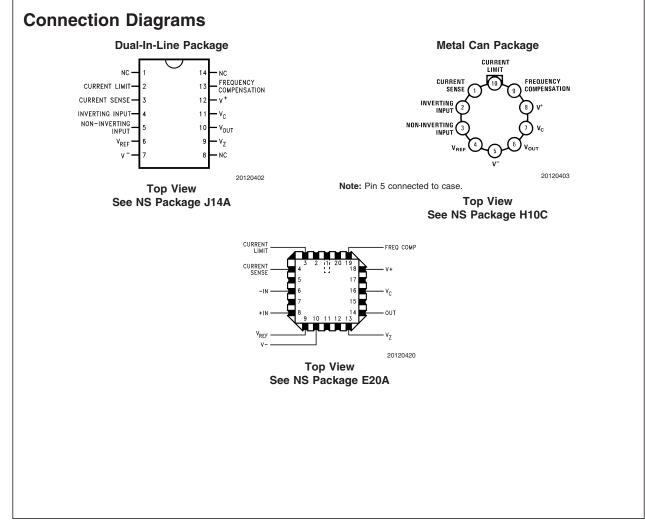


LM723QML Voltage Regulator General Description

The LM723 is a voltage regulator designed primarily for series regulator applications. By itself, it will supply output currents up to 150 mA; but external transistors can be added to provide any desired load current. The circuit features extremely low standby current drain, and provision is made for either linear or foldback current limiting.


The LM723 is also useful in a wide range of other applications such as a shunt regulator, a current regulator or a temperature controller.

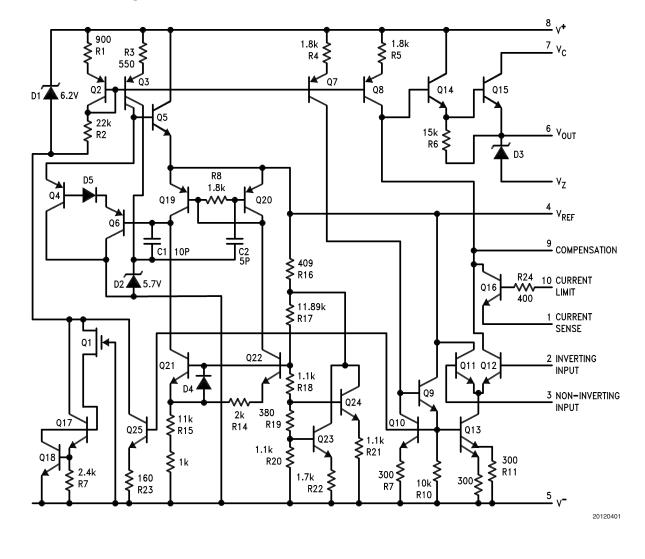
Features

- 150 mA output current without external pass transistor
- Output currents in excess of 10A possible by adding external transistors
- Input voltage 40V max
- Output voltage adjustable from 2V to 37V
- Can be used as either a linear or a switching regulator

Ordering Information


NS PART NUMBER	SMD PART NUMBER	NS PACKAGE NUMBER	PACKAGE DISCRIPTION
LM723E/883		E20A	20LD LEADLESS CHIP CARRIER
LM723H/883		H10C	10LD T0–100, METAL CAN
LM723J/883		J14A	14LD CERDIP

February 2005



Equivalent Circuit*

*Pin numbers refer to metal can package.

Schematic Diagram

www.national.com

Absolute Maximum	Ratings (Note 1)
Pulse Voltage from V ⁺ to	
V ⁻ (50 ms)	50V
Continuous Voltage from	
V ⁺ to V ⁻	40V
Input-Output Voltage	
Differential	40V
Maximum Amplifier Input	
Voltage	
Either Input	8.5V
Differential	5V
Current from V _Z	25 mA
Current from V _{REF}	15 mA
Internal Power Dissipation	
Metal Can (Note 2)	800 mW
Cavity DIP (Note 2)	900 mW
LCC (Note 2)	900 mW
Operating Temperature	$-55^{\circ}C \le T_A \le +125^{\circ}C$
Range	
Maximum T _J	+150°C
Storage Temperature	
Range	$-65^{\circ}C \le T_A \le +150^{\circ}C$

Lead Temperature	300°C
(Soldering, 4 sec. max.)	
Thermal Resistance	
θ_{JA}	
Cerdip	
(Still Air)	100°C/W
Cerdip	
(500LF/ Min Air flow)	61°C/W
Metal Can	
(Still Air)	156°C/W
Metal Can	
(500LF/ Min Air flow)	89°C/W
LCC	
(Still Air)	96°C/W
LCC	
(500LF/ Min Air flow)	70°C/W
θ _{JC}	
CERDIP	22°C/W
Metal Can	37°C/W
LCC	27°C/W
ESD Tolerance (Note 3)	500V

Quality Conformance Inspection

MIL-STD-883, Method 5005 — Group A

Subgroup	Description	Temp(°C)
1	Static tests at	+25
2	Static tests at	+125
3	Static tests at	-55
4	Dynamic tests at	+25
5	Dynamic tests at	+125
6	Dynamic tests at	-55
7	Functional tests at	+25
8A	Functional tests at	+125
8B	Functional tests at	-55
9	Switching tests at	+25
10	Switching tests at	+125
11	Switching tests at	-55

LM723QMI

Electrical Characteristics

DC Parameters (Note 9)

Symbol	Parameter	Conditions	Notes	Min	Max	Units	Sub- group:
V _{rline} L	Line Regulation	$12V \le V_{\text{IN}} \le 15V, \ V_{\text{OUT}} = 5V,$		-0.1	0.1	%V _{OUT}	1
		$I_{L} = 1mA$		-0.2	0.2	%V _{OUT}	2
				-0.3	0.3	%V _{OUT}	3
		$12V \leq V_{\text{IN}} \leq 40V, V_{\text{OUT}} = 2V, \\ I_{\text{L}} = 1\text{mA}$		-0.2	0.2	%V _{OUT}	1
		$9.5V \leq V_{\text{IN}} \leq 40V, \ V_{\text{OUT}} = 5V, \ I_{\text{L}} = 1\text{mA}$		-0.3	0.3	%V _{OUT}	1
V _{rload}	Load Regulation	$1\text{mA} \le \text{I}_{\text{L}} \le 50\text{mA}, \text{ V}_{\text{IN}} = 12\text{V},$		-0.15	0.15	%V _{OUT}	1
		V _{OUT} = 5V		-0.4	0.4	%V _{OUT}	2
				-0.6	0.6	%V _{OUT}	3
		$1mA \le I_L \le 10mA, V_{IN} = 40V,$ $V_{OUT} = 37V$		-0.5	0.5	%V _{OUT}	1
		$6mA \le I_L \le 12mA, V_{IN} = 10V, \\ V_{OUT} = 7.5V$		-0.2	0.2	%V _{OUT}	1
V _{REF}	Voltage Reference	I _{REF} = 1mA, V _{IN} = 12V		6.95	7.35	V	1
				6.9	7.4	V	2, 3
I _{SCD}	Standby Current	$V_{IN} = 30V, I_L = I_{REF} = 0,$		0.5	3	mA	1
		$V_{OUT} = V_{REF}$		0.5	2.4	mA	2
				0.5	3.5	mA	3
I _{os}	Short Circuit Current	$V_{OUT} = 5V, V_{IN} = 12V, R_{SC} = 10\Omega,$ $R_L = 0$		45	85	mA	1
Vz	Zener Voltage	V _{IN} = 40V, V _{OUT} = 7.15V, I _Z = 1mA	(Note 8) (Note 10)	5.58	6.82	V	1
V _{OUT}	Output Voltage	$V_{IN} = 12V, V_{OUT} = 5V, I_{L} = 1mA$,	4.5	5.5	V	1, 2, 3

Electrical Characteristics

AC Parameters (Note 9)

Symbol	Parameter	Conditions	Not es	Min	Max	Units	Sub- groups
Delta V _{OUT}	Ripple Rejection	$f = 120H_Z$, $C_{REF} = 0$, $V_{INS} = 2V_{RMS}$		55		dB	4
Delta V _{IN}		$f = 120H_Z, C_{REF} = 5\mu F,$		67		dB	4
		$V_{INS} = 2V_{RMS}$					

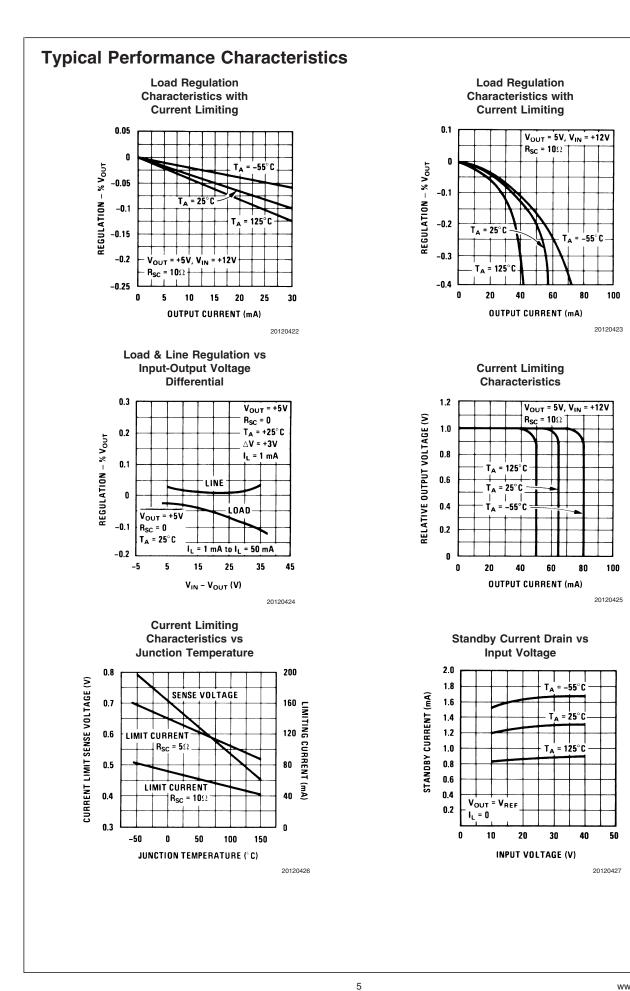
Note 1: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

Note 2: The maximum power dissipation for these devices must be derated at elevated temperatures and is dictated by T_{JMAX} , θ_{JA} , and the ambient temperature, T_A . The maximum available power dissipation at any temperature is $P_d = (T_{JMAX} - T_A)/\theta_{JA}$ or the number given in the Absolute Maximum Ratings, whichever is less. See derating curves for maximum power rating above 25°C.

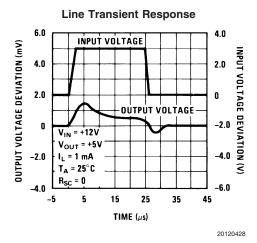
Note 3: Human body model, 1.5 k Ω in series with 100 pF.

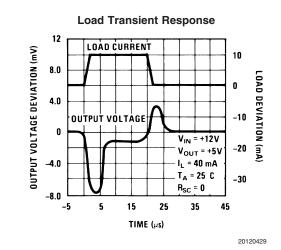
Note 4: L1 is 40 turns of No. 20 enameled copper wire wound on Ferroxcube P36/22-3B7 pot core or equivalent with 0.009 in. air gap.

Note 5: Figures in parentheses may be used if R1/R2 divider is placed on opposite input of error amp.


Note 6: Replace R1/R2 in figures with divider shown in *Figure 13*.

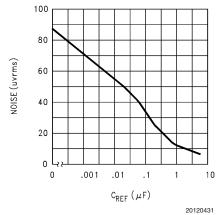
Note 7: V⁺ and V_{CC} must be connected to a +3V or greater supply.


Note 8: For metal can applications where V_Z is required, an external 6.2V zener diode should be connected in series with V_{OUT} .

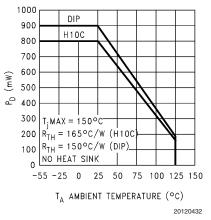

Note 9: Unless otherwise specified, $T_A = 25^{\circ}$ C, $V_{IN} = V^+ = V_C = 12V$, $V^- = 0$, $V_{OUT} = 5V$, $I_L = 1$ mA, $R_{SC} = 0$, $C_1 = 100$ pF, $C_{REF} = 0$ and divider impedance as seen by error amplifier $\leq 10 \text{ k}\Omega$ connected as shown in *Figure 1* Line and load regulation specifications are given for the condition of constant chip temperature. Temperature drifts must be taken into account separately for high dissipation conditions.

Note 10: Tested for DIPS only.

Typical Performance Characteristics (Continued)



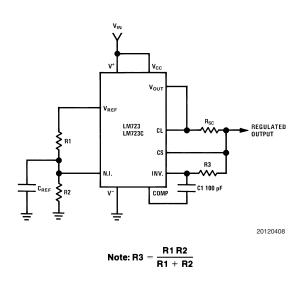
Output Impedence vs Frequency 10 V_{OUT} = +5V V_{IN} = +12V R_{SC} = O **OUTPUT IMPEDANCE (**2) T_A = 25°C 1.0 50 m A 0.1 .01 100 1k 10k 100k 1M FREQUENCY (Hz)


20120430

Maximum Power Ratings

Noise vs Filter Capacitor (C_{REF} in Circuit of *Figure 1* (Bandwidth 100 Hz to 10 kHz)

Power Dissipation vs Ambient Temperature

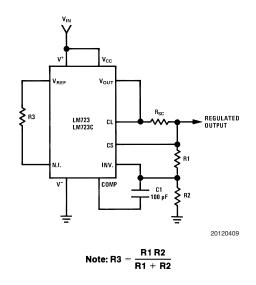

TABLE 1. Resistor Values (k Ω) for Standard Output Voltage

			•					•	•				
Positive	Applicable	Fix	ed	C	Output	:	Negative		Fi	ced	59	% Out	put
Output	Figures	Out	tput	Ad	justab	le	Output	Applicable	Out	tput	A	djusta	ble
Voltage		±5	5%	±10%	∕₀ (Not	e 6)	Voltage	Figures	±{	5%		±10%	6
	(Note 5)	R1	R2	R1	P1	R2			R1	R2	R1	P1	R2
+3.0	1, 5, 6, 9, 12 (4)	4.12	3.01	1.8	0.5	1.2	+100	7	3.57	102	2.2	10	91
+3.6	1, 5, 6, 9, 12 (4)	3.57	3.65	1.5	0.5	1.5	+250	7	3.57	255	2.2	10	240
+5.0	1, 5, 6, 9, 12 (4)	2.15	4.99	0.75	0.5	2.2	-6 (Note 7)	3, (10)	3.57	2.43	1.2	0.5	0.75
+6.0	1, 5, 6, 9, 12 (4)	1.15	6.04	0.5	0.5	2.7	-9	3, 10	3.48	5.36	1.2	0.5	2.0
+9.0	2, 4, (5, 6, 9, 12)	1.87	7.15	0.75	1.0	2.7	-12	3, 10	3.57	8.45	1.2	0.5	3.3
+12	2, 4, (5, 6, 9, 12)	4.87	7.15	2.0	1.0	3.0	-15	3, 10	3.65	11.5	1.2	0.5	4.3
+15	2, 4, (5, 6, 9, 12)	7.87	7.15	3.3	1.0	3.0	-28	3, 10	3.57	24.3	1.2	0.5	10
+28	2, 4, (5, 6, 9, 12)	21.0	7.15	5.6	1.0	2.0	-45	8	3.57	41.2	2.2	10	33
+45	7	3.57	48.7	2.2	10	39	-100	8	3.57	97.6	2.2	10	91
+75	7	3.57	78.7	2.2	10	68	-250	8	3.57	249	2.2	10	240

TABLE 2. Formulae for Intermediate Output Voltages

Outputs from +2 to +7 volts (Figure 1 Figures 4, 5, 6, 9, 12)	Outputs from +4 to +250 volts (<i>Figure 7</i>)	Current Limiting
$V_{OUT} = \left(V_{REF} \times \frac{R2}{R1 + R2}\right)$	$V_{OUT} = \left(rac{V_{REF}}{2} imes rac{R2 - R1}{R1} ight); R3 = R4$	$I_{LIMIT} = \frac{V_{SENSE}}{R_{SC}}$
Outputs from +7 to +37 volts	Outputs from -6 to -250 volts	Foldback Current Limiting
(Figures 2, 4, 5, 6, 9, 12)	(Figures 3, 8, 10)	$I_{\text{KNEE}} = \left(\frac{V_{\text{OUT}} \text{R3}}{\text{R}_{\text{SC}} \text{R4}} + \frac{V_{\text{SENSE}} (\text{R3} + \text{R4})}{\text{R}_{\text{SC}} \text{R4}}\right)$
$V_{OUT} = \left(V_{REF} \times \frac{R1 + R2}{R2}\right)$	$V_{OUT} = \left(\frac{V_{REF}}{2} \times \frac{R1 + R2}{R1}\right); R3 = R4$	$I_{\text{SHORT CKT}} = \left(\frac{V_{\text{SENSE}}}{R_{\text{SC}}} \times \frac{R3 + R4}{R4}\right)$

Typical Applications

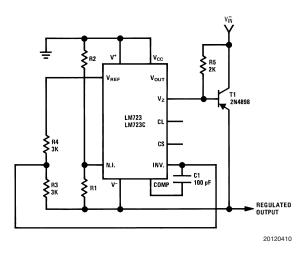


for minimum temperature drift.

Typical Performance

Regulated Output Voltage	5V
Line Regulation ($\Delta V_{IN} = 3V$)	0.5mV
Load Regulation ($\Delta I_{L} = 50 \text{ mA}$)	1.5mV

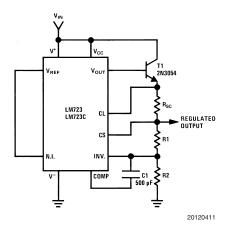
FIGURE 1. Basic Low Voltage Regulator $(V_{OUT} = 2 \text{ to } 7 \text{ Volts})$



for minimum temperature drift. R3 may be eliminated for minimum component count.

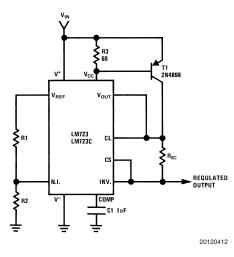
Typical Performance

Regulated Output Voltage	15V
Line Regulation ($\Delta V_{IN} = 3V$)	1.5 mV
Load Regulation ($\Delta I_{L} = 50 \text{ mA}$)	4.5 mV


FIGURE 2. Basic High Voltage Regulator (V_{OUT} = 7 to 37 Volts)

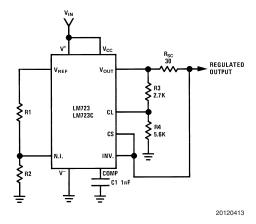
Typical Performance

Regulated Output Voltage	-15V
Line Regulation ($\Delta V_{IN} = 3V$)	1 mV
Load Regulation ($\Delta I_{L} = 100 \text{ mA}$)	2 mV


FIGURE 3. Negative Voltage Regulator

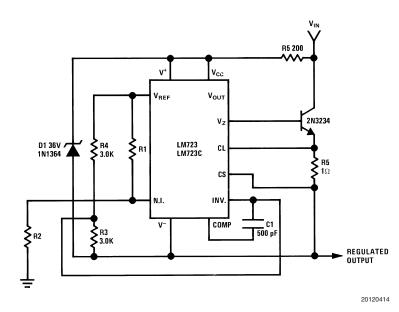
Typical Performance

Regulated Output Voltage	+15V
Line Regulation ($\Delta V_{IN} = 3V$)	1.5 mV
Load Regulation ($\Delta I_{L} = 1A$)	15 mV


FIGURE 4. Positive Voltage Regulator (External NPN Pass Transistor)

Typical Performance

Regulated Output Voltage	+5V	
Line Regulation ($\Delta V_{IN} = 3V$)	0.5 mV	
Load Regulation ($\Delta I_{L} = 1A$)	5 mV	


FIGURE 5. Positive Voltage Regulator (External PNP Pass Transistor)

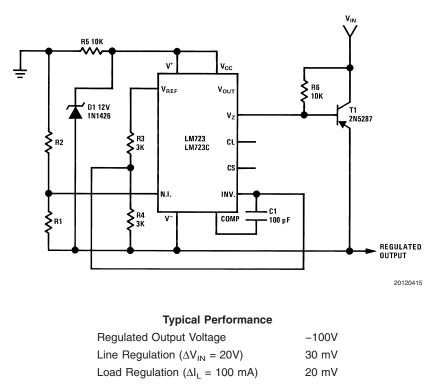
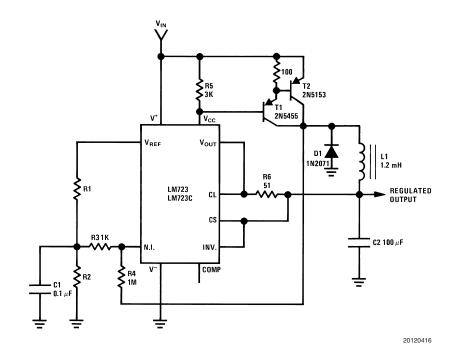
Typical Performance

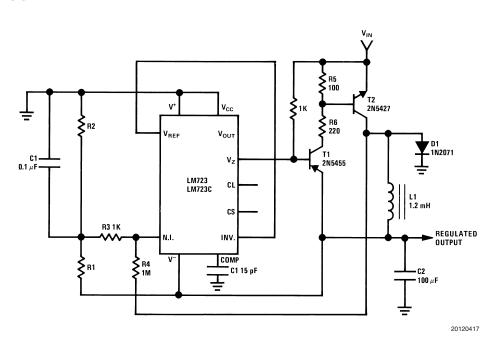
Regulated Output Voltage	+5V
Line Regulation ($\Delta V_{IN} = 3V$)	0.5 mV
Load Regulation ($\Delta I_L = 10 \text{ mA}$)	1 mV
Short Circuit Current	20 mA

FIGURE 6. Foldback Current Limiting

Typical Performance

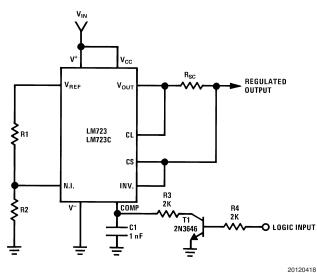
Regulated Output Voltage	+50V
Line Regulation ($\Delta V_{IN} = 20V$)	15 mV
Load Regulation ($\Delta I_{L} = 50 \text{ mA}$)	20 mV


FIGURE 8. Negative Floating Regulator

Typical Performance

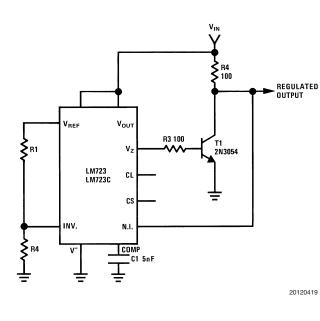
Regulated Output Voltage	+5V
Line Regulation ($\Delta V_{IN} = 30V$)	10 mV
Load Regulation ($\Delta I_{L} = 2A$)	80 mV


FIGURE 9. Positive Switching Regulator(Note 4)

Typical Performance

Regulated Output Voltage	-15V
Line Regulation ($\Delta V_{IN} = 20V$)	8 mV
Load Regulation ($\Delta I_L = 2A$)	6 mV

FIGURE 10. Negative Switching Regulator(Note 4)



Note: Current limit transistor may be used for shutdown if current limiting is not required.

Typical Performance

Regulated Output Voltage	+5V
Line Regulation ($\Delta V_{IN} = 3V$)	0.5 mV
Load Regulation ($\Delta I_L = 50 \text{ mA}$)	1.5 mV

FIGURE 11. Remote Shutdown Regulator with Current Limiting

Regulated Output Voltage	+5V
Line Regulation ($\Delta V_{IN} = 10V$)	0.5 mV
Load Regulation ($\Delta I_{L} = 100 \text{ mA}$)	1.5 mV

FIGURE 12. Shunt Regulator

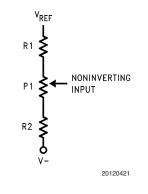
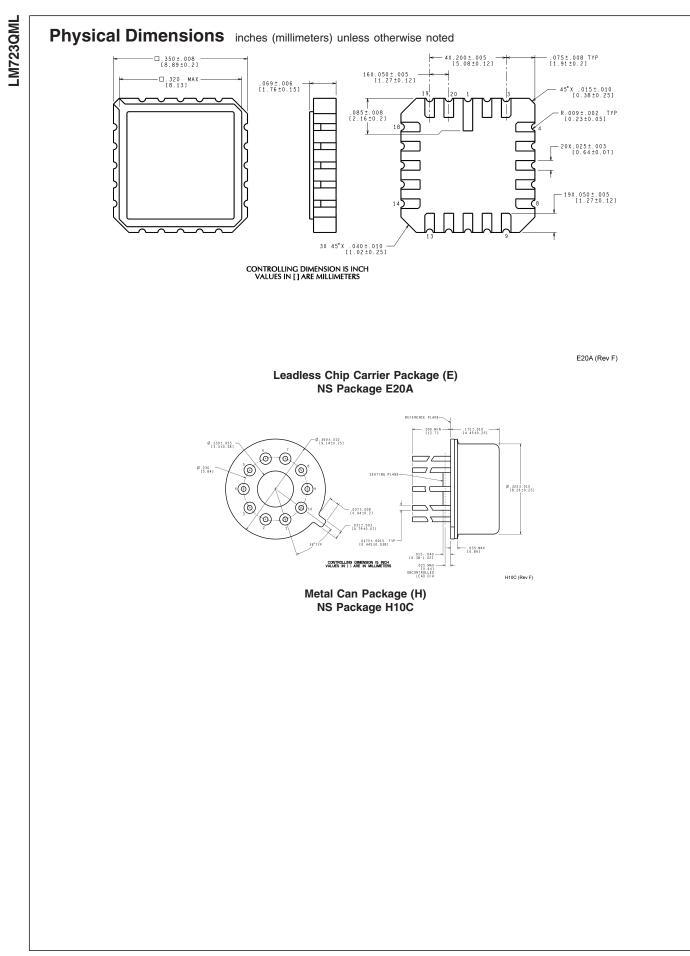
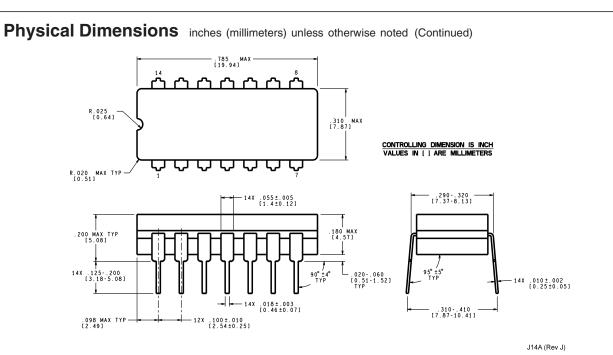




FIGURE 13. Output Voltage Adjust (Note 6)

Revision History Section

Date				
Released	Revision	Section	Originator	Changes
02/15/05	A	New Release, Corporate format	L. Lytle	1 MDS data sheet converted into one Corp. data sheet format. MNLM723-X, Rev. 1A0. MDS data sheet will be archived. AC and Drift parameters removed from specifcation because they only applied to the JAN B/S devices, covered in a separate datasheet.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

For the most current product information visit us at www.national.com.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor manufactures products and uses packing materials that meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

National Semiconductor Americas Customer Support Center Email: new.feedback@nsc.com Tel: 1-800-272-9959 National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790 National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560

www.national.com