

LM555QML Timer

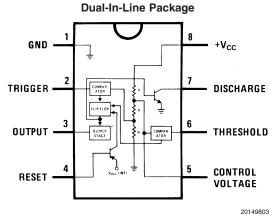
General Description

The LM555 is a highly stable device for generating accurate time delays or oscillation. Additional terminals are provided for triggering or resetting if desired. In the time delay mode of operation, the time is precisely controlled by one external resistor and capacitor. For astable operation as an oscillator, the free running frequency and duty cycle are accurately controlled with two external resistors and one capacitor. The circuit may be triggered and reset on falling waveforms, and the output circuit can source or sink up to 200mA or drive TTL circuits.

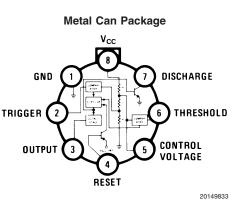
Features

- Direct replacement for SE555/NE555
- Timing from microseconds through hours
- Operates in both astable and monostable modes

- Adjustable duty cycle
- Output can source or sink 200 mA
- Output and supply TTL compatible
- Temperature stability better than 0.005% per °C
- Normally on and normally off output


Applications

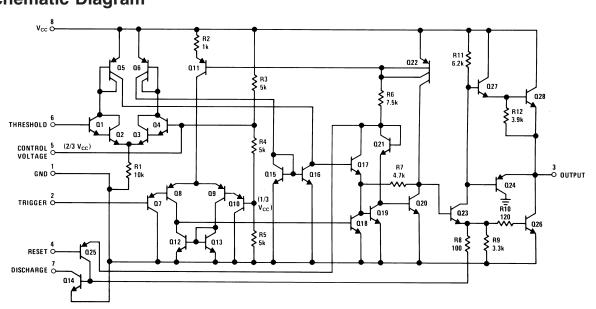
- Precision timing
- Pulse generation
- Sequential timing
- Time delay generation
- Pulse width modulation
- Pulse position modulation
- Linear ramp generator


Ordering Information

NS Part Number	JAN Part Number	NS Package Number	Package Description
LM555H/883		J08A	8LD Ceramic Dip
LM555J/883		H08A	8LD Metal Can

Connection Diagrams

Top View



Top View

August 2005

Schematic Diagram

20149801

Absolute Maximum Ratings (Note 1)

J	
Supply Voltage	+18V
Power Dissipation (Note 2)	
Metal Can	760 mW
CERDIP	1180 mW
Operating Temperature Range	$-55^{\circ}C \le T_A \le +125^{\circ}C$
Maximum Junction Temperature (T _{Jmax)}	+150°C
Storage Temperature Range	$-65^{\circ}C \le T_A \le +150^{\circ}C$
Soldering Information (Soldering 10 Seconds)	260°C
Thermal Resistance	
θ_{JA}	
CERDIP Still Air	125°C/W
CERDIP 500LF / Min Air Flow	71°C/W
Metal Can Still Air	176°C/W
Metal Can 500LF / Min Air Flow	96°C/W
θ_{JC}	
CERDIP	20°C/W
Metal Can	42°C/W
ESD Tolerance (Note 3)	500V

Quality Conformance Inspection Mil-Std-883, Method 5005 - Group A

Subgroup	Description	Temp °C
1	Static tests at	25
2	Static tests at	125
3	Static tests at	-55
4	Dynamic tests at	25
5	Dynamic tests at	125
6	Dynamic tests at	-55
7	Functional tests at	25
8A	Functional tests at	125
8B	Functional tests at	-55
9	Switching tests at	25
10	Switching tests at	125
11	Switching tests at	-55
12	Settling time at	25
13	Settling time at	125
14	Settling time at	-55

www.national.com

LM555QML

Electrical Characteristics

DC Parameters

The following conditions apply to all the following parameters, unless otherwise specified.

DC: $+5V \le V_{CC} \le +15V$

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
I _{CCL}	Supply Current Low State	$V_{CC} = 5V, R_L = \infty$			5.0	mA	1
		$V_{CC} = 15V, R_L = \infty$			12.0	mA	1
		$V_{\rm CC} = 18V, R_{\rm L} = \infty,$			10.5		-
		$V_2 = V_6 = 18V$			18.5	mA	1
I _{L7}	Leakage Current Pin 7	$V_{\rm CC} = 18V, V_7 = 18V,$			100		
		$V_2 = V_6 = 0$			100	nA	1
V _{Sat}	Saturation Voltage Pin 7	$V_{\rm CC} = 15V, I_7 = 15mA,$	(Note 6)		240	mV	1
		$V_2 = V_6 = 12V$			240	IIIV	· ·
		$V_{\rm CC} = 4.5 V, I_7 = 4.5 mA$	(Note 6)		80	mV	1
V _{co}	Control Voltage	$V_{\rm CC} = 5V,$		2.9	3.8	V	1, 2, 3
		$V_2 = V_6 = 4V$		2.0	0.0	v	1, 2, 0
		$V_{\rm CC} = 15V,$		9.6	10.4	V	1, 2, 3
		$V_2 = V_6 = 12V$		0.0			., _, 0
V _{Th}	Threshold Voltage			9.5	10.5	V	1
I _{Th}	Threshold Current	$V_6 = V_{Th}, V_2 = 7.5V,$	(Note 7)		250	nA	1
		$V_{Th} = V_{Th}$ Test Measured Value	(
Trig	Trigger Current	$V_2 = 0$			500	nA	1
V _{Trig}	Trigger Voltage	$V_{CC} = 15V$		4.8	5.2	V	1
				3.0	6.0	V	2, 3
		$V_{CC} = 5V$	(Note 4)	1.45	1.9	V	1, 2, 3
I _{Reset}	Reset Current	$V_2 = V_6 = Gnd$			0.4	mA	1
V _{Reset}	Reset Voltage			0.4	1.0	V	1
V _{OL}	Output Voltage Drop Low	$V_{CC} = 5V$, $I_{Sink} = +8mA$,			250	mV	1, 2, 3
		$V_7 = 5V, V_6 = 5V$			230	IIIV	1, 2, 0
		$V_{CC} = 15V, I_{Sink} = +10mA,$			150	mV	1
		$V_2 = V_6 = 15V$			250	mV	2, 3
		$V_{CC} = 15V$, $I_{Sink} = +50mA$,			500	mV	1
		$V_2 = V_6 = 15V$			800	mV	2, 3
		$V_{CC} = 15V, I_{Sink} = +85mA,$			2.2	V	1, 2, 3
		$V_2 = V_6 = 15V$			2.2	v	1, 2, 3
V _{он}	Output Voltage Drop High	$V_{CC} = 15V, I_{Source} = 85mA$		13		V	1
				12.75		V	2, 3
		$V_{\rm CC} = 5V, I_{\rm Source} = 85mA$		3		V	1
				2.75		V	2, 3
Af	A Stable Frequency		(Note 5)	45	51	KHz	1
tΕ	Timing Error	$V_{\rm CC} = 5V$	(Note 5)		±2	%	1, 2, 3
		$V_{CC} = 15V, 1K\Omega \le R_A \le 100K\Omega,$					
		Timing error decreases with an	(Note 5)		±2	%	1, 2, 3
		increase in V_{CC}					
$\Delta tE / \Delta V_{CC}$	Timing Drift with Supply	$5V \le V_{CC} \le 15V$	(Note 5)		0.2	% / V	1, 2, 3

Electrical Characteristics (Continued)

AC Parameters

The following conditions apply to all the following parameters, unless otherwise specified.

AC: $+5V \le V_{CC} \le +15V$

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
tR	Rise Time	V _{Trig} = 5V	(Note 5)		250	nS	9, 10
			(Note 5)		400	nS	11
tF	Fall Time	V _{Trig} = 5V	(Note 5)		250	nS	9, 10
			(Note 5)		400	nS	11

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

Note 2: The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{Jmax} (maximum junction temperature), θ_{JA} (package junction to ambient thermal resistance), and T_A (ambient temperature). The maximum allowable power dissipation at any temperature is $P_{Dmax} = (T_{Jmax} - T_A)/\theta_{JA}$ or the number given in the Absolute Maximum Ratings, whichever is lower.

Note 3: Human body model, $1.5 \text{K}\Omega$ in series with 100pF.

Note 4: Guaranteed by tests at $V_{CC} = 15V$.

Note 5: Guaranteed parameter, not tested.

Note 6: No protection against excessive pin 7 current is necessary providing the package dissipation rating will not be exceeded.

Note 7: This will determine the maximum value of $R_A + R_B$ for 15V operation. The maximum total ($R_A + R_B$) is 20M Ω .

Typical Performance Characteristics Minimum Pulse Width Supply Current vs. **Required for Triggering Supply Voltage** 12 1.2 V_{CC} = 15V 1.1 1.0 10 MINIMUM PULSE WIDTH (µs) SUPPLY CURRENT (mA) 0.9 +125°C 0.8 8 0.7 0.6 6 T = +25°C 0.5 0.4 4 0.3 0.2 -55°C 2 0.1 0 0 0.1 0.2 0.3 0.4 5 10 LOWEST VOLTAGE LEVEL OF TRIGGER PULSE (X $\ensuremath{\text{V_{cc}}}\xspace$) SUPPLY VOLTAGE (V) 20149804 High Output Voltage vs. Low Output Voltage vs. **Output Source Current Output Sink Current** 2 10 1.8 T_▲ = --55°C Ħ 1.6 T_A = +25°C 1.4 Vcc - Vour (V) 1.0 1.2 V_{out} (V) T_A = +125°C 125 1 0.8 0.1 0.6 0.4 0.2 $\rm 5V \leq V_{CC} \leq 15V$ 0.01 0 10 100 1.0 10 1 I_{SINK} (mA) I_{SOURCE} (mA) 20149820 Low Output Voltage vs. Low Output Voltage vs. **Output Sink Current Output Sink Current** 10 10 + + + + + + + + $V_{CC} = 10V$ V_{CC} = 15V 1.0 1.0 V_{ουτ} (V) +125°C V_{оUT} (V) +25°C -55° °C 0.1 0.1 0.01 0.01 10 1.0 1.0 10 100 I_{SINK} (mA) I_{SINK} (mA) 20149822

-55°C

+125°C

+25[°]C

15

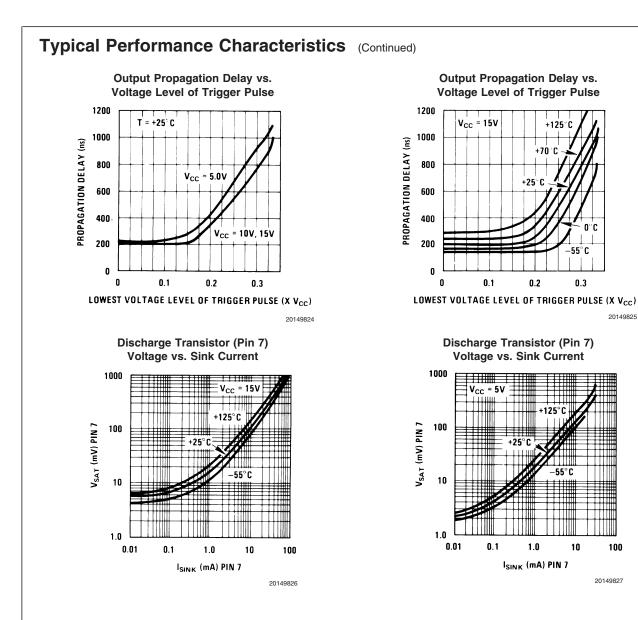
100

20149821

20149819

Vcc = 5V

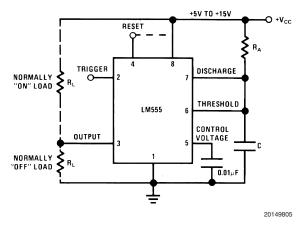
-55°C


-55°C

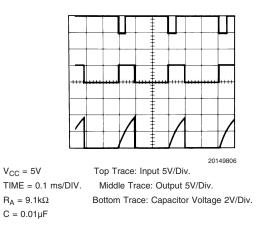
+125°C

-55°C

100


20149823

Applications Information


MONOSTABLE OPERATION

In this mode of operation, the timer functions as a one-shot (*Figure 1*). The external capacitor is initially held discharged by a transistor inside the timer. Upon application of a negative trigger pulse of less than 1/3 V_{CC} to pin 2, the flip-flop is set which both releases the short circuit across the capacitor and drives the output high.

FIGURE 1. Monostable

The voltage across the capacitor then increases exponentially for a period of t = 1.1 R_A C, at the end of which time the voltage equals 2/3 V_{CC}. The comparator then resets the flip-flop which in turn discharges the capacitor and drives the output to its low state. *Figure 2* shows the waveforms generated in this mode of operation. Since the charge and the threshold level of the comparator are both directly proportional to supply voltage, the timing internal is independent of supply.

FIGURE 2. Monostable Waveforms

During the timing cycle when the output is high, the further application of a trigger pulse will not effect the circuit so long as the trigger input is returned high at least 10µs before the end of the timing interval. However the circuit can be reset during this time by the application of a negative pulse to the reset terminal (pin 4). The output will then remain in the low state until a trigger pulse is again applied.

When the reset function is not in use, it is recommended that it be connected to $V_{\rm CC}$ to avoid any possibility of false triggering.

Figure 3 is a nomograph for easy determination of R, C values for various time delays.

NOTE: In monostable operation, the trigger should be driven high before the end of timing cycle.

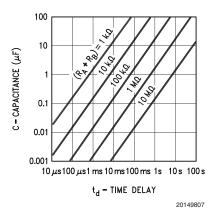
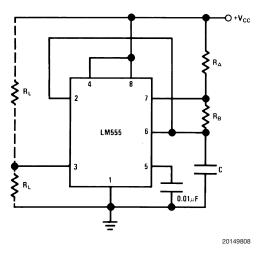



FIGURE 3. Time Delay

ASTABLE OPERATION

If the circuit is connected as shown in *Figure 4* (pins 2 and 6 connected) it will trigger itself and free run as a multivibrator. The external capacitor charges through $R_A + R_B$ and discharges through R_B . Thus the duty cycle may be precisely set by the ratio of these two resistors.

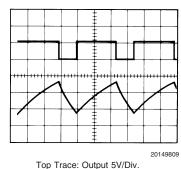


FIGURE 4. Astable

In this mode of operation, the capacitor charges and discharges between 1/3 $V_{\rm CC}$ and 2/3 $V_{\rm CC}$. As in the triggered mode, the charge and discharge times, and therefore the frequency are independent of the supply voltage.

Applications Information (Continued)

Figure 5 shows the waveforms generated in this mode of operation.

Bottom Trace: Capacitor Voltage 1V/Div.

FIGURE 5. Astable Waveforms

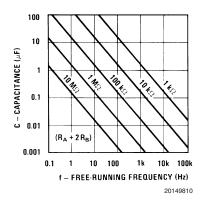
The charge time (output high) is given by:

$$t_{1} = 0.693 \; (R_{A} + R_{B}) \; C \label{eq:t1}$$
 And the discharge time (output low) by:

$$t_2 = 0.693 (R_B) C$$

Thus the total period is:

$$T = t_1 + t_2 = 0.693 (R_A + 2R_B) C$$


The frequency of oscillation is:

$$f = \frac{1}{T} = \frac{1.44}{(R_A + 2 R_B) C}$$

Figure 6 may be used for quick determination of these RC values.

The duty cycle is:

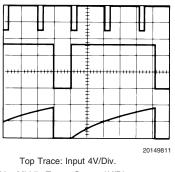

$$\mathsf{D} = \frac{\mathsf{R}_{\mathsf{B}}}{\mathsf{R}_{\mathsf{A}} + 2\mathsf{R}_{\mathsf{B}}}$$

FIGURE 6. Free Running Frequency

FREQUENCY DIVIDER

The monostable circuit of *Figure 1* can be used as a frequency divider by adjusting the length of the timing cycle. *Figure 7* shows the waveforms generated in a divide by three circuit.

$$\begin{split} \text{TIME} &= 20\mu\text{s}/\text{DIV}. & \text{Middle Trace: Output 2V/Div}.\\ \text{R}_{\text{A}} &= 9.1 \text{k}\Omega & \text{Bottom Trace: Capacitor 2V/Div}.\\ \text{C} &= 0.01 \mu\text{F} \end{split}$$

FIGURE 7. Frequency Divider

PULSE WIDTH MODULATOR

 $V_{CC} = 5V$

When the timer is connected in the monostable mode and triggered with a continuous pulse train, the output pulse width can be modulated by a signal applied to pin 5. *Figure* 8 shows the circuit, and in *Figure* 9 are some waveform examples.

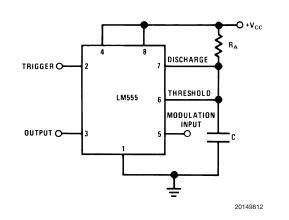
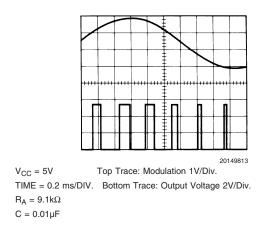
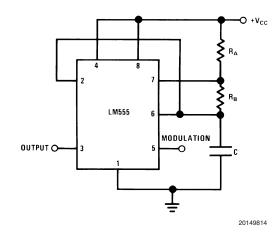
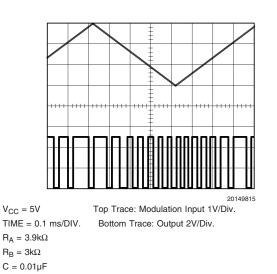



FIGURE 8. Pulse Width Modulator

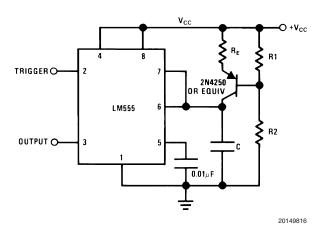
LM555QML


Applications Information (Continued)


FIGURE 9. Pulse Width Modulator

PULSE POSITION MODULATOR

This application uses the timer connected for astable operation, as in *Figure 10*, with a modulating signal again applied to the control voltage terminal. The pulse position varies with the modulating signal, since the threshold voltage and hence the time delay is varied. *Figure 11* shows the waveforms generated for a triangle wave modulation signal.



LINEAR RAMP

When the pullup resistor, R_A , in the monostable circuit is replaced by a constant current source, a linear ramp is generated. *Figure 12* shows a circuit configuration that will perform this function.

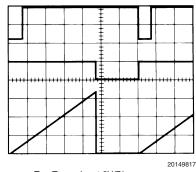

FIGURE 12.

Figure 13 shows waveforms generated by the linear ramp. The time interval is given by:

$$T = \frac{2/3 V_{CC} R_E (R_1 + R_2) C}{R_1 V_{CC} - V_{BE} (R_1 + R_2)}$$
$$V_{BE} \approx 0.6V$$

$$V_{BE} \simeq 0.6V$$

Applications Information (Continued)

 $\begin{array}{ll} V_{CC}=5V & \mbox{Top Trace: Input 3V/Div.} \\ TIME=20\mu s/DIV. & \mbox{Middle Trace: Output 5V/Div.} \\ R_1=47 k\Omega & \mbox{Bottom Trace: Capacitor Voltage 1V/Div.} \\ R_2=100 k\Omega & \mbox{R}_E=2.7 \ k\Omega & \mbox{C}=0.01 \ \mu F & \mbox{} \end{array}$

UUTPUT UUT

FIGURE 14. 50% Duty Cycle Oscillator

Note that this circuit will not oscillate if R_B is greater than 1/2 R_A because the junction of R_A and R_B cannot bring pin 2 down to 1/3 V_{CC} and trigger the lower comparator.

50% DUTY CYCLE OSCILLATOR

For a 50% duty cycle, the resistors R_A and R_B may be connected as in *Figure 14*. The time period for the output high is the same as previous, $t_1 = 0.693 R_A C$. For the output low it is $t_2 =$

FIGURE 13. Linear Ramp

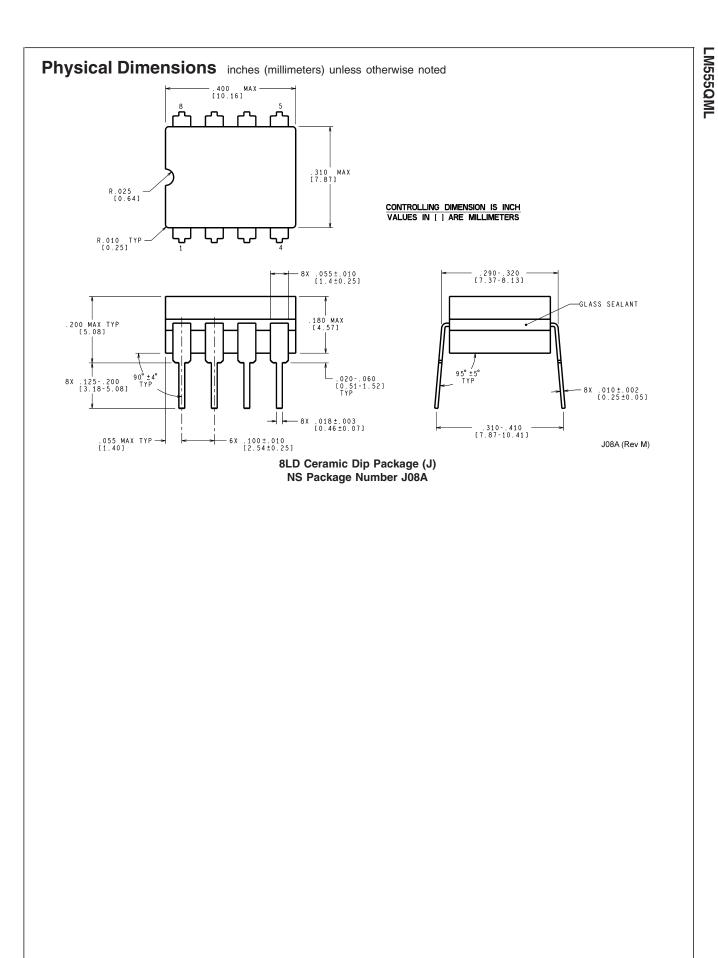
$$\left[(\mathsf{R}_{\mathsf{A}} \, \mathsf{R}_{\mathsf{B}}) / (\mathsf{R}_{\mathsf{A}} + \mathsf{R}_{\mathsf{B}}) \right] \mathsf{C} \, \ln \left[\frac{\mathsf{R}_{\mathsf{B}} - 2\mathsf{R}_{\mathsf{A}}}{2\mathsf{R}_{\mathsf{B}} - \mathsf{R}_{\mathsf{A}}} \right]$$

Thus the frequency of oscillation is

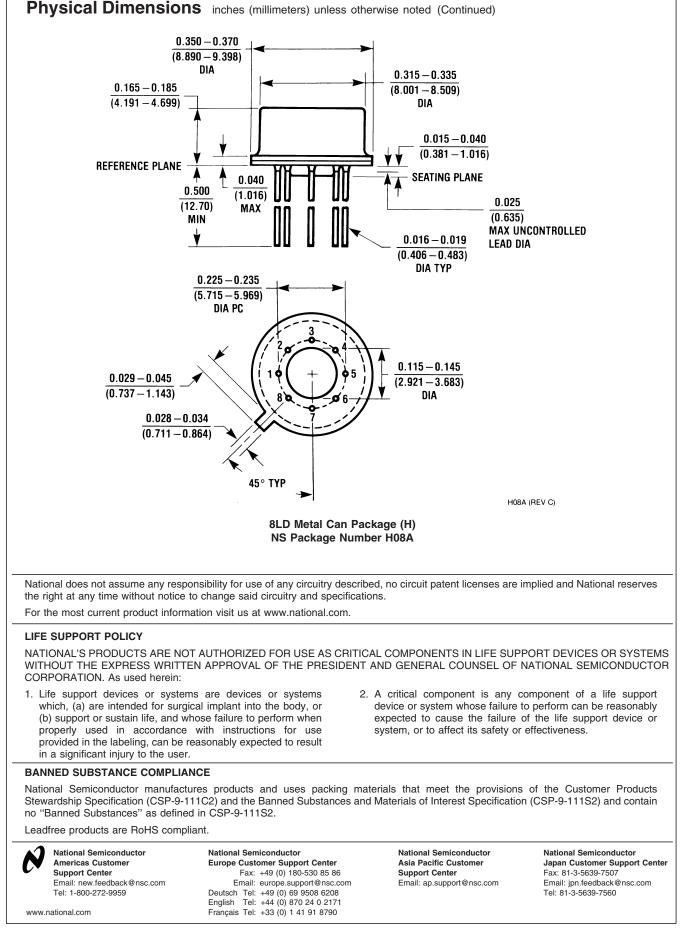
$$f = \frac{1}{t_1 + t_2}$$

ADDITIONAL INFORMATION

Adequate power supply bypassing is necessary to protect associated circuitry. Minimum recommended is $0.1\mu F$ in parallel with $1\mu F$ electrolytic.


Lower comparator storage time can be as long as 10μ s when pin 2 is driven fully to ground for triggering. This limits the monostable pulse width to 10μ s minimum.

Delay time reset to output is $0.47\mu s$ typical. Minimum reset pulse width must be $0.3\mu s$, typical.


Pin 7 current switches within 30ns of the output (pin 3) voltage.

Revision History

nevision mistory							
Date	Revision	Section	Originator	Changes			
Released							
08/04/05	A	New Release to corporate format	L. Lytle	1 MDS datasheet converted into once datasheet in the corporate format. Removed drift endpoints since not performed on 883 product. MNLM555-X Rev 0B0 to be archived			

LM555QML Timer

