

July 2005

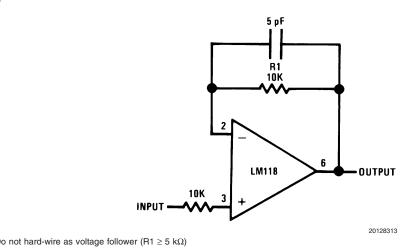
LM118QML **Operational Amplifier General Description**

The LM118 is a precision high speed operational amplifier designed for applications requiring wide bandwidth and high slew rate. It features a factor of ten increase in speed over general purpose devices without sacrificing DC performance.

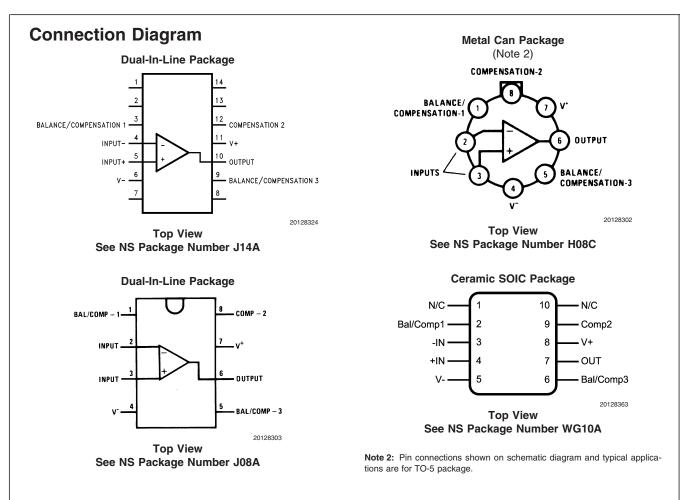
The LM118 has internal unity gain frequency compensation. This considerably simplifies its application since no external components are necessary for operation. However, unlike most internally compensated amplifiers, external frequency compensation may be added for optimum performance. For inverting applications, feed forward compensation will boost the slew rate to over 150V/µs and almost double the bandwidth. Overcompensation can be used with the amplifier for greater stability when maximum bandwidth is not needed. Further, a single capacitor can be added to reduce the 0.1% settling time to under 1 µs.

The high speed and fast settling time of this op amp makes it useful in A/D converters, oscillators, active filters, sample and hold circuits, or general purpose amplifiers. This device is easy to apply and offers an order of magnitude better AC performance than industry standards such as the LM709.

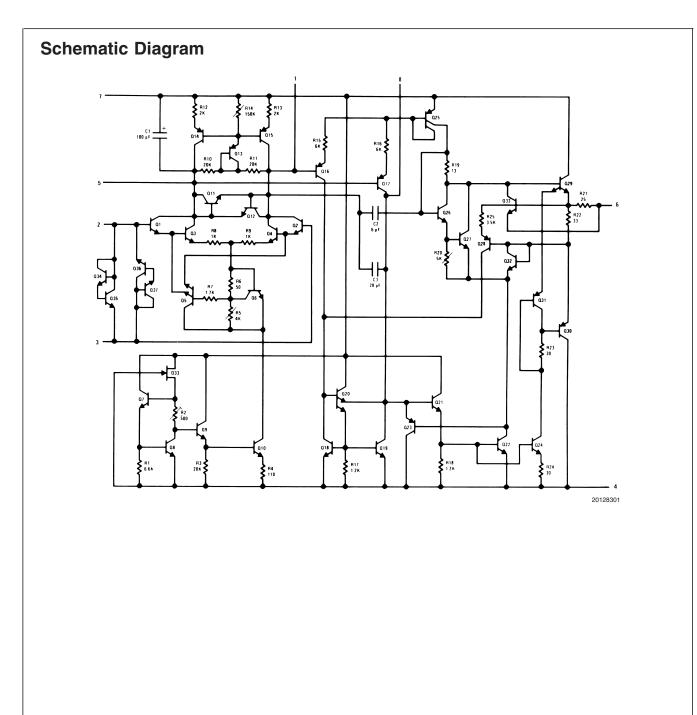
Features


- 15 MHz small signal bandwidth
- Guaranteed 50V/µs slew rate
- Maximum bias current of 250 nA
- Operates from supplies of ±5V to ±20V
- Internal frequency compensation
- Input and output overload protected
- Pin compatible with general purpose op amps

Ordering Information


NS Part Number	JAN Part Number	NS Package Number	Package Description
LM118H/883		H08C	8LD TO-99 Metal Can
LM118J-8/883		J08A	8LD CERDIP
LM118J/883		J14A	14LD CERDIP
LM118WG/883		WG10A	10LD Ceramic SOIC

Fast Voltage Follower


(Note 1)

Note 1: Do not hard-wire as voltage follower (R1 \ge 5 k Ω)

www.national.com

Absolute Maximum Ratings (Note 3)

Supply Voltage	±20V
Power Dissipation (Note 4)	
8 LD Metal Can	750mW
8LD CERDIP	1000mW
14LD CERDIP	1250mW
10LD Ceramic SOIC	600mW
Differential Input Current (Note 5)	±10 mA
Input Voltage (Note 6)	±15V
Output Short-Circuit Duration	Continuous
Operating Temperature Range	$-55^{\circ}C \le T_{A} \le +125^{\circ}C$
Thermal Resistance	
θ_{JA}	
8 LD Metal Can (Still Air @ 0.5W)	160°C/W
8 LD Metal Can (500LF / Min Air flow @ 0.5W)	86°C/W
8LD CERDIP (Still Air @ 0.5W)	120°C/W
8LD CERDIP (500LF / Min Air flow @ 0.5W)	66°C/W
14LD CERDIP (Still Air @ 0.5W)	87°C/W
14LD CERDIP (500LF / Min Air flow @ 0.5W)	51°C/W
10LD Ceramic SOIC (Still Air @ 0.5W)	198°C/W
10LD Ceramic SOIC (500LF / Min Air flow @ 0.5W)	124°C/W
θ_{JC}	
8 LD Metal Can	48°C/W
8LD CERDIP	17°C/W
14LD CERDIP	17°C/W
10LD Ceramic SOIC	22°C/W
Storage Temperature Range	$-65^{\circ}C \leq T_{A} \leq +150^{\circ}C$
Lead Temperature (Soldering, 10 seconds)	300°C
ESD Tolerance (Note 7)	2000V

Quality Conformance Inspection Mil-Std-883, Method 5005; Group A

Subgroup	Description	Temp°C 25	
1	Static tests at		
2	Static tests at	125	
3	Static tests at	-55	
4	Dynamic tests at	25	
5	Dynamic tests at	125	
6	Dynamic tests at	-55	
7	Functional tests at	25	
8A	Functional tests at	125	
8B	Functional tests at	-55	
9	Switching tests at	25	
10	Switching tests at	125	
11	Switching tests at	-55	
12	Settling time at	25	
13	Settling time at	125	
14	Settling time at	-55	

LM118 883 Electrical Characteristics

DC Parameters

The following conditions apply, unless otherwise specified.

 $\mathsf{DC} \qquad \mathsf{V}_{\mathsf{CC}} = \pm 15\mathsf{V}, \ \mathsf{V}_{\mathsf{CM}} = 0\mathsf{V}$

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
V _{IO}	Input Offset Voltage	$V_{CM} = \pm 11.5V, R_{S} = 50\Omega$		-4.0	+4.0	mV	1
				-6.0	+6.0	mV	2, 3
		$V_{\rm CC} = \pm 20V, R_{\rm S} = 50\Omega$		-4.0	+4.0	mV	1
				-6.0	+6.0	mV	2, 3
		$V_{\rm CC} = \pm 20V, V_{\rm CM} = \pm 15V,$		-4.0	+4.0	mV	1
		$R_{S} = 50\Omega$		-6.0	+6.0	mV	2, 3
		$V_{\rm CC} = \pm 5$ V, R _S = 50 Ω		-4.0	+4.0	mV	1
				-6.0	+6.0	mV	2, 3
I _{IO}	Input Offset Current	$V_{CM} = \pm 11.5V, R_{S} = 10K\Omega$		-50	+50	nA	1
				-100	+100	nA	2, 3
		$V_{\rm CC} = \pm 20V, R_{\rm S} = 10K\Omega$		-50	+50	nA	1
				-100	+100	nA	2, 3
		$V_{\rm CC} = \pm 5 V, R_{\rm S} = 10 K \Omega$		-50	+50	nA	1
				-100	+100	nA	2, 3
I _{IB}	Input Bias Current	$V_{CM} = \pm 11.5V, R_{S} = 10K\Omega$		1.0	250	nA	1
				1.0	500	nA	2, 3
		$V_{\rm CC}$ = ± 20V, R _S = 10K Ω		1.0	250	nA	1
				1.0	500	nA	2, 3
		$V_{\rm CC} = \pm 5 V, R_{\rm S} = 10 K \Omega$		1.0	250	nA	1
				1.0	500	nA	2, 3
PSRR	Power Supply Rejection Ratio	$+V_{CC} = 20V$ to 5V, $R_S = 50\Omega$		70		dB	1, 2, 3
		$-V_{CC}$ = -20V to -5V, R _S = 50 Ω		70		dB	1, 2, 3
CMRR	Common Mode Rejection Ratio	$V_{CC} = \pm 15V, V_{CM} = \pm 11.5V,$ $R_{S} = 50\Omega$		80		dB	1, 2, 3
+l _{os}	Short Circuit Current	t < 25mS		-65	-5.0	mA	1, 2, 3
-l _{os}	Short Circuit Current	t < 25mS		5.0	65	mA	1, 2
				5.0	80	mA	3
I _{cc}	Power Supply Current	$V_{\rm CC} = \pm 20V$			8.0	mA	1
					7.0	mA	2
					11	mA	3
V _{IO} adj.	Input Offset Voltage Adjust	$V_{CC} = \pm 20V$		4.0	-4.0	mV	1
RI	Input Resistance		(Note 9)	1.0		MΩ	1
VI	Input Voltage Range	$V_{CC} = \pm 15V$	(Note 8)	-11.5	+11.5	V	1, 2, 3
A _{VS}	Large Signal Voltage Gain	$R_L = 2K\Omega$, $V_O = 0$ to -10V	(Note 10)	50		V/mV	4
			(Note 10)	25		V/mV	5, 6
		$R_{L} = 2K\Omega$, $V_{O} = 0$ to +10V	(Note 10)	50		V/mV	4
			(Note 10)	25		V/mV	5, 6
Vo	Output Voltage Swing	R _L = 2KΩ		+12	-12	V	4, 5, 6

LM118 883 Electrical Characteristics (Continued)

AC Parameters

The following conditions apply parameters, unless otherwise specified.

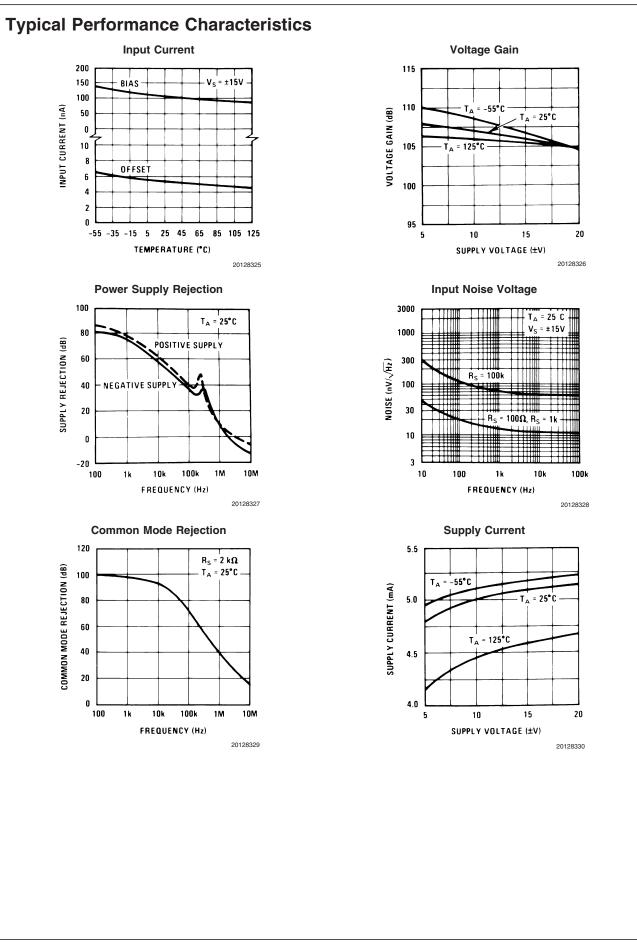
AC $V_{CC} = \pm 15V, V_{CM} = 0V,$ $R_S = 0\Omega, R_L = 2K\Omega_{,,} C_L = 33pF$

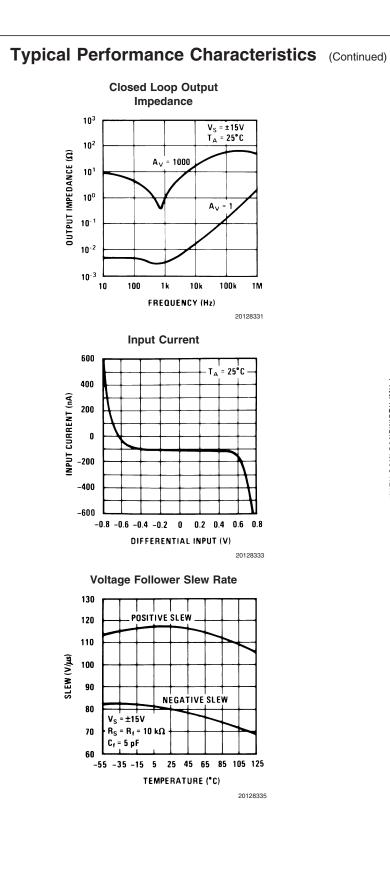
Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
S _R	Slew Rate	$V_{CC} = \pm 20V, V_I = -5V \text{ to } +5V,$ $A_V=1$		50		V/µS	7
		$V_{CC} = \pm 20V, V_I = +5V \text{ to } -5V,$ $A_V=1$		50		V/µS	7

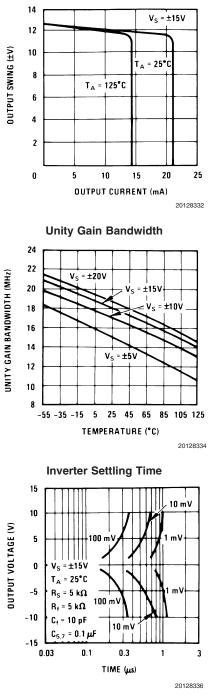
Note 3: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

Note 4: The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{Jmax} (maximum junction temperature), θ_{JA} (package junction to ambient thermal resistance), and T_A (ambient temperature). The maximum allowable power dissipation at any temperature is $P_{Dmax} = (T_{Jmax} - T_A)/\theta_{JA}$ or the number given in the Absolute Maximum Ratings, whichever is lower.

Note 5: The inputs are shunted with back-to-back diodes for over voltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1V is applied between the inputs unless some limiting resistance is used.

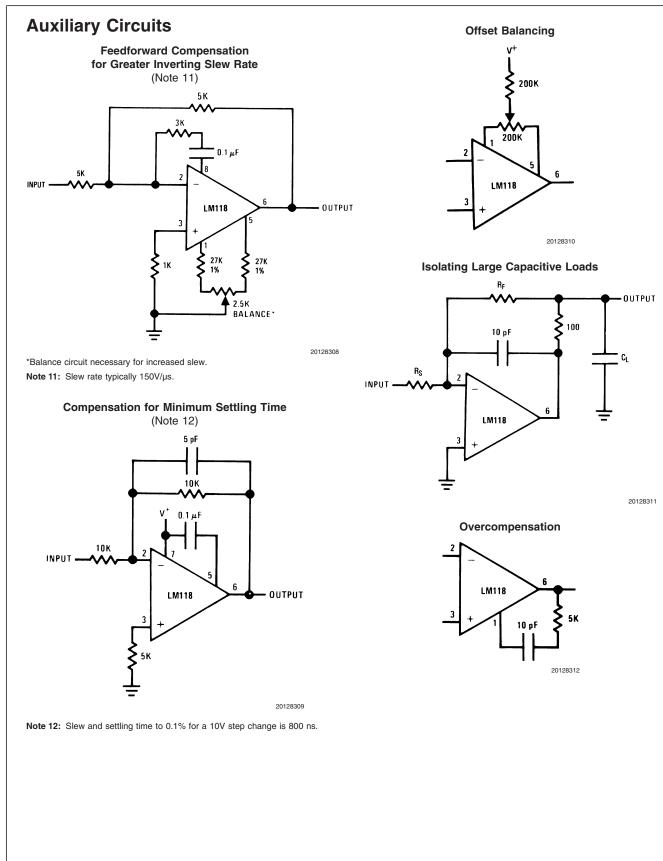

Note 6: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

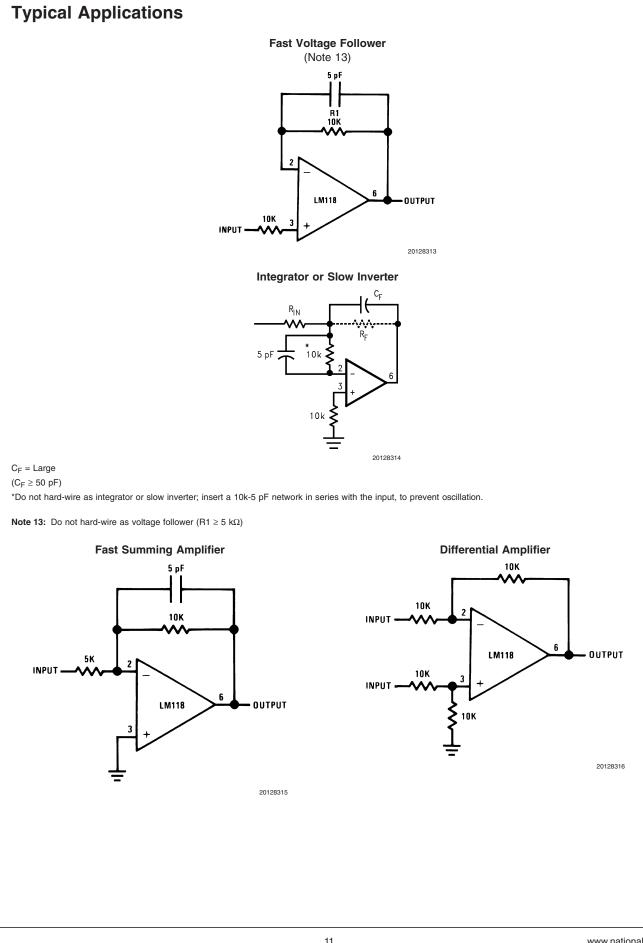

Note 7: Human body model, 1.5 k Ω in series with 100 pF.


Note 8: Guaranteed by CMRR

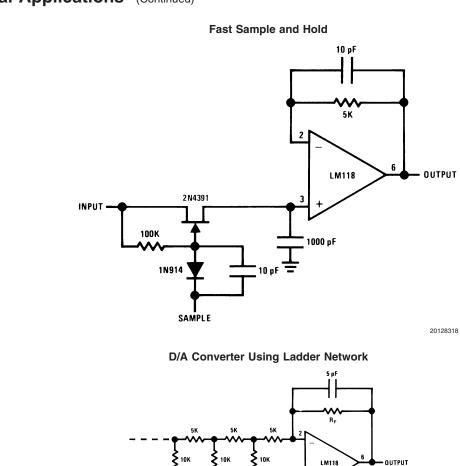
Note 9: Guaranteed parameter not tested


Note 10: Datalog in K = V/mV





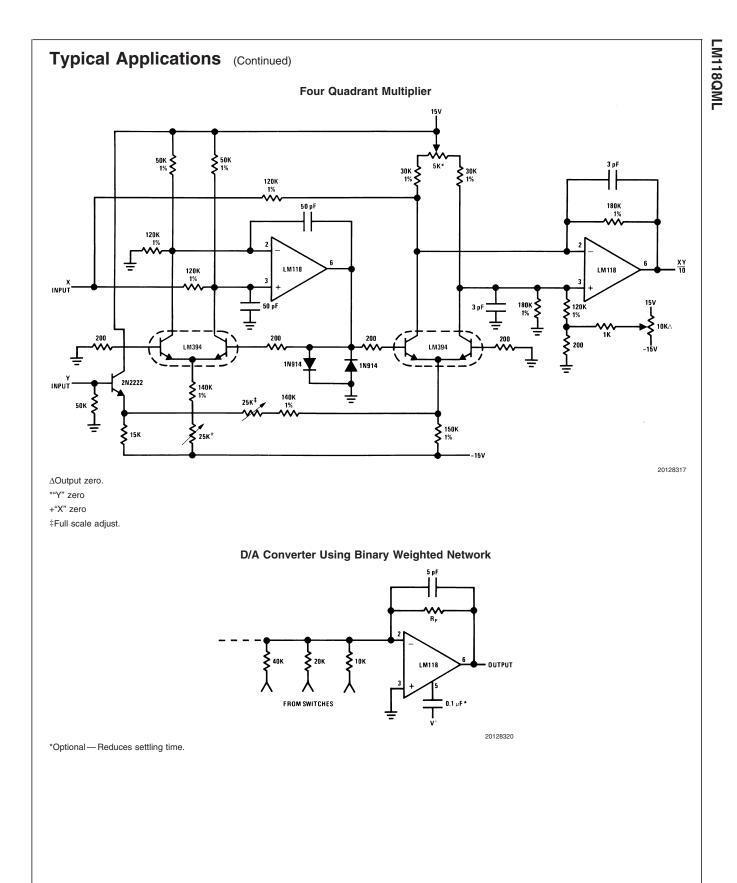
Current Limiting



Typical Applications (Continued)

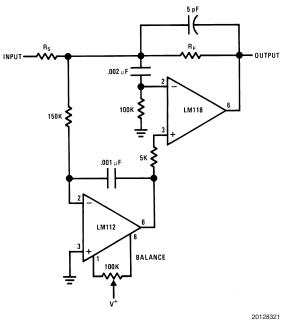
10K

10K

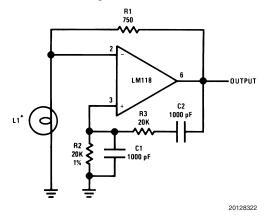

FROM SWITCHES

LM118

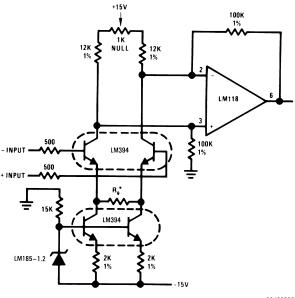
OUTPUT


20128319

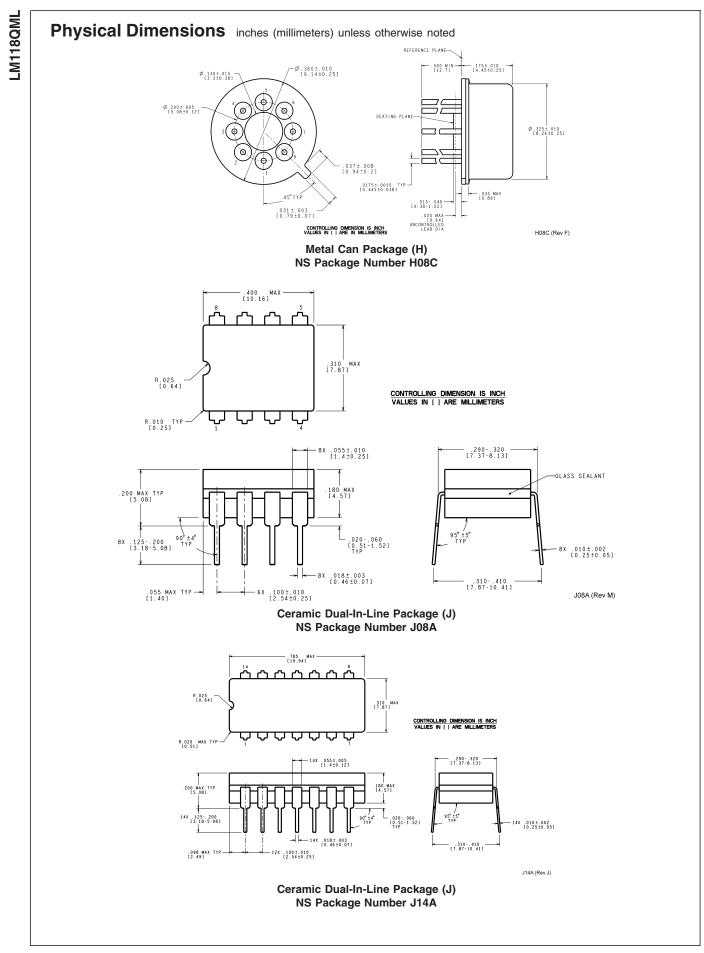
*Optional - Reduces settling time.

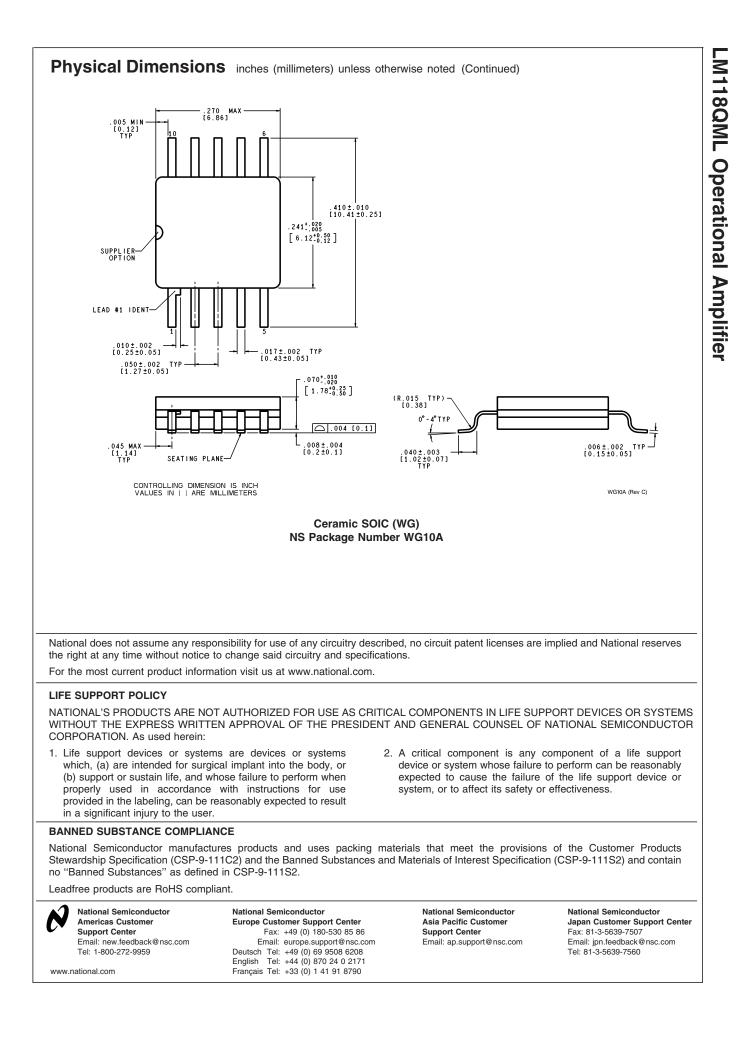


Typical Applications (Continued)



Wein Bridge Sine Wave Oscillator


*L1--10V--14 mA bulb ELDEMA 1869 R1 = R2 C1 = C2 f = $\frac{1}{2\pi R^2 C1}$ Instrumentation Amplifier



20128323

*Gain $\geq \frac{200 \text{K}}{\text{R}_g}$ for 1.5K $\leq \text{R}_g \leq 200 \text{K}$

Date Released	Revision	Section	Originator	Changes
7/12/05	A	New Release, Corporate format	L. Lytle	1 MDS data sheet, MNLM118–X Rev 0A0 was converted into the Corp. datasheet
	1	1		format. MDS datasheet will be archived.

