.M119JAN High Speed Dual Comparator

National Semiconductor

LM119JAN High Speed Dual Comparator General Description

The LM119 is a precision high speed dual comparator fabricated on a single monolithic chip. It is designed to operate over a wide range of supply voltages down to a single 5V logic supply and ground. Further, it has higher gain and lower input currents than devices such as the LM710. The uncommitted collector of the output stage makes the LM119 compatible with RTL, DTL and TTL as well as capable of driving lamps and relays at currents up to 25 mA.

Although designed primarily for applications requiring operation from digital logic supplies, the LM119 is fully specified for power supplies up to \pm 15V. It features faster response than the LM111 at the expense of higher power dissipation. However, the high speed, wide operating voltage range and low package count make the LM119 much more versatile than older devices such as the LM711.

Features

- Two independent comparators
- Operates from a single 5V supply
- Typically 80 ns response time at ±15V
- Minimum fan-out of 2 each side
- Maximum input current of 1 µA over temperature
- Inputs and outputs can be isolated from system ground
- High common mode slew rate

Ordering Information

NS Part Number	JAN Part Number	NS Package Number	Package Description
JL119BIA	JM38510/10306BIA	H10C	10LD T0-100 Metal Can
JL119BCA	JM38510/10306BCA	J14A	14LD CERDIP

Connection Diagrams

Top View See NS Package Number J14A

Metal Can Package

Case is connected to pin 5 (V⁻)

Top View See NS Package Number H10C

*Do not operate the LM119 with more than 16V between GND and $\mathrm{V}^{\mathrm{+}}$

Absolute Maximum Ratings (Note 1)

Total Supply Voltage	36V
Output to Negative Supply Voltage	36V
Ground to Negative Supply Voltage	25V
Ground to Positive Supply Voltage	18V
Differential Input Voltage	±5V
Input Voltage (Note 3)	±15V
Power Dissipation (Note 2)	500 mW
Output Short Circuit Duration	10 sec
Storage Temperature Range	$-65^{\circ}C \leq T_A \leq 150^{\circ}C$
Operating Ambient Temperature Range	$-55^{\circ}C \le T_A \le 125^{\circ}C$
Maximum Junction Temperature (T _J)	150°C
Lead Temperature (Soldering, 10 sec.)	260°C
Thermal Resistance	
θ_{JA}	
H Package (Still Air)	162°C/W
H Package (500LF/Min Air flow)	88°C/W
J Package (Still Air)	94°C/W
J Package (500LF/Min Air flow)	52°C/W
θ _{JC}	
H Package	31°C/W
J Package	11°C/W
Package Weight	
H Package	TBD
J Package	TBD
ESD rating (Note 4)	800V

Quality Conformance Inspection Mil-Std-883, Method 5005 - Group A

Subgroup	Description	Temp °C
1	Static tests at	25
2	Static tests at	125
3	Static tests at	-55
4	Dynamic tests at	25
5	Dynamic tests at	125
6	Dynamic tests at	-55
7	Functional tests at	25
8A	Functional tests at	125
8B	Functional tests at	-55
9	Switching tests at	25
10	Switching tests at	125
11	Switching tests at	-55
12	Settling time at	25
13	Settling time at	125
14	Settling time at	-55

Electrical Characteristics DC Parameters

Symbol	Parameter	Conditions	Notes	Min	Мах	Unit	Sub- groups
V _{IO}	Input Offset Voltage	$+V_{\rm CC} = 15V, -V_{\rm CC} = -15V,$		-4.0	4.0	mV	1
		$V_{CM} = 0V, R_S = 50\Omega$		-7.0	7.0	mV	2, 3
		$+V_{\rm CC} = 27V, -V_{\rm CC} = -3V,$		-4.0	4.0	mV	1
		$V_{CM} = -12V, R_S = 50\Omega$		-7.0	7.0	mV	2, 3
		$+V_{CC} = 3V, -V_{CC} = -27V,$		-4.0	4.0	mV	1
		$V_{CM} = 12V, R_S = 50\Omega$		-7.0	7.0	mV	2, 3
		$+V_{CC} = 2.5V, -V_{CC} = -2.5V,$		-4.0	4.0	mV	1
		$V_{CM} = 2.5V, R_{S} = 50\Omega$		-7.0	7.0	mV	2, 3
I _{IO}	Input Offset Current	$+V_{CC} = 15V, -V_{CC} = -15V,$		-75	+75	nA	1, 2
		$V_{CM} = 0V$		-100	+100	nA	3
		$+V_{CC} = 27V, -V_{CC} = -3V,$		-75	+75	nA	1, 2
		$V_{CM} = -12V$		-100	+100	nA	3
		$+V_{CC} = 3V, -V_{CC} = -27V,$		-75	+75	nA	1, 2
		V _{CM} = 12V		-100	+100	nA	3
+I _{cc}	Power Supply Current	$+V_{CC} = 15V, -V_{CC} = -15V$			10	mA	1, 2
					11.5	mA	3
-I _{CC}	Power Supply Current	$+V_{CC} = 15V, -V_{CC} = -15V$		-5.0		mA	1
				-4.5		mA	2
<u> </u>				-6.0		mA	3
±I _{IB}	Input Bias Current	$+V_{CC} = 15V, -V_{CC} = -15V,$		-0.1	500	nA	1, 2
		$V_{CM} = 0V$		-0.1	1000	nA	3
		$+V_{CC} = 2/V, -V_{CC} = -3V,$ $V_{CM} = -12V$		-0.1	750	nA	1, 2
				-0.1	1000	nA	3
		$+V_{CC} = 3V, -V_{CC} = -2/V,$		-0.1	/50	nA	1, 2
	Osumun Mada Daisatian	$v_{\rm CM} = 12v$		-0.1	1000	nA	3
CMRR	Common Mode Rejection	$-12V \le V_{CM} \le +12V,$ $-27V \le -V_{CC} \le -3V,$ $3V \le +V_{CC} \le 27V, R_{S} = 50\Omega$		90		dB	1, 2, 3
V _{OL}	Low Level Output Voltage	$+V_{CC} = 3.5V, -V_{CC} = -1V,$			0.4	V	1, 2
		$I_{O} = 3.2 \text{mA}$			0.6	V	3
		$+V_{CC} = 2.25V, -V_{CC} = -2.25V,$ $V_{CM} = 2.25V, V_{1O} = 7mV.$			0.4	V	1, 2
		$I_{O} = 3.2$ mA			0.6	V	3
		$+V_{CC} = 27V, -V_{CC} = -3V,$ $V_{CM} = -12V, V_{IO} = 7mV,$ $I_{O} = 25mA$			1.5	V	1, 2, 3
		$\begin{split} + V_{\rm CC} &= 3V, \ - V_{\rm CC} &= -27V, \\ V_{\rm CM} &= 12V, \ V_{\rm IO} &= 7mV, \\ I_{\rm O} &= 25mA \end{split}$			1.5	V	1, 2, 3
I _{CEX}	Output Leakage Current	$+V_{\rm CC} = 18V, -V_{\rm CC} = -18V,$		-1.0	2.0	μA	1
		$V_{O} = 18V$		-1.0	10	μA	2
A _V	Voltage Gain (Collector)	$+V_{CC} = 15V, -V_{CC} = -15V,$	(Note 5)	10		К	4
		$V_{\rm O} = 1.5V$ to 11.5V	(Note 5)	5.0		К	5, 6

Electrical Characteristics (Continued)

AC Parameters

The following conditions apply to all the following parameters, unless otherwise specified.

AC: $\pm 15V, C_L = 50pF$

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
tR _{LHC}	Response Time (Collector Output)	V_{OD} (overdrive) = +5mV, $V_1 = 100mV$			125	nS	9
tR _{HLC}	Response Time (Collector Output)	V_{OD} (overdrive) = -5mV, V_{I} = 100mV			160	nS	9

DC Drift Parameters

Delta calculations performed at Group B-5

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
V _{IO}	Input Offset Voltage	$+V_{CC} = 15V, -V_{CC} = -15V,$ $V_{CM} = 0V, R_{S} = 50\Omega$		-1.0	1.0	mV	1
		$\begin{aligned} + V_{CC} &= 27V, \ -V_{CC} &= -3V, \\ V_{CM} &= -12V, \ R_{S} &= 50\Omega \end{aligned}$		-1.0	1.0	mV	1
		$\begin{aligned} + V_{CC} &= 3V, -V_{CC} &= -27V, \\ V_{CM} &= 12V, \ R_{S} &= 50\Omega \end{aligned}$		-1.0	1.0	mV	1
±l _{IB}	Input Bias Current	$+V_{CC} = 15V, -V_{CC} = -15V,$ $V_{CM} = 0V$		-50	50	nA	1
		$+V_{CC} = 27V, -V_{CC} = -3V,$ $V_{CM} = -12V$		-50	50	nA	1
		$+V_{CC} = 3V, -V_{CC} = -27V,$ $V_{CM} = 12V$		-50	50	nA	1

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

Note 2: The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{Jmax} (maximum junction temperature), θ_{JA} (package junction to ambient thermal resistance), and T_A (ambient temperature). The maximum allowable power dissipation at any temperature is $P_{Dmax} = (T_{Jmax} - T_A)/\theta_{JA}$ or the number given in the Absolute Maximum Ratings, whichever is lower.

Note 3: For supply voltages less than ±15V the absolute maximum input voltage is equal to the supply voltage.

Note 4: Human Body model, 1.5KΩ in series with 100pF.

Note 5: K = V/mV.

Typical Performance Characteristics

Input Characteristics

Typical Applications (Note 6)

Note 6: Pin numbers are for metal can package.

Window Detector

 $\begin{aligned} V_{OUT} &= 5V \text{ for } V_{LT} \leq V_{IN} \leq V_{UT} \\ V_{OUT} &= 0 \text{ for } V_{IN} \leq V_{LT} \text{ or } V_{IN} \geq V_{UT} \end{aligned}$

ate eleased	Revision	Section	Originator	Changes
7/0105	A	New release to corporate format	L. Lytle	1 MDS datasheet converted into one corporate data sheet format MJLM119-X Rev. 0BL will be archived.

Notes

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

For the most current product information visit us at www.national.com.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor manufactures products and uses packing materials that meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

Leadfree products are RoHS compliant.

National Semiconductor Americas Customer Support Center Email: new.feedback@nsc.com Tel: 1.800-272-9959 National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +44 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790 National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560

www.national.com