ntrol E POL A	Aux bi Bit	t is us	Reg	ister	rol the Locat			De: Ix Pha	script ase D	ion	-			0 Neg	F	VCO Functi	ion		1		
	e PD_ Cor	_POL ntrol E	Aux bi Bit	t is us	Reg	ister	Loca		Au Po	De: Ix Pha Darity	script	t ion etecto	r	Aux Tuni	VCO	0	F ative		i on Au Tu		1 0 P	Positive	
	e PD_ Cor	_POL ntrol E	Aux bi Bit		Reg	ister	Loca R[17]		Au Po Aux	Den IIX Pha Ilarity VCO	script ase D	tion etector acteri	PD_F	Aux Tuni Cha POL Au	VCO ing racte	0 Neg	F ative		i on Au Tu	ıx VC	1 0 P	Positive	
2.4	e PD_ Cor PD_ e ID _o	_POL	Aux bi		Reg AUX	Aux Aux (ILIA x syn	Locat R[17] Au O FRE	tion UX VCO UTPUT QUENCY YNTHE er's ch	Au Po Aux	Des ix Pha olarity VCO × VCO x VCO x VCO		tion etector acteri VOLTA	PD_F GE	Aux Tuni Cha POL Au 200 RREN	VCC ing racte x = 1 x = 0 122609	0) Neg ristics	F ative		Au Tu Ch	ux VC ning naract	1 O P teris	Positive tics R[18]	
2.4	e PD_ Cor PD_ e ID _o Cor	POL POL POL A	Aux bi		Reg AUX ne Aux Reg	Aux Aux (ILIA x syn ister	Locat R[17] Au O FRE	tion UX VCO UTPUT QUENCY YNTHE er's ch	Aux Aux Aux	Des ix Pha blarity VCO × VCO x VCO R CH/ pump Des	Script ase D Chara INPUT ARGE gain.	tion etector acteri VOLTA Two of tion	PD_F GE	Aux Tuni Cha POL Au 200 RREN	VCC ing racte x = 1 x = 0 yz2609 IT G/	0 ristics AIN ∋ avai	F ative	Functi	Au Tu Ch	ux VC ning naract	1 O P teris	Positive tics R[18]	

2.4.4 TRI-STATE ID_o Aux AUXILIARY SYNTHESIZER CHARGE PUMP TRI-STATE CURRENT

Aux R[19]

The TRI-STATE ID_o Aux bit allows the charge pump to be switched between a normal operating mode and a high impedance output state. This happens asynchronously with the change in the TRI-STATE ID_o Aux bit.

Furthermore, the TRI-STATE ID_o Aux bit operates in conjuction with the PWDN Aux bit to set a synchronous or an asynchronous powerdown mode.

Control Bit	Register Location	Description	Fur	oction
			0	1
TRI-STATE ID _o Aux	Aux R[19]	Aux Charge Pump TRI-STATE Current	Aux Charge Pump Normal Operation	Aux Charge Pump Output in High Impedance State

2.5 AUXILIARY N REGISTER

The Aux N register contains the Aux N_CNTRA, Aux N_CNTRB, PRE Aux, and PWDN Aux control words. The Aux N_CNTRA and Aux N_CNTRB control words are used to setup the programmable feedback divider. The detailed description and programming information for each control word is discussed in the following sections.

Reg.	Most	Sign	ifican	t Bit					SH	IFT R	EGIS	rer b	BIT LO	CAT	ON				Leas	t Sigr	nificar	nt Bit
	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					•		•	•		Data	Field							•		•		ress eld
Aux N	PWDN Aux	PRE Aux					A	ux N_	CNTF	RB[12:	0]					Å	ux N	CNT	RA[4:0	D]	0	1

2.5.1 Aux N_CNTRA[4:0] AUXILIARY SYNTHESIZER SWALLOW COUNTER (A COUNTER)

Aux N[2:6]

The Aux N_CNTRA control word is used to setup the Aux synthesizer's A counter. The A counter is a 5-bit swallow counter used in the programmable feedback divider. The Aux N_CNTRA control word can be programmed to values ranging from 0 to 31.

Divide Ratio			Aux N_CNTRA[4:0]		
	4	3	2	1	0
0	0	0	0	0	0
1	0	0	0	0	1
•	•	•	•	•	•
31	1	1	1	1	1

2.5.2 Aux N_CNTRB[12:0] AUXILIARY SYNTHESIZER PROGRAMMABLE BINARY COUNTER (B COUNTER) Aux N[7:19]

The Aux N_CNTRB control word is used to setup the Aux synthesizer's B counter. The B counter is a 13-bit programmable binary counter used in the programmable feedback divider. The Aux N_CNTRB control word can be programmed to values ranging from 3 to 8191.

Divide						Aux	N_CNTRE	B[12:0]					
Ratio	12	11	10	9	8	7	6	5	4	3	2	1	0
3	0	0	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	0	0	1	0	0
•	•	•	•	•	•	•	•	•	•	•	•	•	•
8191	1	1	1	1	1	1	1	1	1	1	1	1	1

2.5.3 PRE Aux

AUXILIARY SYNTHESIZER PRESCALER SELECT

Aux N[20]

Aux N[21]

The Aux synthesizer utilizes a selectable dual modulus prescaler.

Control Bit	Register Location	Description	Fund	ction
			0	1
PRE Aux	Aux N[20]	Aux Prescaler Select	8/9 Prescaler Selected	16/17 Prescaler Selected

2.5.4 PWDN Aux

AUXILIARY SYNTHESIZER POWERDOWN

The PWDN Aux bit is used to switch the Aux PLL between a powered up and powered down mode. Furthermore, the PWDN Aux bit operates in conjuction with the TRI-STATE ID_o Aux bit to set a synchronous or an asynchronous powerdown mode.

Control Bit	Register Location	Description	Function			
			0	1		
PWDN Aux	Aux N[21]	Aux Powerdown	Aux PLL Active	Aux PLL Powerdown		

2.6 MAIN R REGISTER

The Main R register contains the Main R_CNTR, PD_POL Main, ID_o Main, and TRI-STATE ID_o Main control words, in addition to two bits that compose the F_oLD control word. The detailed description and programming information for each control word is discussed in the following sections.

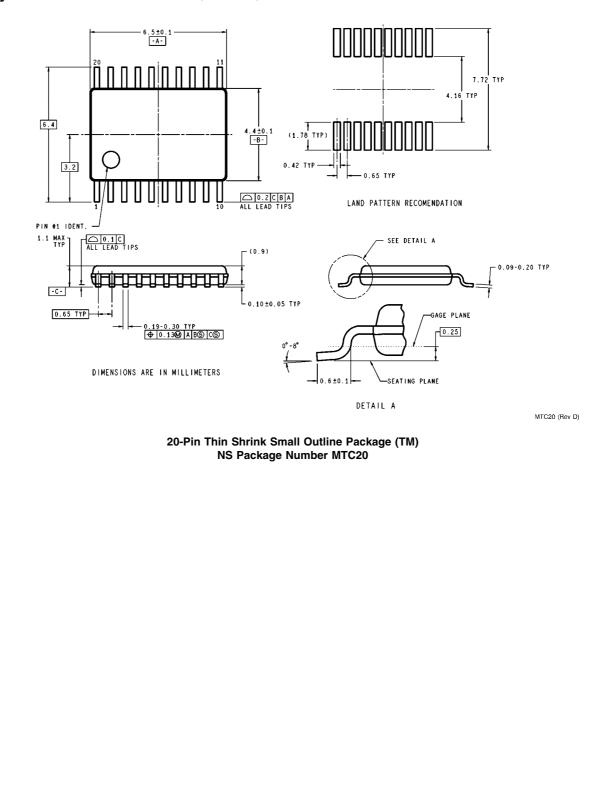
Г	Reg. Most Significant Bit SHIFT REGISTER BIT LOCATION											Leas	t Sig	nifica	nt Bit							
L	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Data Field											Address Field										
lain _F	F ₀ LD1 F ₀ LD3 TRI- ID ₀ PD_																					
R			STATE	Main	POL						Ν	1ain F	_CNT	R[14:	0]						1	0
			ID _o Main		Main									-	-							
2 a	re pro	phibite	ed.		r (Mair) 0411		grann		lain F					10 02					
_	, , , , , , , , , , , , , , , , , , ,	, nati	•	14	13	3	12	11	10		9	8	7	6		5	4	3	2		1	0
	1	2		0	0		0	0	0	(C	0	0	0		0	0	0	0		1	0
	;	3		0	0		0	0	0	(C	0	0	0		0	0	0	0		1	1
		•		•	•		•	•	•		•	•	٠	•		•	٠	•	•		•	٠
	32.	767		1	1		1	1	1		1		1	1		1	1	1	1		1	1

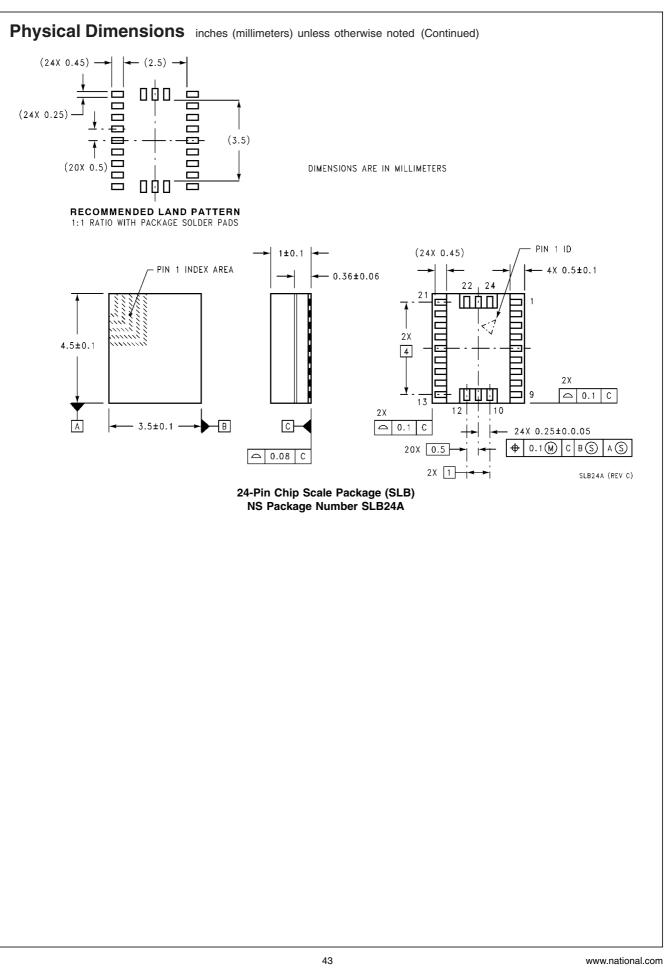
Control Bit	Register Location	Description	Fur	ction
			0	1
PD_POL Main	Main R[17]	Main Phase Detector Polarity	Main VCO Negative Tuning Characteristics	Main VCO Positive Tuning Characteristics
		Main VCO Characteristic	s	
	Main VCO OUTPUT FREQUENCY		POL Main = 1	
6.3 ID_o Main ne ID _o Main bit contro		ZER CHARGE PUMP CUR charge pump gain. Two cu	RENT GAIN	Main R[18]
Control Bit	Register Location	Description	Fur	ction
			0	1
ID_{o} Main	Main R[18]	Main Charge Pump Current Gain	LOW 0.95 mA	HIGH 3.80 mA
.6.4 TRI-STATE ID _o M	in bit allows the charge p	ZER CHARGE PUMP TRI- ump to be switched betwee	en a normal operating mod	Main R[19] e and a high impedance
utput state. This happe urthermore, the TRI-S		he change in the TRI-STAT rates in conjuction with th		et a synchronous or an
utput state. This happed urthermore, the TRI-5 synchronous powerdor	STATE ID _o Main bit ope wn mode.	rates in conjuction with th	ne PWDN Main bit to se	
utput state. This happe urthermore, the TRI-S	STATE ID _o Main bit ope		ne PWDN Main bit to se	et a synchronous or an
utput state. This happe furthermore, the TRI-s synchronous powerdo	STATE ID _o Main bit ope wn mode.	rates in conjuction with th	ne PWDN Main bit to se	ction

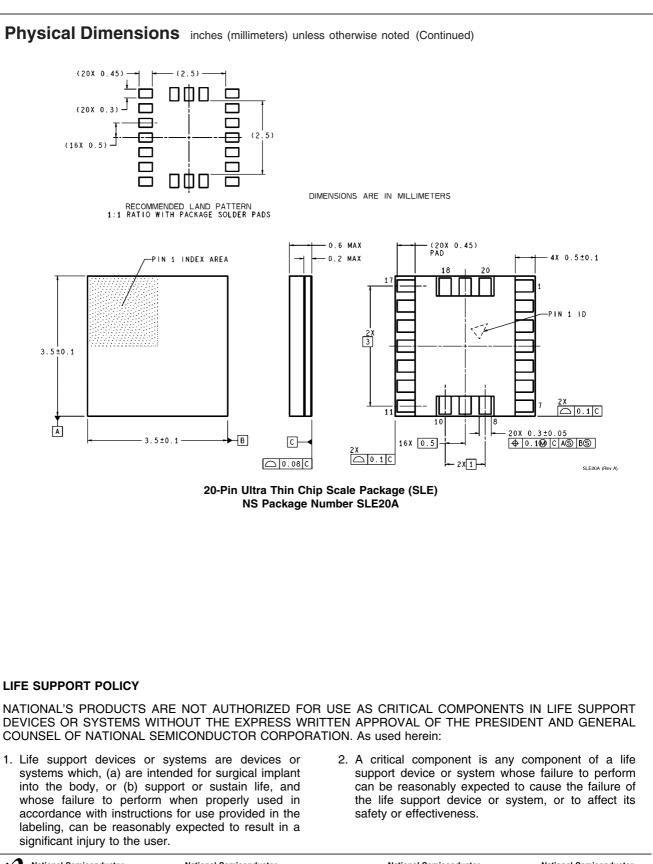
2.7 MAIN N REGISTER

The Main N register contains the Main N_CNTRA, Main N_CNTRB, PRE Main, and PWDN Main control words. The Main N_CNTRA and Main N_CNTRB control words are used to setup the programmable feedback divider. The detailed description and programming information for each control word is discussed in the following sections.

	ost Sig		-	,		· · ·		SHI	FT RE	GIST	ER E	BIT LO	CAT	ION				Leas	st Sigr	nifica	nt B
2	1 20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Data Field										Add	lres eld							
ain _{PWI}																					
N	ain Mair					Ma	ain N_(CNTR	B[12:0]					N	lain N	I_CNT	RA[4	:0]	1	1
The M		CNTF	- A conti	- rol word	l is u	ised to	setup t	he Ma	ain syn	thes	izer's	A cou	nter. 7	COUNTS The A co rogramr	ounte				w cour		sed
Divi	de Rat	0								Ма	ain N_		RA[4:	0]							
				4				3				2				1		_		0	
	0			0				0				0				0		_		0	
	1			0				•				0				•		_		•	
	31			1				1				1				1				1	
rangin	ng from			- - 91										control		5011	٣				
Divide Ratio	12		11	10		9	8		Main 7	N_C	ONTR	B[12:	_	4		3	2		1		0
3	0		0	0	_	9	0		0		0	0		4 0		3 0			1		1
4	0		0	0		0	0		0		0	0		0		0	1		0		0
•	•		•	•		•	•		•		•	•		•		•	•	•	•		•
8191	1		1	1		1	1		1		1	1		1		1	1		1		1
-	PRE M /lain syı		zer utili			SYNTH	_				-	ЕСТ							Main	N[20]	l
С	ontrol	Bit		Regi	ster	Locati	on		Desc	cript	ion					F	unctio	on			-
														0					1		
F	PRE Ma	ain		N	lain	N[20]			in Pres lect	scale	er			7 Prese	caler			32/33 Select	Presca	aler	
	PWDN	/lain t	oit is us PWDN	ed to s Main	witcl bit (lain Pl	R PO _L bet	WERD	a po	wered		ind po	owered ID _o Ma			le.		Main		
The P Furthe	ermore, hronou		eraowr						Desc	cript	ion					F	unctio	on			
The P Furthe async		s pow	erdowr		ster	Locati	on		Dest												
The P Furthe async	hronou	s pow Bit		Regi			on			-				0					1		
The P Furthe async	hronou	s pow Bit		Regi		Locati N[21]	on	N	Jain P	ower	down		Mair	0 n PLL A		;		Main F Power	PLL		


LMX2377U


MULTI-FUNCTION OUTPUT SELECT


2.8 F_oLD[3:0] [Main R[20], Aux R[20], Main R [21], Aux R[21]] The F_oLD control word is used to select which signal is routed to the F_oLD pin.

F _o LD3	F _o LD2	F _o LD1	F _o LD0	F _o LD Output State
0	0	0	0	LOW Logic State Output
0	0	0	1	Aux PLL R Divider Output, Push-Pull Output
0	0	1	0	Main PLL R Divider Output, Push-Pull Output
0	0	1	1	Open Drain Fastlock Output
0	1	0	0	Aux PLL Analog Lock Detect, Open Drain Output
0	1	0	1	Aux PLL N Divider Output, Push-Pull Output
0	1	1	0	Main PLL N Divider Output, Push-Pull Output
0	1	1	1	Reset Aux PLL Counters, LOW Logic State Output
1	0	0	0	Main PLL Analog Lock Detect, Open Drain Output
1	0	0	1	Aux PLL R Divider Output, Push-Pull Output
1	0	1	0	Main PLL R Divider Output, Push-Pull Output
1	0	1	1	Reset Main PLL Counters, LOW Logic State Output
1	1	0	0	Main and Aux Analog Lock Detect, Open Drain Output
1	1	0	1	Aux PLL N Divider Output, Push-Pull Output
1	1	1	0	Main PLL N Divider Output, Push-Pull Output
1	1	1	1	Reset All Counters, LOW Logic State Output

Physical Dimensions inches (millimeters) unless otherwise noted

Ń	National Semiconductor Corporation	National Semiconductor Europe	National Semiconductor Asia Pacific Customer	National Semiconductor Japan Ltd.
/*	Americas	Fax: +49 (0) 180-530 85 86	Response Group	Tel: 81-3-5639-7560
	Email: support@nsc.com	Email: europe.support@nsc.com	Tel: 65-2544466	Fax: 81-3-5639-7507
		Deutsch Tel: +49 (0) 69 9508 6208	Fax: 65-2504466	
		English Tel: +44 (0) 870 24 0 2171	Email: ap.support@nsc.com	
ww.	national.com	Français Tel: +33 (0) 1 41 91 8790		

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.