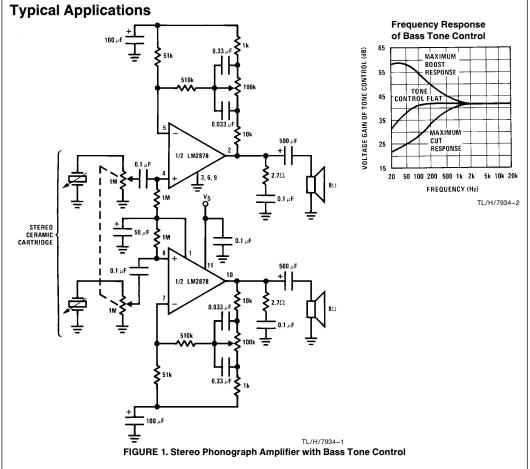


LM2878 Dual 5 Watt Power Audio Amplifier

General Description


The LM2878 is a high voltage stereo power amplifier designed to deliver 5W/channel continuous into 8Ω loads. The amplifier is ideal for use with low regulation power supplies due to the absolute maximum rating of 35V and its superior power supply rejection. The LM2878 is designed to operate with a low number of external components, and still provide flexibility for use in stereo phonographs, tape recorders, and AM-FM stereo receivers. The flexibility of the LM2878 allows it to be used as a power operational amplifier, power comparator or servo amplifier. The LM2878 is internally compensated for all gains greater than 10, and comes in an 11-lead single-in-line package (SIP). The package has been redesigned, resulting in the slightly degraded thermal characteristics shown in the figure Device Dissipation vs Ambient Temperature.

Features

- Wide operating range 6V-32V
- 5W/channel output
- 60 dB ripple rejection, output referred
- 70 dB channel separation, output referred
- Low crossover distortion
- AC short circuit protected
- Internal thermal shutdown

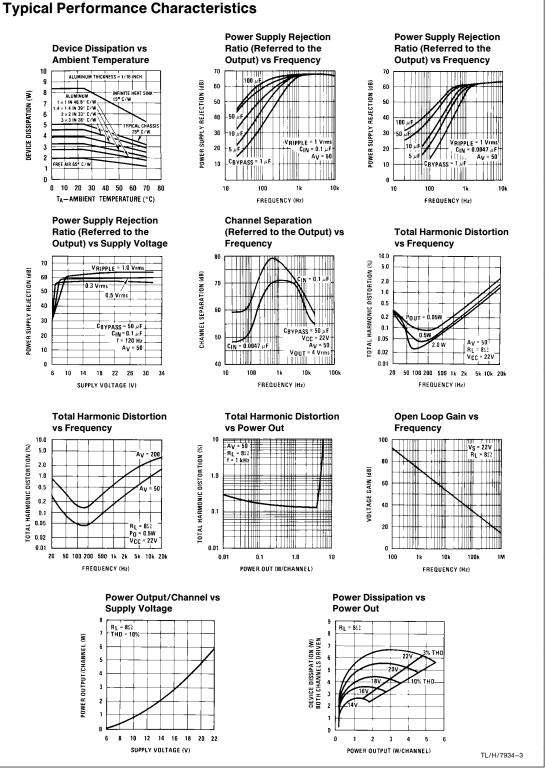
Applications

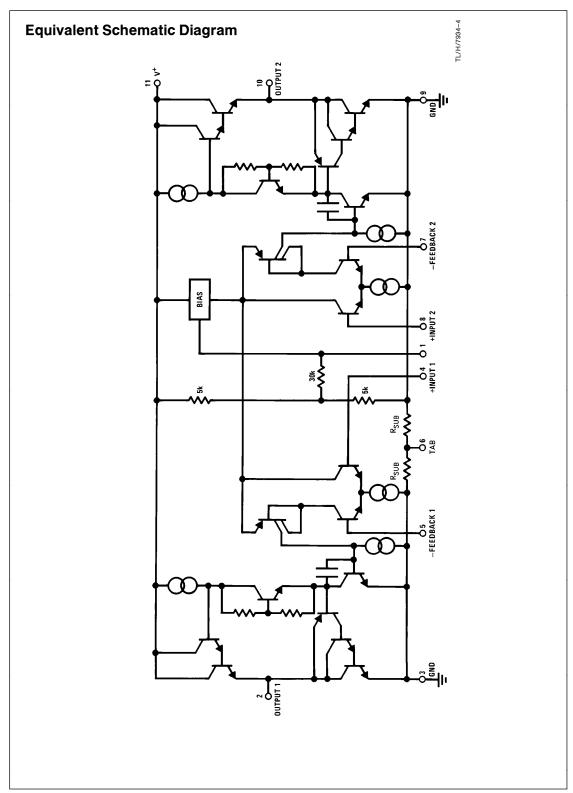
- Stereo phonographs
- AM-FM radio receivers
- Power op amp, power comparator
- Servo amplifiers

Absolute Maximum Ratings
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage 35V

Input Voltage (Note 1) $\pm\,0.7V$ Operating Temperature (Note 2) 0°C to +70°C Storage Temperature -65°C to $+150^{\circ}\text{C}$ Junction Temperature +150°C Lead Temperature (Soldering, 10 sec.) +260°C Thermal Resistance


10°C/W θ_{JC} $\theta_{\sf JA}$ 55°C/W


$\textbf{Electrical Characteristics} \ \ V_S = 22 V, \ T_{TAB} = 25^{\circ}C, \ R_L = 8 \Omega, \ A_V = 50 \ (34 \ dB) \ unless \ otherwise specified.$

Parameter	Conditions	Min	Тур	Max	Units
Total Supply Current	$P_0 = 0W$		10	50	mA
Operating Supply Voltage		6		32	V
Output Power/Channel	f = 1 kHz, THD = 10%, T _{TAB} = 25°C f = 1 kHz, THD = 10%, V _S = 12V	5	5.5 1.3		W W
Distortion	$f = 1 \text{ kHz}, R_L = 8\Omega$ $P_O = 50 \text{ mW}$		0.20		%
	$P_O = 0.5W$		0.15		%
	$P_{O} = 2W$		0.14		%
Output Swing	$R_L = 8\Omega$		V _S - 6V		Vp-p
Channel Separation	$C_{BYPASS} = 50 \ \mu F, C_{IN} = 0.1 \ \mu F$ $f = 1 \ kHz, Output Referred$ $V_O = 4 \ Vrms$	-50	-70		dB
PSRR Power Supply Rejection Ratio	$C_{BYPASS} = 50 \ \mu F, C_{IN} = 0.1 \ \mu F$ $f = 120 \ Hz, Output \ Referred$ $V_{ripple} = 1 \ Vrms$	-50	-60		dB
PSRR Negative Supply	Measured at DC, Input Referred		-60		dB
Common-Mode Range	Split Supplies ±15V, Pin 1 Tied to Pin 11		± 13.5		V
Input Offset Voltage			10		mV
Noise	Equivalent Input Noise $\begin{aligned} R_S &= 0, C_{\text{IN}} = 0.1 \ \mu\text{F} \\ \text{BW} &= 20 - 20 \ \text{kHz} \end{aligned}$		2.5		μV
	CCIR•ARM		3.0		μV
	Output Noise Wideband $R_S = 0$, $C_{IN} = 0.1 \mu F$, $A_V = 200$		0.8		mV
Open Loop Gain	$R_S = 51\Omega$, $f = 1$ kHz, $R_L = 8\Omega$		70		dB
Input Bias Current			100		nA
Input Impedance	Open Loop		4		МΩ
DC Output Voltage	V _S = 22V	10	11	12	V
Slew Rate			2		V/μS
Power Bandwidth	3 dB Bandwidth at 2.5W		65		kHz
Current Limit			1.5		А

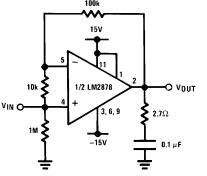
Note 1: $\pm\,0.7\text{V}$ applies to audio applications; for extended range, see Application Hints.

Note 2: For operation at ambient temperature greater than 25°C, the LM2878 must be derated based on a maximum 150°C junction temperature using a thermal resistance which depends upon device mounting techniques.

Connection Diagram

Single-In-Line Package BIAS 1 OUTPUT 1 2 GND 3 INPUT 1 4 FEEDBACK 1 5 * TAB 6 FEEDBACK 2 7 INPUT 2 8 GND 9 OUTPUT 2 10 V+ 11

Top View *Pin 6 must be connected to GND.


Order Number LM2878P See NS Package Number P11A

Application Hints

The LM2878 is an improved LM378 in typical audio applications. In the LM2878, the internal voltage regulator for the input stage is generated from the voltage on pin 1. Normally, the input common-mode range is within $\pm 0.7 V$ of this pin 1 voltage. Nevertheless the common-mode range can be increased by externally forcing the voltage on pin 1. One way to do this is to short pin 1 to the positive supply, pin 11.

The only special care required with the LM2878 is to limit the maximum input differential voltage to $\pm 7 \text{V}$. If this differential voltage is exceeded, the input characteristics may change.

Figure 2 shows a power op amp application with $A_V=1.$ The 100k and 10k resistors set a noise gain of 10 and are dictated by amplifier stability. The 10k resistor is bootstrapped by the feedback so the input resistance is dominated by the 1 $M\Omega$ resistor.

TL/H/7934-6

FIGURE 2. Operational Power Amplifier, $A_V = 1$

External Components (Figure 3)

1. R2, R5, R7, R	10 Sets voltage gain $A_V = 1 + R2/R5$ for
	one channel and $A_V = 1 + R10/R7$ for

the other channel.

2. R4, R8 Resistors set input impedance and sup-

ply bias current for the positive input. Works with $C_{\mbox{\scriptsize O}}$ to stabilize output stage.

3. R_O Improves power supply rejection (see 4. C1

Typical Performance Characteristics).

5. C11 Stabilizes amplifier, may need to be larg-

er depending on power supply filtering.

6. C4, C8

Input coupling capacitor. Pins 4 and 8 are at a DC potential of V_S/2. Low frequency pole set by:

$$f_L = \frac{1}{2\pi R4C4}$$

7. C5, C7

Feedback capacitors. Ensure unity gain at DC. Also low frequency pole at:

$$f_L = \frac{1}{2\pi R5C5}$$

8. C_O 9. C2, C10 Works with $R_{\mbox{\scriptsize O}}$ to stabilize output stage. Output coupling capacitor. Low frequency pole given by:

$$f_L = \frac{1}{R\pi RLC2}$$

Typical Applications (Continued)

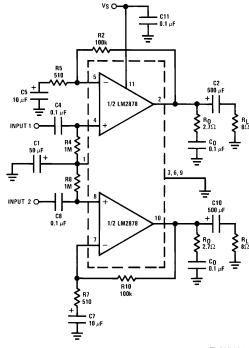


FIGURE 3. Stereo Amplifier with $A_V=200$

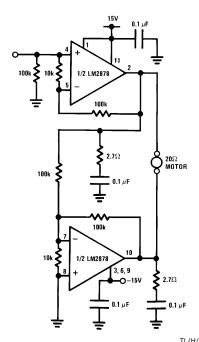
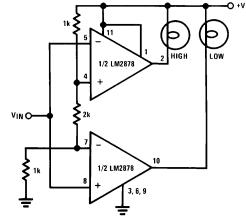
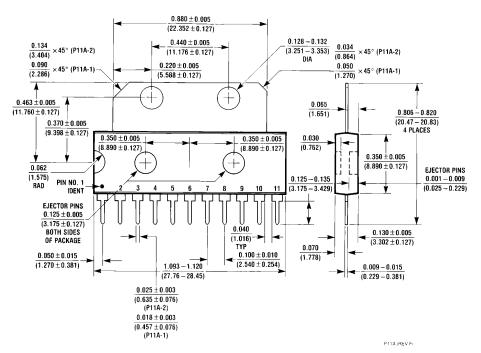



FIGURE 4. LM2878 Servo Amplifier in

Bridge Configuration

Typical Applications (Continued)


Truth Table

v_{in}	High	Low
<1/4V+	Off	On
1/4V+ to 3/4V+	Off	Off
>3/ ₄ V +	On	Off

TL/H/7934-9

FIGURE 5. Window Comparator Driving High, Low Lamps

Physical Dimensions inches (millimeters)

Single-In-Line Package (P) Order Number LM2878P NS Package Number P11A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018 National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (652) 2737-1600 Fax: (652) 2736-9960 National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408