

DS92LV010AEP Bus LVDS 3.3/5.0V Single Transceiver

General Description

The DS92LV010AEP is one in a series of transceivers designed specifically for the high speed, low power proprietary bus backplane interfaces. The device operates from a single 3.3V or 5.0V power supply and includes one differential line driver and one receiver. To minimize bus loading the driver outputs and receiver inputs are internally connected. The logic interface provides maximum flexibility as 4 separate lines are provided (DIN, DE, $\overline{\rm RE}$, and ROUT). The device also features flow through which allows easy PCB routing for short stubs between the bus pins and the connector. The driver has 10 mA drive capability, allowing it to drive heavily loaded backplanes, with impedance as low as 27 Ohms.

The driver translates between TTL levels (single-ended) to Low Voltage Differential Signaling levels. This allows for high speed operation, while consuming minimal power with reduced EMI. In addition the differential signaling provides common mode noise rejection of $\pm 1V$.

The receiver threshold is $\pm 100 \text{mV}$ over a $\pm 1 \text{V}$ common mode range and translates the low voltage differential levels to standard (CMOS/TTL) levels.

ENHANCED PLASTIC

- Extended Temperature Performance of -40°C to +85°C
- · Baseline Control Single Fab & Assembly Site
- Process Change Notification (PCN)
- · Qualification & Reliability Data
- Solder (PbSn) Lead Finish is standard
- Enhanced Diminishing Manufacturing Sources (DMS) Support

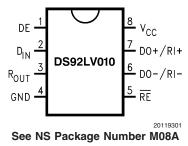
Features

- Bus LVDS Signaling (BLVDS)
- Designed for Double Termination Applications
- Balanced Output Impedance
- Lite Bus Loading 5pF typical
- Glitch free power up/down (Driver disabled)
- 3.3V or 5.0V Operation
- ±1V Common Mode Range
- ±100mV Receiver Sensitivity
- High Signaling Rate Capability (above 100 Mbps)
- Low Power CMOS design
- Product offered in 8 lead SOIC package

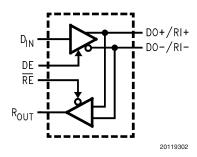
Applications

Selected Military Applications Selected Avionics Applications

Ordering Information


PART NUMBER	VID PART NUMBER	NS PACKAGE NUMBER (Note 3)
DS92LV010ATMEP	V62/04740-01	M08A
(Notes 1, 2)	TBD	TBD

Note 1: For the following (Enhanced Plastic) version, check for availability: - DS92LV010ATMXEP Parts listed with an "X" are provided in Tape & Reel and parts without an "X" are in Rails.


Note 2: FOR ADDITIONAL ORDERING AND PRODUCT INFORMATION, PLEASE VISIT THE ENHANCED PLASTIC WEB SITE AT: www.national.com/mil

Note 3: Refer to package details under Physical Dimensions

Connection Diagram

Block Diagram

Absolute Maximum Ratings (Notes 4,

5)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (V_{CC}) 6.0V Enable Input Voltage (DE, \overline{RE}) -0.3V to (V_{CC} + 0.3V) Driver Input Voltage (DIN) -0.3V to (V_{CC} + 0.3V)

Receiver Output Voltage

 $\begin{array}{ll} \text{(R}_{\text{OUT}}) & -0.3 \text{V to (V}_{\text{CC}} + 0.3 \text{V)} \\ \text{Bus Pin Voltage (DO/RI±)} & -0.3 \text{V to } + 3.9 \text{V} \\ \text{Driver Short Circuit Current} & \text{Continuous} \\ \text{ESD (HBM 1.5 k}\Omega, 100 \text{ pF)} & >2.0 \text{ kV} \\ \text{Maximum Package Power Dissipation at } 25 ^{\circ}\text{C} \end{array}$

SOIC 1025 mW

Derate SOIC Package 8.2 mW/°C

Storage Temperature
Range -65°C to +150°C

Lead Temperature
(Soldering, 4 sec.) 260°C

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage (V _{CC}), or	3.0	3.6	V
Supply Voltage (V _{CC})	4.5	5.5	V
Receiver Input Voltage	0.0	2.9	V
Operating Free Air Temperature	-40	+85	°C

DC Electrical Characteristics (Notes 5, 6, 12)

 $T_A = -40^{\circ}C$ to +85°C unless otherwise noted, $V_{CC} = 3.3V \pm 0.3V$

Symbol	Parameter	Conditions	5	Pin	Min	Тур	Max	Units
V _{OD}	Output Differential Voltage	$R_L = 27\Omega$, Figure 1		DO+/RI+, DO-/RI-	140	250	360	mV
ΔV_{OD}	V _{OD} Magnitude Change					3	30	mV
Vos	Offset Voltage				1	1.25	1.65	V
ΔV_{OS}	Offset Magnitude Change					5	50	mV
I _{OSD}	Output Short Circuit Current	$V_O = 0V$, DE = V_{CC}				-12	-20	mA
V _{OH}	Voltage Output High	V _{ID} = +100 mV	I _{OH} = -400 μA	R _{OUT}	2.8	3		V
		Inputs Open			2.8	3		V
		Inputs Shorted			2.8	3		V
		Inputs Terminated, $R_L = 27\Omega$			2.8	3		V
V _{OL}	Voltage Output Low	$I_{OL} = 2.0 \text{ mA}, V_{ID} = -100 \text{ mV}$				0.1	0.4	V
l _{os}	Output Short Circuit Current	V _{OUT} = 0V, V _{ID} = +100 mV			-5	-35	-85	mA
V _{TH}	Input Threshold High	DE = 0V		DO+/RI+,			+100	mV
V_{TL}	Input Threshold Low			DO-/RI-	-100			mV
I _{IN}	Input Current	$DE = 0V, V_{IN} = +2.4V, or 0$	V		-20	±1	+20	μΑ
		$V_{CC} = 0V, V_{IN} = +2.4V, or$	OV		-20	±1	+20	μA
V _{IH}	Minimum Input High Voltage			DIN, DE,	2.0		V _{CC}	V
V _{IL}	Maximum Input Low Voltage				GND		0.8	V
I _{IH}	Input High Current	$V_{IN} = V_{CC}$ or 2.4V				±1	±10	μΑ
I _{IL}	Input Low Current	V _{IN} = GND or 0.4V				±1	±10	μΑ
V _{CL}	Input Diode Clamp Voltage	I _{CLAMP} = -18 mA			-1.5	-0.8		V
I _{CCD}	Power Supply Current	$DE = \overline{RE} = V_{CC}$, $R_L = 27\Omega$		V _{CC}		13	20	mA
I _{CCR}		DE = RE = 0V				5	8	mA
I _{CCZ}		DE = 0V, RE = V _{CC}				3	7.5	mA
I _{CC}		$DE = V_{CC}, \overline{RE} = 0V, R_L = 2$	27Ω			16	22	mA
C _{output}	Capacitance @ BUS Pins			DO+/RI+, DO-/RI-		5		pF

DC Electrical Characteristics (Notes 5, 6, 12) $T_A = -40^{\circ}\text{C}$ to +85 $^{\circ}\text{C}$ unless otherwise noted, $V_{CC} = 5.0V \pm 0.5V$

Symbol	Parameter	Conditions	S	Pin	Min	Тур	Max	Units
V _{OD}	Output Differential Voltage	$R_L = 27\Omega$, Figure 1		DO+/RI+, DO-/RI-	145	270	390	mV
ΔV_{OD}	V _{OD} Magnitude Change					3	30	mV
Vos	Offset Voltage				1	1.35	1.65	V
ΔV_{OS}	Offset Magnitude Change					5	50	mV
I _{OSD}	Output Short Circuit Current	$V_O = 0V$, DE = V_{CC}				-12	-20	mA
V _{OH}	Voltage Output High	V _{ID} = +100 mV	$I_{OH} = -400 \ \mu A$	R _{OUT}	4.3	5.0		V
		Inputs Open			4.3	5.0		V
		Inputs Shorted			4.3	5.0		V
		Inputs Terminated, $R_L = 27\Omega$			4.3	5.0		V
V _{OL}	Voltage Output Low	I _{OL} = 2.0 mA, V _{ID} = -100 mV				0.1	0.4	V
l _{os}	Output Short Circuit Current	V _{OUT} = 0V, V _{ID} = +100 mV			-35	-90	-130	mA
V _{TH}	Input Threshold High	DE = 0V		DO+/RI+,			+100	mV
V _{TL}	Input Threshold Low			DO-/RI-	-100			mV
I _{IN}	Input Current	$DE = 0V, V_{IN} = +2.4V, or 0$	V	1	-20	±1	+20	μΑ
		$V_{CC} = 0V, V_{IN} = +2.4V, or$	0V	1	-20	±1	+20	μΑ
V _{IH}	Minimum Input High Voltage			DIN, DE, RE	2.0		V _{CC}	V
V _{IL}	Maximum Input Low Voltage				GND		0.8	V
I _{IH}	Input High Current	$V_{IN} = V_{CC}$ or 2.4V				±1	±10	μΑ
I _{IL}	Input Low Current	V _{IN} = GND or 0.4V				±1	±10	μΑ
V _{CL}	Input Diode Clamp Voltage	I _{CLAMP} = -18 mA			-1.5	-0.8		V
I _{CCD}	Power Supply Current	$DE = \overline{RE} = V_{CC}, R_L = 27\Omega$		V _{cc}		17	25	mA
I _{CCR}		DE = RE = 0V]		6	10	mA
I _{CCZ}		DE = 0V, RE = V _{CC}				3	8	mA
I _{cc}		$DE = V_{CC}, \overline{RE} = 0V, R_L = 2$	27Ω			20	25	mA
C_{output}	Capacitance @ BUS Pins			DO+/RI+, DO-/RI-		5		pF

AC Electrical Characteristics (Notes 9, 12)

 $T_A = -40^{\circ}C \text{ to } +85^{\circ}C, V_{CC} = 3.3V \pm 0.3V$

	, 00					
Symbol	Parameter	Conditions	Min	Тур	Max	Units
DIFFEREN	DIFFERENTIAL DRIVER TIMING REQUIREMENTS					
t _{PHLD}	Differential Prop. Delay High to	$R_L = 27\Omega$, Figures 2, 3	1.0	3.0	5.0	ns
	Low	C _L = 10 pF				
t _{PLHD}	Differential Prop. Delay Low to		1.0	2.8	5.0	ns
	High					
t _{SKD}	Differential SKEW It PHLD - tPLHD			0.2	1.0	ns
t _{TLH}	Transition Time Low to High			0.3	2.0	ns
t _{THL}	Transition Time High to Low			0.3	2.0	ns

AC Electrical Characteristics (Notes 9, 12) (Continued)

 $T_A = -40^{\circ}C \text{ to } +85^{\circ}C, V_{CC} = 3.3V \pm 0.3V$

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{PHZ}	Disable Time High to Z	$R_L = 27\Omega$, Figures 4, 5	0.5	4.5	9.0	ns
t _{PLZ}	Disable Time Low to Z	C _L = 10 pF	0.5	5.0	10.0	ns
t _{PZH}	Enable Time Z to High		2.0	5.0	7.0	ns
t _{PZL}	Enable Time Z to Low		1.0	4.5	9.0	ns
DIFFERENTIAL RECEIVER TIMING REQUIREMENTS						
t _{PHLD}	Differential Prop. Delay High to	Figures 6, 7	2.5	5.0	12.0	ns
	Low	C _L = 10 pF				
t _{PLHD}	Differential Prop. Delay Low to		2.5	5.5	10.0	ns
	High					
t _{SKD}	Differential SKEW It PHLD - tPLHD			0.5	2.0	ns
t _r	Rise Time			1.5	4.0	ns
t _f	Fall Time	1		1.5	4.0	ns
t _{PHZ}	Disable Time High to Z	$R_L = 500\Omega$, Figures 8, 9	2.0	4.0	6.0	ns
t _{PLZ}	Disable Time Low to Z	C _L = 10 pF	2.0	5.0	7.0	ns
t _{PZH}	Enable Time Z to High	(Note 11)	2.0	7.0	13.0	ns
t _{PZL}	Enable Time Z to Low		2.0	6.0	10.0	ns

AC Electrical Characteristics (Notes 9, 12)

 $T_A = -40^{\circ}C$ to +85°C, $V_{CC} = 5.0V \pm 0.5V$

Symbol	Parameter	Conditions	Min	Тур	Max	Units
DIFFERE	NTIAL DRIVER TIMING REQUIREMEN	NTS	•			
t _{PHLD}	Differential Prop. Delay High to	$R_L = 27\Omega$, Figures 2, 3	0.5	2.7	4.5	ns
	Low	C _L = 10 pF				
t _{PLHD}	Differential Prop. Delay Low to		0.5	2.5	4.5	ns
	High					
t _{SKD}	Differential SKEW It PHLD - tPLHD			0.2	1.0	ns
t_{TLH}	Transition Time Low to High			0.3	2.0	ns
t _{THL}	Transition Time High to Low			0.3	2.0	ns
t _{PHZ}	Disable Time High to Z	$R_L = 27\Omega$, Figures 4, 5	0.5	3.0	7.0	ns
t _{PLZ}	Disable Time Low to Z	C _L = 10 pF	0.5	5.0	10.0	ns
t _{PZH}	Enable Time Z to High		2.0	4.0	7.0	ns
t _{PZL}	Enable Time Z to Low		1.0	4.0	9.0	ns
DIFFERE	NTIAL RECEIVER TIMING REQUIREM	MENTS	•	,		•
t _{PHLD}	Differential Prop. Delay High to	Figures 6, 7	2.5	5.0	12.0	ns
	Low	C _L = 10 pF				
t _{PLHD}	Differential Prop. Delay Low to		2.5	4.6	10.0	ns
	High					
t _{SKD}	Differential SKEW It PHLD - tPLHD			0.4	2.0	ns
t _r	Rise Time			1.2	2.5	ns
t _f	Fall Time			1.2	2.5	ns
t _{PHZ}	Disable Time High to Z	$R_L = 500\Omega$, Figures 8, 9	2.0	4.0	6.0	ns
t _{PLZ}	Disable Time Low to Z	C _L = 10 pF	2.0	4.0	6.0	ns
t _{PZH}	Enable Time Z to High	(Note 11)	2.0	5.0	9.0	ns
t _{PZL}	Enable Time Z to Low	7	2.0	5.0	7.0	ns

Electrical Characteristics

Note 4: "Absolute Maximum Ratings" are these beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 5: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to device ground except V_{OD}, V_{ID}, V_{TH} and V_{TL} unless otherwise specified.

Note 6: All typicals are given for V_{CC} = +3.3V or 5.0 V and T_A = +25°C, unless otherwise stated.

Note 7: ESD Rating: HBM (1.5 k Ω , 100 pF) > 2.0 kV EAT (0 Ω , 200 pF) > 300V.

Note 8: C_L includes probe and fixture capacitance.

Note 9: Generator waveforms for all tests unless otherwise specified: f = 1MHz, ZO = 50Ω, tr, tf ≤ 6.0ns (0%-100%) on control pins and ≤ 1.0ns for RI inputs.

Note 10: The DS92LV010AEP is a current mode device and only function with datasheet specification when a resistive load is applied between the driver outputs.

Note 11: For receiver TRI-STATE® delays, the switch is set to V_{CC} for t_{PZL}, and t_{PLZ} and to GND for t_{PZH}, and t_{PHZ}.

Note 12: "Testing and other quality control techniques are used to the extent deemed necessary to ensure product performance over the specified temperature range. Product may not necessarily be tested across the full temperature range and all parameters may not necessarily be tested. In the absence of specific PARAMETRIC testing, product performance is assured by characterization and/or design."

Test Circuits and Timing Waveforms

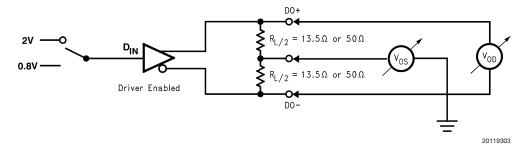


FIGURE 1. Differential Driver DC Test Circuit

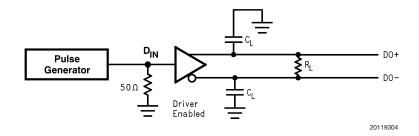


FIGURE 2. Differential Driver Propagation Delay and Transition Time Test Circuit

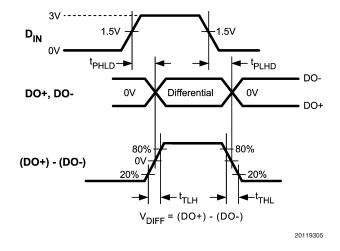


FIGURE 3. Differential Driver Propagation Delay and Transition Time Waveforms

Test Circuits and Timing Waveforms (Continued)

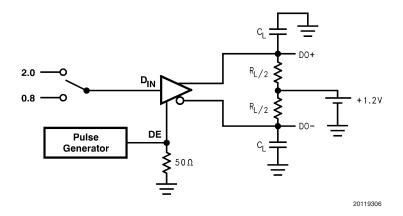


FIGURE 4. Driver TRI-STATE Delay Test Circuit

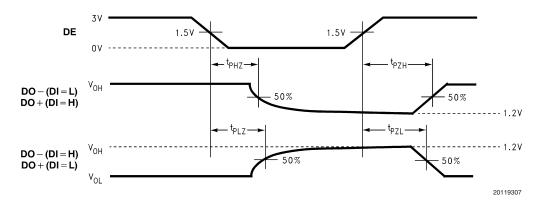


FIGURE 5. Driver TRI-STATE Delay Waveforms

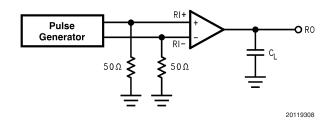


FIGURE 6. Receiver Propagation Delay and Transition Time Test Circuit

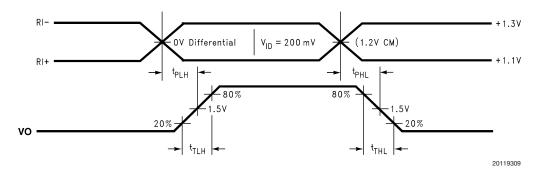


FIGURE 7. Receiver Propagation Delay and Transition Time Waveforms

7

Test Circuits and Timing Waveforms (Continued)

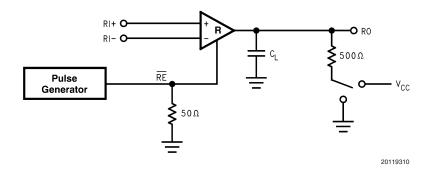


FIGURE 8. Receiver TRI-STATE Delay Test Circuit

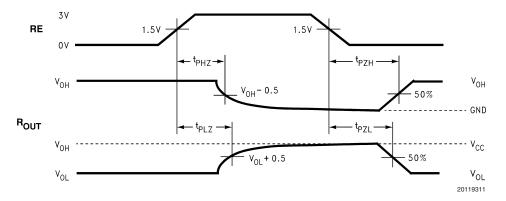
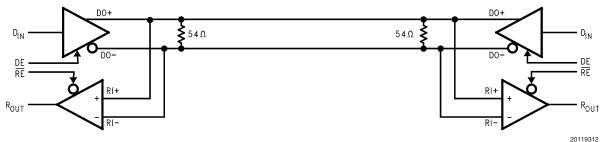
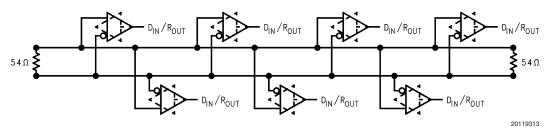




FIGURE 9. Receiver TRI-STATE Delay Waveforms TRI-STATE Delay Waveforms

Typical Bus Application Configurations

Bi-Directional Half-Duplex Point-to-Point Applications

Multi-Point Bus Applications

Application Information

There are a few common practices which should be implied when designing PCB for BLVDS signaling. Recommended practices are:

- Use at least 4 layer PCB board (BLVDS signals, ground, power and TTL signals).
- Keep drivers and receivers as close to the (BLVDS port side) connector as possible.
- Bypass each BLVDS device and also use distributed bulk capacitance. Surface mount capacitors placed close to

power and ground pins work best. Two or three multi-layer ceramic (MLC) surface mount capacitors (0.1 $\mu\text{F},$ and 0.01 μF in parallel should be used between each $V_{\rm CC}$ and ground. The capacitors should be as close as possible to the $V_{\rm CC}$ pin.

- Use the termination resistor which best matches the differential impedance of your transmission line.
- · Leave unused LVDS receiver inputs open (floating)

TABLE 1. Functional Table

MODE SELECTED	DE	RE
DRIVER MODE	Н	Н
RECEIVER MODE	L	L
TRI-STATE MODE	L	Н
LOOP BACK MODE	Н	L

TABLE 2. Transmitter Mode

	INPUTS	OUTI	PUTS
DE	DI	DO+	DO-
Н	L	L	Н
Н	Н	Н	L
Н	2 > & > 0.8	Х	Х
L	Х	Z	Z

L = Low state

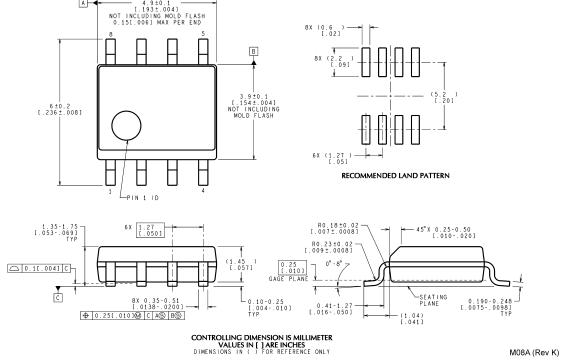
TABLE 3. Receiver Mode

	INPUTS	
RE	(RI+)-(RI-)	
L	L (< -100 mV)	L
L	H (> +100 mV)	Н
L	100 mV > & > -100 mV	Х
Н	X	Z

X = High or Low logic state

TABLE 4. Device Pin Description

Pin Name	Pin #	Input/Output	Description
DIN	2	I	TTL Driver Input
DO±/RI±	6, 7	I/O	LVDS Driver Outputs/LVDS Receiver Inputs
R _{OUT}	3	0	TTL Receiver Output
RE	5	I	Receiver Enable TTL Input (Active Low)
DE	1	I	Driver Enable TTL Input (Active High)
GND	4	NA	Ground
V _{CC}	8	NA	Power Supply


H = High state

Z = High impedance state

L = Low state

H = High state

Physical Dimensions inches (millimeters) unless otherwise noted

See NS Package Number M08A

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

For the most current product information visit us at www.national.com.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor manufactures products and uses packing materials that meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

National Semiconductor Americas Customer Support Center

Email: new.feedback@nsc.com Tel: 1-800-272-9959

www.national.com

National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530 85 86

Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560