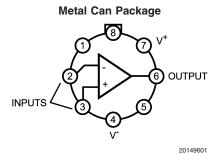


LM107QML Operational Amplifier General Description

The LM107 is a complete, general purpose operational amplifier, with the necessary frequency compensation built into the chip. Advanced processing techniques make the input currents a factor of ten lower than industry standards such as the 709. Yet, they are a direct, plug-in replacement for the 709, LM101A and 741. The LM107 offers the features of the LM101A, which makes its application nearly foolproof. In addition, the device provides better accuracy and lower noise in high impedance circuitry. The low input currents also make it particularly well suited for long interval integrators or timers, sample and hold circuits and low frequency waveform generators. Further, replacing circuits where matched transistor pairs buffer the inputs of conventional IC op amps, it can give lower offset voltage and drift at a lower cost.

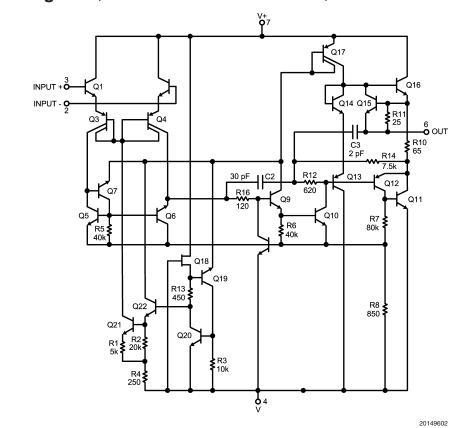

Features

- Offset voltage 3 mV maximum over temperature
- Input current 100 nA maximum over temperature
 - Offset current 20 nA maximum over temperature

Ordering Information

NS PART NUMBER	SMD PART NUMBER	NS PACKAGE NUMBER	PACKAGE DISCRIPTION
LM107H/883	5962-8958901GA	H08C	8LD Metal Can

Connection Diagram



Top View See NS Package Number H08C

Note: Pin 4 connected to case.

May 2005

Schematic Diagram (Pin connections shown are for metal can)

Note: For Performance Characteristics or Typical Applications graphs, Refer to Commercial Data Sheet.

LM107QML

Absolute Maximum Ratings (Note 1)

Supply Voltage
Power Dissipation (Notes 2, 3)
Differential Input Voltage
Input Voltage (Note 3)
Output Short Circuit Duration
Operating Temperature Range (T _A)
Storage Temperature Range
Lead Temperature
(Soldering, 10 seconds)
ESD Tolerance (Note 4)

 $\begin{array}{l} \pm 22V\\ 500\ mW\\ \pm 30V\\ \pm 15V\\ Continuous\\ -55^{\circ}C \leq T_{A} \leq +125^{\circ}\ C\\ -65^{\circ}C \leq T_{A} \leq +150^{\circ}C\\ \end{array}$

260°C 1000V

Quality Conformance Inspection

MIL-STD-883, Method 5005 - Group A

Subgroup	Description	Temp(°C)
1	Static tests at	+25
2	Static tests at	+125
3	Static tests at	-55
4	Dynamic tests at	+25
5	Dynamic tests at	+125
6	Dynamic tests at	-55
7	Functional tests at	+25
8A	Functional tests at	+125
8B	Functional tests at	-55
9	Switching tests at	+25
10	Switching tests at	+125
11	Switching tests at	- 55

LM107 Electrical Characteristics

DC Parameters

The following conditions apply, unless otherwise specified. V_{CC} = \pm 20V, V_{CM} = 0V, R_{S} = 50\Omega

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- group
-,				-2	2	mV	1
		$V_{CM} = \pm 15V$		-3	3	mV	2, 3
				-2	2	mV	1
V _{IO}	Input Offset Voltage			-3	3	mV	2, 3
		$V_{CC} = \pm 5V$		-2	2	mV	1
				-3	3	mV	2, 3
I _{IO}	Input Offset Current	$V_{CM} = \pm 15V$		-10	10	nA	1
				-20	20	nA	2, 3
				-10	10	nA	1
				-20	20	nA	2, 3
		$V_{CC} = \pm 5V$		-10	10	nA	1
				-20	20	nA	2, 3
±l _{IB}	Input Bias Current	$V_{CM} = \pm 15V$		1	75	nA	1
				1	100	nA	2, 3
				1	75	nA	1
				1	100	nA	2, 3
		$V_{CC} = \pm 5V$		1	75	nA	1
				1	100	nA	2, 3
I _{CC}	Supply Current				3	mA	1
					2.5	mA	2
					3.5	mA	3
-I _{os}	Short Circuit Current			7	45	mA	1
				5	45	mA	2
				7	50	mA	3
+l _{os}	Short Circuit Current			-45	-7	mA	1
				-45	-5	mA	2
				-50	-7	mA	3
+PSRR	Supply Voltage Rejection Ratio	$+V_{CC} = 20V$ to 5V, $-V_{CC} = -20V$		80		dB	1, 2, 3
-PSRR	Supply Voltage Rejection Ratio	$-V_{CC} = -20V$ to $-5V$, $+V_{CC} = 20V$		80		dB	1, 2,
CMRR	Common Mode rejection Ratio	-15V <= V _{CM} <= +15V		80		dB	1, 2,
R _{IN}	Input Resistance			1.5		MΩ	1
V_{IR}	Input Voltage Range		(Note 5)	-15	+15	V	1, 2,
-A _{VS}	Large Signal Voltage Gain	$V_{CC} = \pm 15V, V_{OUT} = 0 \text{ to } -12V,$ $R_L = 10K\Omega$		50		V/mV	4
		$V_{CC} = \pm 15V$, $V_{OUT} = 0$ to -12V, $R_L = 10K\Omega$		25		V/mV	5, 6
		$V_{CC} = \pm 15V, V_{OUT} = 0 \text{ to } -10V,$ $R_L = 2K\Omega$		50		V/mV	4
		$V_{CC} = \pm 15V, V_{OUT} = 0 \text{ to } -10V,$ $R_L = 2K\Omega$		25		V/mV	5, 6

LM107QML

LM107 Electrical Characteristics (Continued)

DC Parameters (Continued)

The following conditions apply, unless otherwise specified. V_{CC} = \pm 20V, V_{CM} = 0V, R_{S} = 50\Omega

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
+A _{VS}	Large Signal Voltage Gain	$V_{CC} = \pm 15V, V_{OUT} = 0$ to 12V, $R_{L} = 10K\Omega$		50		V/mV	4
		$V_{CC} = \pm 15V, V_{OUT} = 0 \text{ to } 12V,$ $R_L = 10K\Omega$		25		V/mV	5, 6
		$V_{CC} = \pm 15V, V_{OUT} = 0$ to 10V, $R_L = 2K\Omega$		50		V/mV	4
		$V_{CC} = \pm 15V, V_{OUT} = 0$ to 10V, $R_L = 2K\Omega$		25		V/mV	5, 6
+V _{OP}	Output Voltage Swing	$V_{CC} = \pm 15V, R_L = 10K\Omega$		12		V	4, 5, 6
		$V_{CC} = \pm 15V, R_L = 2K\Omega$		10		V	4, 5, 6
		$R_{L} = 10K\Omega$		16		V	4, 5, 6
		$R_L = 2K\Omega$		15		V	4, 5, 6
-V _{OP}	Output Voltage Swing	$V_{CC} = \pm 15V, R_L = 10K\Omega$			-12	V	4, 5, 6
		VCC = $\pm 15V$, R _L = $2K\Omega$			-10	V	4, 5, 6
		$R_L = 10K\Omega$			-16	V	4, 5, 6
		$R_L = 2K\Omega$			-15	V	4, 5, 6

AC Parameters

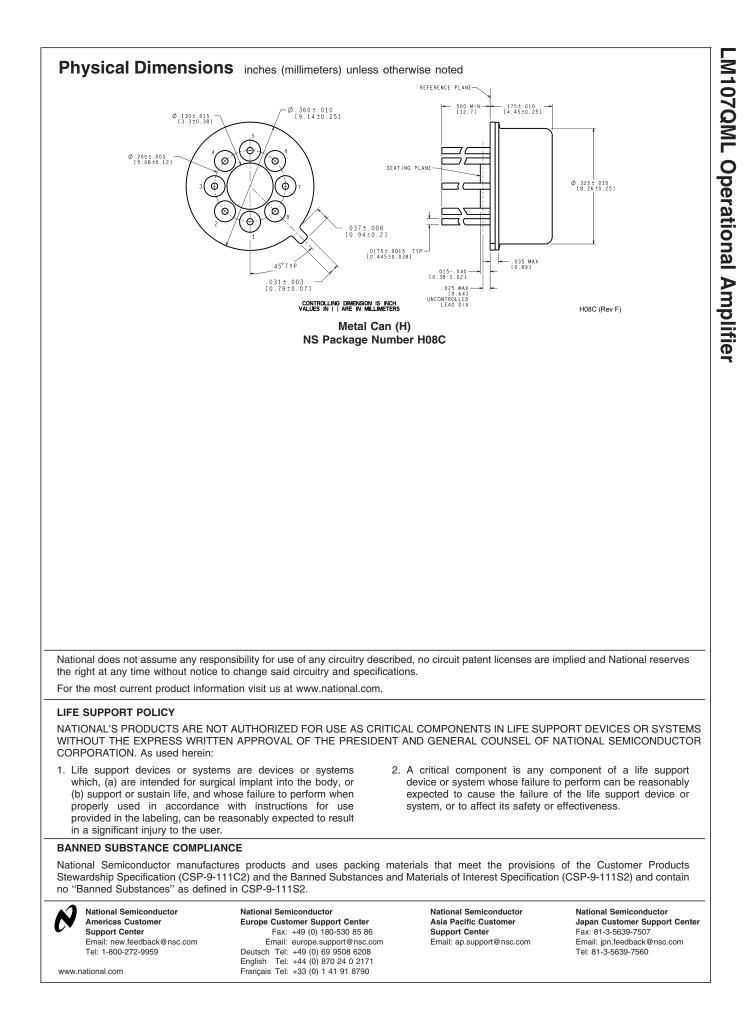
The following conditions apply, unless otherwise specified. V_{CC} = ±20V, V_{CM} = 0V, R_S = 50K Ω

							Sub-
Symbol	Parameter	Conditions	Notes	Min	Max	Unit	groups
+S _R	Slew Rate	$V_{IN} = -5V$ to $+5V$, $A_V = 1$, $R_L = 2K\Omega$		0.2		V/µS	7
-S _R	Slew Rate	$V_{IN} = +5V$ to -5V, $A_V = 1$,		0.2		V/µS	7
		$R_{L} = 2K\Omega$					
GBW	Gain Bandwidth	$V_{\rm IN} = 50 {\rm mV}_{\rm RMS}, f = 20 {\rm K}_{\rm HZ},$		250		K _{HZ}	7
		$R_L = 2K\Omega$					

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limit s. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

Note 2: The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{Jmax} (maximum junction temperature), θ_{JA} (package junction to ambient thermal resistance), and T_A (ambient temperature). The maximum allowable power dissipation at any temperature is $P_{Dmax} = (T_{Jmax} - T_A)/\theta_{JA}$ or the number given in the Absolute Maximum Ratings, whichever is lower.

Note 3: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.


Note 4: Human body model, 1.5 KΩ in series with 100 pF.

Note 5: Guaranteed by CMRR.

LM107QML

Revision History Section

Date							
Released	Revision	Section	Originator	Changes			
05/09/05	A	New Release, Corporate format	R. Malone	New Release, Corporate format. 1 MDS data sheet converted into a Corp. data sheet format. Following MDS data sheets will be Archived MNLM107-X, Rev. 0CL			

