

LM108AJAN Operational Amplifiers

General Description

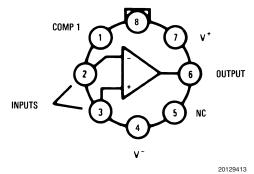
The LM108 is a precision operational amplifier having specifications a factor of ten better than FET amplifiers over a -55°C to +125°C temperature range.

The devices operate with supply voltages from ±2V to ±20V and have sufficient supply rejection to use unregulated supplies. Although the circuit is interchangeable with, and uses the same compensation as the LM101A, an alternate compensation scheme can be used to make it particularly insensitive to power supply noise and to make supply bypass capacitors unnecessary.

The low current error of the LM108 makes possible many designs that are not practical with conventional amplifiers. In

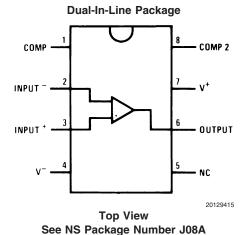
fact, it operates from 10 M Ω source resistances, introducing less error than devices such as the 709 with 10 k Ω sources. Integrators with drifts less than 500 μ V/sec and analog time delays in excess of one hour can be made using capacitors no larger than 1 μ F.

Features


- Maximum input bias current of 3.0 nA over temperature
- Offset current less than 400 pA over temperature
- Supply current of only 300 µA, even in saturation
- Guaranteed drift characteristics

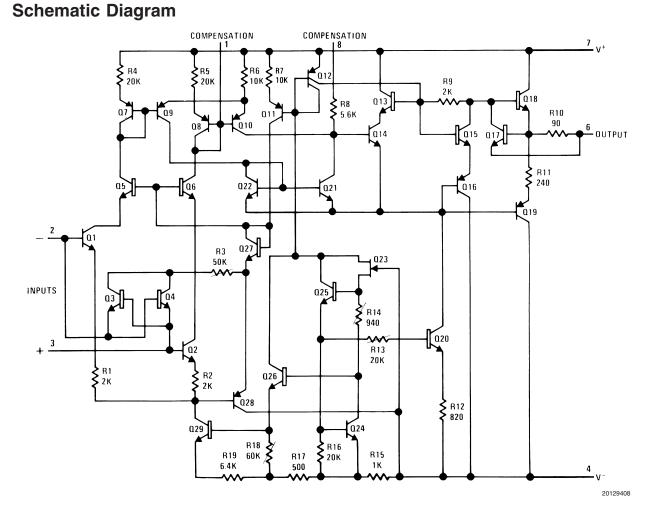
Ordering Information

NS PART NUMBER	SMD PART NUMBER	NS PACKAGE NUMBER	PACKAGE DISCRIPTION
JL108ABGA	JM38510/10104BGA	H08C	8LD Metal Can
JL108ABPA	JM38510/10104BPA	J08A	8LD CERDIP
JL108ABCA	JM38510/10104BCA	J14A	14LD CERDIP
JL108ABHA	JM38510/10104BHA	W10A	10LD CERPACK
JL108ABZA	JM38510/10104BZA	WG10A	10LD Ceramic SOIC
JL108ASGA	JM38510/10104SGA	H08C	8LD Metal Can
JL108ASPA	JM38510/10104SPA	J08A	8LD CERDIP
JL108ASCA	JM38510/10104SCA	J14A	14LD CERDIP
JL108ASHA	JM38510/10104SHA	W10A	10LD CERPACK


Connection Diagrams

Metal Can Package
COMP 2

^{*}Package is connected to Pin 4 (V⁻)

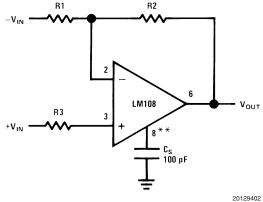

See NS Package Number H08C

^{**}Unused pin (no internal connection) to allow for input anti-leakage guard ring on printed circuit board layout.


Connection Diagrams (Continued) COMPENSATION 1 2 14 13 12 COMPENSATION 2 11 V+ 10 OUTPUT 9 8 20129416 Top View See NS Package Number J14A

See NS Package Number W10A, WG10A

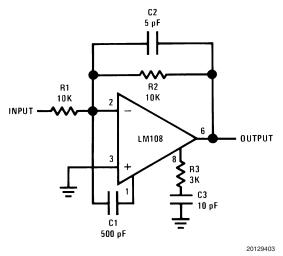
Compensation Circuits


Standard Compensation Circuit

$$C_f \ge \frac{R1 C_O}{R1 + R2}$$

Alternate Frequency Compensation

(Note 1)


**Bandwidth and slew rate are proportional to $1/C_{\mbox{\scriptsize S}}$

Note 1: Improves rejection of power supply noise by a factor of ten.

$C_0 = 30 pF$

**Bandwidth and slew rate are proportional to 1/Cf

Feedforward Compensation

Absolute Maximum Ratings (Note 2)

Cumply Voltage	±22V		
Supply Voltage Power Discipation (Note 2)	±22V		
Power Dissipation (Note 3) Metal Can 8LD	330mW @ +125°C		
CERDIP 14LD	400mW @ +125°C		
CERDIP 8LD	400mW @ +125°C		
CERPACK 10LD	330mW @ +125°C		
Ceramic SOIC 10LD	330mW @ +125°C		
Differential Input Current (Note 4)	±10 mA		
Differential Input Voltage(Note 6)	±30V		
Input Voltage (Note 5)	±20V		
Output Short-Circuit Duration	Continuous		
Operating Temperature Range	-55°C ≤T _A ≤ +125°C		
Storage Temperature Range	-65°C ≤T _A ≤ +150°C		
Thermal Resistance			
θ _{JA}	150°C/W		
Metal Can 8LD Still Air 500LF / Min Air Flow	86°C/W		
CERDIP 14LD Still Air	94°C/W		
500LF / Min Air Flow	55°C/W		
CERDIP 8LD Still Air	120°C/W		
500LF / Min Air Flow	68°C/W		
CERPACK 10LD Still Air	225°C/W		
500LF / Min Air Flow	142°C/W		
Ceramic SOIC 10LD Still Air	225°C/W		
500LF / Min Air Flow	142°C/W		
θ_{JC}			
Metal Can 8LD	38°C/W		
CERDIP 14LD	13°C/W		
CERDIP 8LD	17°C/W		
CERPACK 10LD	21°C/W		
Ceramic SOIC 10LD	21°C/W		
Package Weight (typical)			
Metal Can 8LD	990mg		
CERDIP 14LD	2,180mg		
CERDIP 8LD	1,090mg		
CERPACK 10LD	225mg		
Ceramic SOIC 10LD	210mg		
Maximum Junction Teperature	175°C		
Lead Temperature (Soldering, 10 sec)	300°C		
ESD Tolerance (Note 7)	2000V		

Quality Conformance Inspection Mil-Std-883, Method 5005 - Group A

Subgroup	Description	Temp (°C)
1	Static tests at	+25°C
2	Static tests at	+125°C
3	Static tests at	−55°C
4	Dynamic tests at	+25°C
5	Dynamic tests at	+125°C
6	Dynamic tests at	−55°C
7	Functional tests at	+25°C
8A	Functional tests at	+125°C
8B	Functional tests at	−55°C
9	Switching tests at	+25°C
10	Switching tests at	+125°C
11	Switching tests at	−55°C

LM108A Electrical Characteristics

DC Parameters

The following conditions apply to all the following parameters, unless otherwise specified.

DC:
$$+V_{CC} = +20V$$
, $-V_{CC} = -20V$, $V_{CM} = 0V$, $R_S = 50\Omega$

Symbol	Parameter	Conditions	Notes	Min	Max	Units	Sub- groups
V _{IO}	Input Offset Voltage	$+V_{CC} = 35V, -V_{CC} = -5V,$		-0.5	0.5	mV	1
		V _{CM} = -15V		-1	1	mV	2, 3
		$+V_{CC} = 5V, -V_{CC} = -35V,$		-0.5	0.5	mV	1
		V _{CM} = 15V		-1	1	mV	2, 3
				-0.5	0.5	mV	1
				-1	1	mV	2, 3
		$+V_{CC} = +5V, -V_{CC} = -5V$		-0.5	0.5	mV	1
				-1	1	mV	2, 3
Delta V _{IO} /	Temperature Coeffient of Input	25°C ≤ T _A ≤ +125°C	(Note 8)	-5	5	μV/°C	2
Delta T	Offset Voltage	25°C ≤ T _A ≤ -55°C	(Note 8)	-5	5	μV/°C	3
I _{IO}	Input Offset Current	$+V_{CC} = 35V, -V_{CC} = -5V,$		-0.2	0.2	nA	1
		V _{CM} = -15V		-0.4	0.4	nA	2, 3
		$+V_{CC} = 5V, -V_{CC} = -35V,$		-0.2	0.2	nA	1
		V _{CM} = 15V		-0.4	0.4	nA	2, 3
				-0.2	0.2	nA	1
				-0.4	0.4	nA	2, 3
		$+V_{CC} = +5V, -V_{CC} = -5V$		-0.2	0.2	nA	1
				-0.4	0.4	nA	2, 3
Delta I _{IO} /	Temperature Coeffient of Input	$25^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$	(Note 8)	-2.5	2.5	pA/°C	2
Delta T	Offset Current	$25^{\circ}\text{C} \le \text{T}_{\text{A}} \le -55^{\circ}\text{C}$	(Note 8)	-2.5	2.5	pA/°C	3

LM108A Electrical Characteristics (Continued)

DC Parameters (Continued)

The following conditions apply to all the following parameters, unless otherwise specified.

DC: $+V_{CC} = +20V$, $-V_{CC} = -20V$, $V_{CM} = 0V$, $R_S = 50\Omega$

Symbol	Parameter	Conditions	Notes	Min	Max	Units	Sub- groups
±I _{IB}	Input Bias Current	$+V_{CC} = 35V, -V_{CC} = -5V,$		-0.1	2	nA	1
		$V_{CM} = -15V$		-1	2	nA	2
				-0.1	3	nA	3
		$+V_{CC} = 5V, -V_{CC} = -35V,$		-0.1	2	nA	1
		V _{CM} = 15V		-1	2	nA	2
				-0.1	3	nA	3
				-0.1	2	nA	1
				-1	2	nA	2
				-0.1	3	nA	3
		$+V_{CC} = +5V, -V_{CC} = -5V$		-0.1	2	nA	1
				-1	2	nA	2
				-0.1	3	nA	3
+PSRR	Power Supply Rejection Ratio	+V _{CC} = 10V, -V _{CC} = -20V		-16	16	μV/V	1, 2, 3
-PSRR	Power Supply Rejection Ratio	+V _{CC} = 20V, -V _{CC} = -10V		-16	16	μV/V	1, 2, 3
CMRR	Common Mode Rejection Ratio	$V_{CM} = \pm 15V$		96		dB	1, 2, 3
+l _{OS}	Short Circuit Current	$+V_{CC} = +15V, -V_{CC} = -15V,$ t \le 25mS		-15		mA	1, 2, 3
-l _{os}	Short Circuit Current	$+V_{CC} = +15V, -V_{CC} = -15V,$ t \le 25mS			15	mA	1, 2, 3
I _{CC}	Power Supply Current	$+V_{CC} = +15V, -V_{CC} = -15V$			0.6	mA	1, 2
					0.8	mA	3
+V _{OP}	Output Voltage Swing	$R_L = 10K\Omega$		16		V	4, 5, 6
-V _{OP}	Output Voltage Swing	$R_L = 10K\Omega$			-16	V	4, 5, 6
+A _{VS}	Open Loop Voltage Gain	$R_L = 10K\Omega$, $V_O = +15V$	(Note 9)	80		V/mV	4
			(Note 9)	40		V/mV	5, 6
-A _{VS}	Open Loop Voltage Gain	$R_L = 10K\Omega$, $V_O = -15V$	(Note 9)	80		V/mV	4
			(Note 9)	40		V/mV	5, 6
A _{VS}	Open Loop Voltage Gain	$+V_{CC} = \pm 5V$, $R_L = 10K\Omega$, $V_O = \pm 2V$	(Note 9)	20		V/mV	4, 5, 6

AC Parameters

The following conditions apply to all the following parameters, unless otherwise specified.

AC
$$+V_{CC} = +20V$$
, $-V_{CC} = -20V$, $V_{CM} = 0V$, $R_S = 50\Omega$

Symbol	Parameter	Conditions	Notes	Min	Max	Units	Sub- groups
TR _{TR}	Transient Response Rise Time	$R_L = 10K\Omega, C_L = 100pF,$ f < 1KHz, V _I = +50mV			1000	nS	7, 8A, 8B
TR _{os}	Transient Response Overshoot	$R_L = 10K\Omega, C_L = 100pF,$ f < 1KHz, V _I = +50mV			50	%	7, 8A, 8B
+SR	Slew Rate	$A_V = 1$, $V_I = -5V$ to $+5V$		0.05		V/µS	7, 8A, 8B
-SR	Slew Rate	$A_V = 1$, $V_I = +5V$ to -5V		0.05		V/µS	7, 8A, 8B
NI _{BB}	Noise Broadband	BW = 10Hz to 5KHz, $R_S = 0\Omega$			15	μVrms	7
NI _{PC}	Noise Popcorn	BW = 10Hz to 5KHz, $R_S = 100K\Omega$			40	μVpk	7

LM108A Electrical Characteristics (Continued)

DC Parameters Drift Values

The following conditions apply to all the following parameters, unless otherwise specified.

DC $+V_{CC} = +20V$, $-V_{CC} = -20V$, $V_{CM} = 0V$, $R_S = 50\Omega$

Delta calculations performed on JAN S devices at group B, Subgroup 5 only.

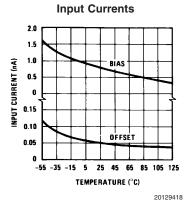
Symbol	Parameter	Conditions	Notes	Min	Max	Units	Sub- groups
V _{IO}	Input Offset Voltage			-0.25	0.25	mV	1
±I _{IB}	Input Bias Current			-0.5	0.5	nA	1

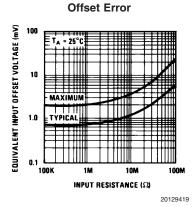
Note 2: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

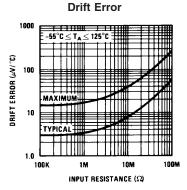
Note 3: The maximum power dissipation must be derated at elevated temperatures and is dictated by T_J max (maximum junction temperature), θ_{JA} (package junction to ambient thermal resistance), and T_A (ambient temperature). The maximum allowable power dissipation at any temperature is P_D max = $(T_J$ max - $T_A)$ / θ_{JA} or the number given in the Absolute Maximum Ratings, whichever is lower.

Note 4: The inputs are shunted with back-to-back diodes for over voltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1V is applied between the inputs unless some limiting resistance is used.

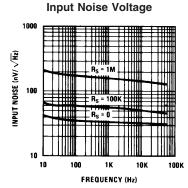
Note 5: For supply voltages less than ±20V, the absolute maximum input voltage is equal to the supply voltage.

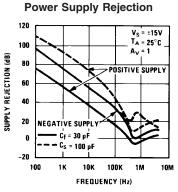

Note 6: This rating is ± 1.0 V unless resistances of 2K Ω or greater are inserted in series with the inputs to limit current in the input shunt diodes to the maximum allowable value.

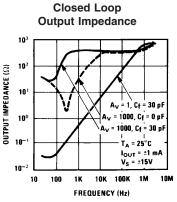

Note 7: Human body model, 1.5 k $\!\Omega$ in series with 100 pF.

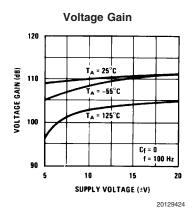

Note 8: Calculated parameter

Note 9: Datalog reading in K = V/mV

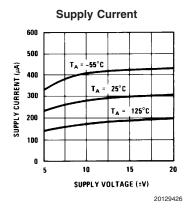

Typical Performance Characteristics

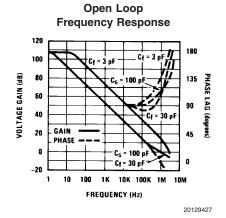



20129420

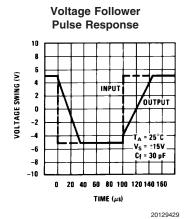

20129421

20129422

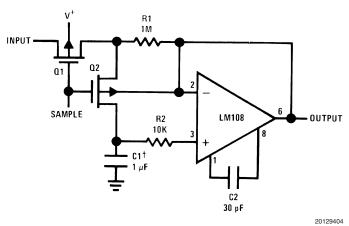

20129423



Output Swing 15 OUTPUT SWING (±V) OUTPUT CURRENT (±mA)

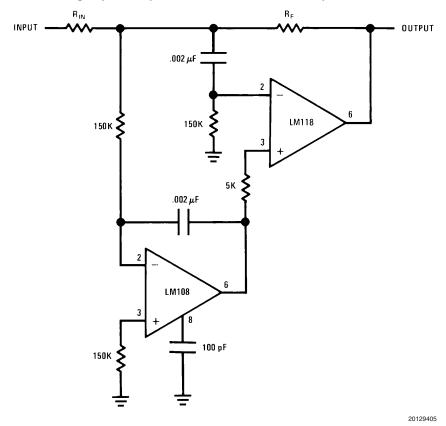

20129425

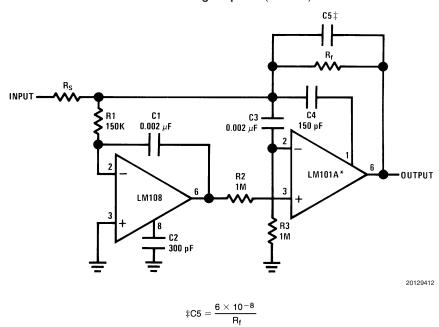
Typical Performance Characteristics (Continued)



20129428

Typical Applications


Sample and Hold

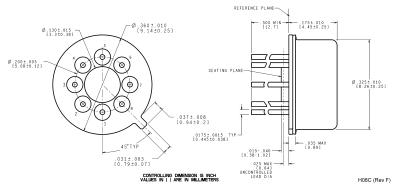

†Teflon polyethylene or polycarbonate dielectric capacitor Worst case drift less than 2.5 mV/sec

Typical Applications (Continued)

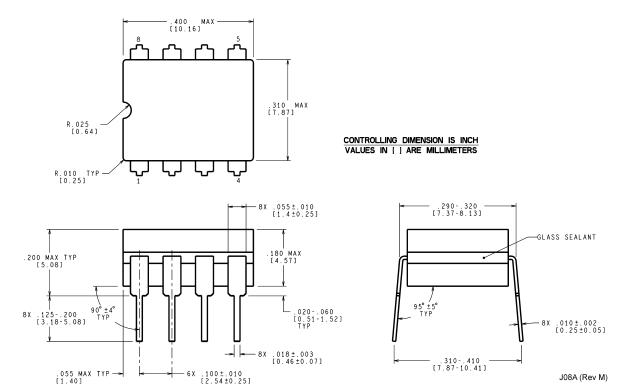
High Speed Amplifier with Low Drift and Low Input Current

Fast Summing Amplifier (Note 10)

*In addition to increasing speed, the LM101A raises high and low frequency gain, increases output drive capability and eliminates thermal feedback.

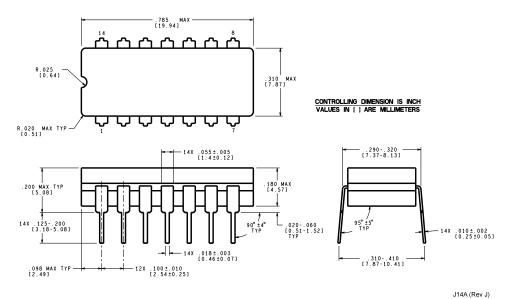

Note 10: Power Bandwidth: 250 KHz Small Signal Bandwidth: 3.5 MHz

Slew Rate: 10V/µS

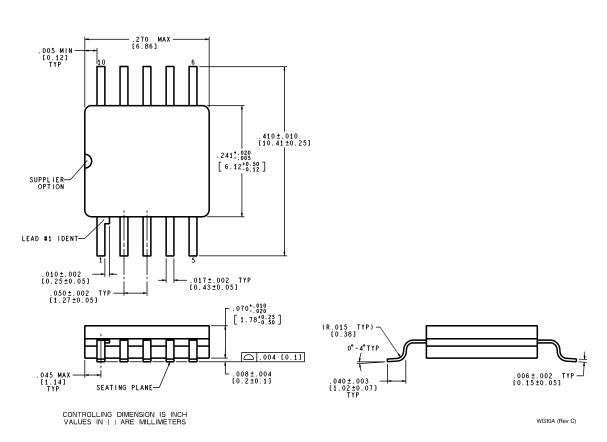

Revision History Section

Date Released	Revision	Section	Originator	Changes
02/25/05	Α	New release, corporate format	L. Lytle	1 MDS data sheets converted into one
				Corp. datasheet format. MJLM108A-X Rev
				2A0. MDS will be archived.

Physical Dimensions inches (millimeters) unless otherwise noted

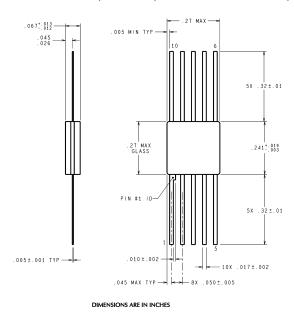


Metal Can Package (H) NS Package Number H08C



Ceramic Dual-In-Line Package (J) NS Package Number J08A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)



Ceramic Dual-In-Line Package (J) NS Package Number J14A

S.O. Package (WG)
NS Package Number WG10A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Ceramic Flatpack Package (W) NS Package Number W10A

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

For the most current product information visit us at www.national.com.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

W10A (Rev H)

BANNED SUBSTANCE COMPLIANCE

National Semiconductor manufactures products and uses packing materials that meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

National Semiconductor Americas Customer Support Center

Email: new.feedback@nsc.com Tel: 1-800-272-9959

www.national.com

National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530 85 86

Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171
Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560