

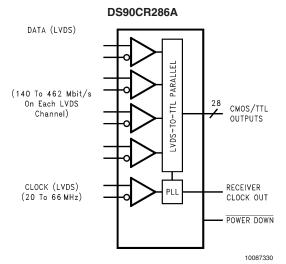
DS90CR286A/DS90CR216A

+3.3V Rising Edge Data Strobe LVDS Receiver 28-Bit Channel Link—66 MHz, +3.3V Rising Edge Strobe LVDS Receiver 21-Bit Channel Link—66 MHz

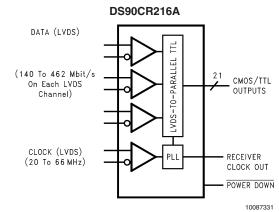
General Description

The DS90CR286A receiver converts the four LVDS data streams (Up to 1.848 Gbps throughput or 231 Megabytes/ sec bandwidth) back into parallel 28 bits of CMOS/TTL data. Also available is the DS90CR216A that converts the three LVDS data streams (Up to 1.386 Gbps throughput or 173 Megabytes/sec bandwidth) back into parallel 21 bits of CMOS/TTL data. Both Receivers' outputs are Rising edge strobe.

Both devices are offered in TSSOP packages.


The DS90CR286A / DS90CR216A devices are enhanced over prior generation receivers and provided a wider data valid time on the receiver output.

This chipset is an ideal means to solve EMI and cable size problems associated with wide, high speed TTL interfaces.


Features

- 20 to 66 MHz shift clock support
- 50% duty cycle on receiver output clock
- Best-in-Class Set & Hold Times on RxOUTPUTs
- Rx power consumption <270 mW (typ) @66MHz Worst Case
- Rx Power-down mode <200µW (max)
- ESD rating >7 kV (HBM), >700V (EIAJ)
- PLL requires no external components
- Compatible with TIA/EIA-644 LVDS standard
- Low profile 56-lead or 48-lead TSSOP package
- Operating Temperature: -40°C to +85°C

Block Diagrams

Order Number DS90CR286AMTD See NS Package Number MTD56

Order Number DS90CR216AMTD See NS Package Number MTD48

TRI-STATE® is a registered trademark of National Semiconductor Corporation.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (V_{CC}) -0.3V to +4V CMOS/TTL Output Voltage -0.3V to (V_{CC} + 0.3V) LVDS Receiver Input Voltage -0.3V to (V_{CC} + 0.3V) Junction Temperature $+150^{\circ}C$

Storage Temperature -65°C to $+150^{\circ}\text{C}$

Lead Temperature
(Soldering, 4 sec) +260°C

Maximum Package Power Dissipation Capacity @ 25°C

MTD56 (TSSOP) Package:

DS90CR286AMTD 1.61 W

MTD48 (TSSOP) Package:

DS90CR216AMTD 1.89 W

Package Derating:

DS90CR286AMTD 12.4 mW/°C above +25°C DS90CR216AMTD 15 mW/°C above +25°C ESD Rating

(HBM, 1.5 kΩ, 100 pF) > 7 kV (EIAJ, 0Ω, 200 pF) > 700V

Recommended Operating Conditions

	Min	Nom	Max	Units
Supply Voltage (V _{CC})	3.0	3.3	3.6	V
Operating Free Air				
Temperature (T_A)	-40	+25	+85	°C
Receiver Input Range	0		2.4	V
Supply Noise Voltage			100	mV_PP
(V _{CC})				

Electrical Characteristics

Over recommended operating supply and temperature ranges unless otherwise specified.

Symbol	Parameter	Condition	Min	Тур	Max	Units	
CMOS/TT	L DC SPECIFICATIONS (For PowerDo	wn Pin)		•			
V _{IH}	High Level Input Voltage			2.0		V _{CC}	V
V _{IL}	Low Level Input Voltage			GND		0.8	V
V _{CL}	Input Clamp Voltage	I _{CL} = -18 mA			-0.79	-1.5	V
I _{IN}	Input Current	$V_{IN} = 0.4V$, 2.5V or V_{CC}			+1.8	+10	μΑ
		V _{IN} = GND		-10	0		μA
CMOS/TT	L DC SPECIFICATIONS						
V _{OH}	High Level Output Voltage	$I_{OH} = -0.4 \text{ mA}$		2.7	3.3		V
V_{OL}	Low Level Output Voltage	I _{OL} = 2 mA			0.06	0.3	V
los	Output Short Circuit Current	V _{OUT} = 0V			-60	-120	mA
LVDS RE	CEIVER DC SPECIFICATIONS						
V_{TH}	Differential Input High Threshold	V _{CM} = +1.2V				+100	mV
V _{TL}	Differential Input Low Threshold			-100			mV
I _{IN}	Input Current	$V_{IN} = +2.4V, V_{CC} = 3.6V$	/			±10	μΑ
		V _{IN} = 0V, V _{CC} = 3.6V				±10	μΑ
RECEIVE	R SUPPLY CURRENT						
ICCRW Receiver Supply Current Worst Cas	Receiver Supply Current Worst Case	C _L = 8 pF, Worst Case Pattern, DS90CR286A (Figures 1, 2),	f = 33 MHz		49	65	mA
			f = 37.5 MHz		53	70	mA
			f = 66 MHz		81	105	mA
		T _A =-10°C to +70°C					
ICCRW	CCRW Receiver Supply Current Worst Case	C _L = 8 pF, Worst Case Pattern, DS90CR286A	f = 40 MHz		53	70	mA
	(Figures 1, 2), T _A =-40°C to +85°C	f = 66 MHz		81	105	mA	
ICCRW Receiver Supply Current	Receiver Supply Current Worst Case	C _L = 8 pF, Worst Case	f = 33 MHz		49	55	mA
		Pattern, DS90CR216A f	f = 37.5 MHz		53	60	mA
		$T_A = -10^{\circ} \text{C to } +70^{\circ} \text{C}$	f = 66 MHz		78	90	mA
ICCRW F	Receiver Supply Current Worst Case	C _L = 8 pF, Worst Case Pattern, DS90CR216A	f = 40 MHz		53	60	mA
		(Figures 1, 2), T _A =-40°C to +85°C	f = 66 MHz		78	90	mA

Electrical Characteristics (Continued)

Over recommended operating supply and temperature ranges unless otherwise specified.

Symbol	Parameter	Conditions		Тур	Max	Units
RECEIVER SUPPLY CURRENT						
ICCRZ	Receiver Supply Current	Power Down = Low		10	55	μA
	Power Down Receiver Outputs Stay Low during					
		Power Down Mode				

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The tables of "Electrical Characteristics" specify conditions for device operation.

Receiver Switching Characteristics

Over recommended operating supply and temperature ranges unless otherwise specified

Symbol	Parameter	Min	Тур	Max	Units	
CLHT	CMOS/TTL Low-to-High Transition Time (Figure 2)		2	5	ns	
CHLT	CMOS/TTL High-to-Low Transition Time (Figure 2)		1.8	5	ns	
RSPos0	Receiver Input Strobe Position for Bit 0 (Figure 9, Figure 10)	1.0	1.4	2.15	ns	
RSPos1	Receiver Input Strobe Position for Bit 1	4.5	5.0	5.8	ns	
RSPos2	Receiver Input Strobe Position for Bit 2	ŀ	8.1	8.5	9.15	ns
RSPos3	Receiver Input Strobe Position for Bit 3	İ	11.6	11.9	12.6	ns
RSPos4	Receiver Input Strobe Position for Bit 4	İ	15.1	15.6	16.3	ns
RSPos5	Receiver Input Strobe Position for Bit 5	İ	18.8	19.2	19.9	ns
RSPos6	Receiver Input Strobe Position for Bit 6	Ī	22.5	22.9	23.6	ns
RSPos0	Receiver Input Strobe Position for Bit 0 (Figure 9, Figure 10)	= 66 MHz	0.7	1.1	1.4	ns
RSPos1	Receiver Input Strobe Position for Bit 1	Ī	2.9	3.3	3.6	ns
RSPos2	Receiver Input Strobe Position for Bit 2	Ī	5.1	5.5	5.8	ns
RSPos3	Receiver Input Strobe Position for Bit 3		7.3	7.7	8.0	ns
RSPos4	Receiver Input Strobe Position for Bit 4		9.5	9.9	10.2	ns
RSPos5	Receiver Input Strobe Position for Bit 5		11.7	12.1	12.4	ns
RSPos6	Receiver Input Strobe Position for Bit 6		13.9	14.3	14.6	ns
RSKM	RxIN Skew Margin (Note 4) (Figure 11) f = 40 MHz		490			ps
	f = 66 MHz		400			ps
RCOP	RxCLK OUT Period (Figure 3)		15	Т	50	ns
RCOH	RxCLK OUT High Time (Figure 3) f = 40 MHz		10.0	12.2		ns
RCOL	RxCLK OUT Low Time (Figure 3)		10.0	11.0		ns
RSRC	RxOUT Setup to RxCLK OUT (Figure 3)		6.5	11.6		ns
RHRC	RxOUT Hold to RxCLK OUT (Figure 3)		6.0	11.6		ns
RCOH	RxCLK OUT High Time (Figure 3) f = 66 MHz		5.0	7.6		ns
RCOL	RxCLK OUT Low Time (Figure 3)		5.0	6.3		ns
RSRC	RxOUT Setup to RxCLK OUT (Figure 3)	4.5	7.3		ns	
RHRC	RxOUT Hold to RxCLK OUT (Figure 3)	4.0	6.3		ns	
RCCD	RxCLK IN to RxCLK OUT Delay @ 25° C, $V_{CC} = 3.3V$ (No.)	ote 5)(Figure 4	3.5	5.0	7.5	ns
RPLLS	Receiver Phase Lock Loop Set (Figure 5)				10	ms
RPDD	Receiver Power Down Delay (Figure 8)				1	μs

Note 4: Receiver Skew Margin is defined as the valid data sampling region at the receiver inputs. This margin takes into account the transmitter pulse positions (min and max) and the receiver input setup and hold time (internal data sampling window - RSPos). This margin allows for LVDS interconnect skew, inter-symbol interference (both dependent on type/length of cable), and clock jitter (less than 250 ps).

Note 5: Total latency for the channel link chipset is a function of clock period and gate delays through the transmitter (TCCD) and receiver (RCCD). The total latency for the 215/285 transmitter and 216A/286A receiver is: (T + TCCD) + (2*T + RCCD), where T = Clock period.

Note 2: Typical values are given for V_{CC} = 3.3V and T_A = +25C.

Note 3: Current into device pins is defined as positive. Current out of device pins is defined as negative. Voltages are referenced to ground unless otherwise specified (except V_{OD} and ΔV_{OD}).

AC Timing Diagrams

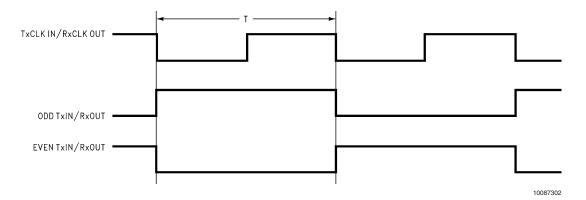


FIGURE 1. "Worst Case" Test Pattern

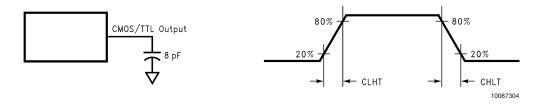


FIGURE 2. DS90CR286A/DS90CR216A (Receiver) CMOS/TTL Output Load and Transition Times

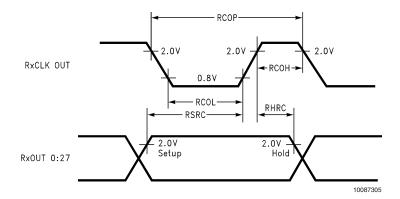


FIGURE 3. DS90CR286A/DS90CR216A (Receiver) Setup/Hold and High/Low Times

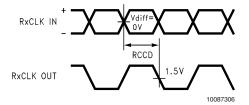


FIGURE 4. DS90CR286A/DS90CR216A (Receiver) Clock In to Clock Out Delay

AC Timing Diagrams (Continued)

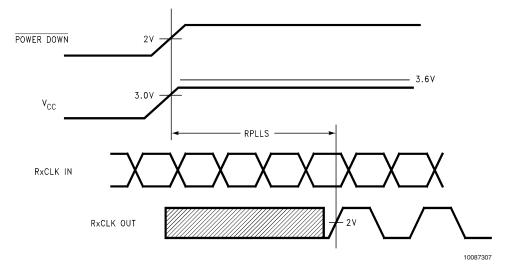


FIGURE 5. DS90CR286A/DS90CR216A (Receiver) Phase Lock Loop Set Time

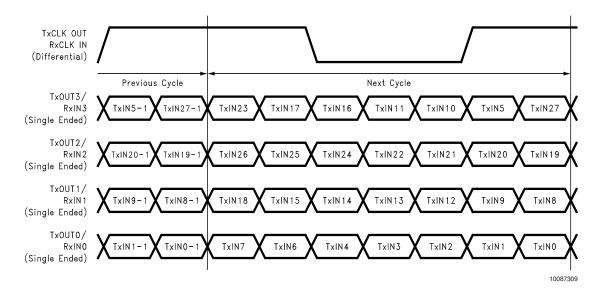


FIGURE 6. 28 Parallel TTL Data Inputs Mapped to LVDS Outputs - DS90CR286A

AC Timing Diagrams (Continued)

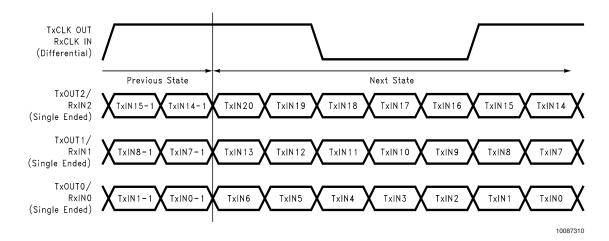


FIGURE 7. 21 Parallel TTL Data Inputs Mapped to LVDS Outputs - DS90CR216A

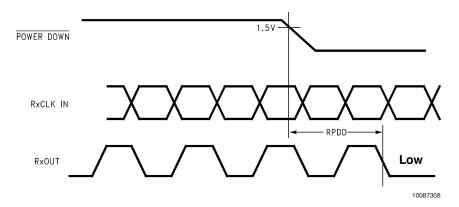


FIGURE 8. DS90CR286A/DS90CR216A (Receiver) Power Down Delay

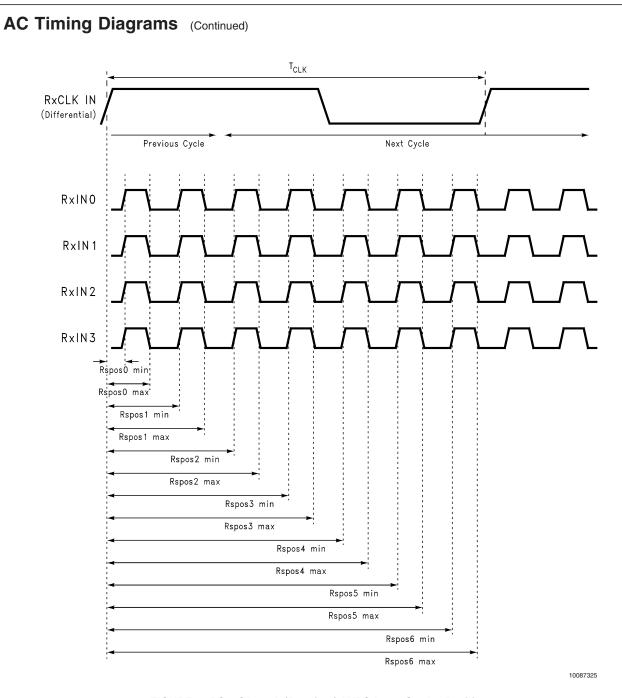


FIGURE 9. DS90CR286A (Receiver) LVDS Input Strobe Position

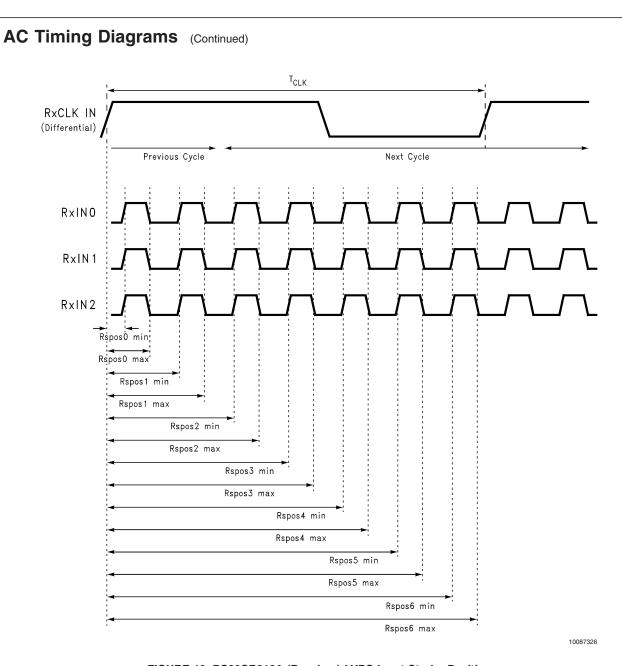
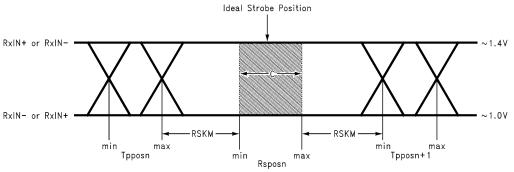



FIGURE 10. DS90CR216A (Receiver) LVDS Input Strobe Position

AC Timing Diagrams (Continued)

10087311

C—Setup and Hold Time (Internal data sampling window) defined by Rspos (receiver input strobe position) min and max Tppos—Transmitter output pulse position (min and max)

RSKM = Cable Skew (type, length) + Source Clock Jitter (cycle to cycle) (Note 6) + ISI (Inter-symbol interference) (Note 7)

Cable Skew — typically 10 ps-40 ps per foot, media dependent

Note 6: Cycle-to-cycle jitter is less than TBD ps at 66 MHz.

Note 7: ISI is dependent on interconnect length; may be zero.

FIGURE 11. Receiver LVDS Input Skew Margin

DS90CR286A Pin Description — MTD56 Package — 28-Bit Channel Link Receiver

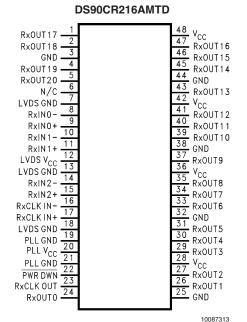
Pin Name	I/O	No.	Description
RxIN+	I	4	Positive LVDS differential data inputs.
RxIN-	I	4	Negative LVDS differential data inputs.
RxOUT	0	28	TTL level data outputs.
RxCLK IN+	ı	1	Positive LVDS differential clock input.
RxCLK IN-	I	1	Negative LVDS differential clock input.
RxCLK OUT	0	1	TTL level clock output. The rising edge acts as data strobe.
PWR DOWN	ı	1	TTL level input. When asserted (low input) the receiver outputs are low.
V _{cc}	I	4	Power supply pins for TTL outputs.
GND	I	5	Ground pins for TTL outputs.
PLL V _{CC}	I	1	Power supply for PLL.
PLL GND	I	2	Ground pin for PLL.
LVDS V cc	I	1	Power supply pin for LVDS inputs.
LVDS GND	I	3	Ground pins for LVDS inputs.

DS90CR216A Pin Description — MTD48 Package — 21-Bit Channel Link Receiver

Pin Name	I/O	No.	Description
RxIN+	ı	3	Positive LVDS differential data inputs. (Note 8)
RxIN-	ı	3	Negative LVDS differential data inputs. (Note 8)
RxOUT	0	21	TTL level data outputs.
RxCLK IN+	ı	1	Positive LVDS differential clock input.
RxCLK IN-	ı	1	Negative LVDS differential clock input.
RxCLK OUT	0	1	TTL level clock output. The rising edge acts as data strobe.
PWR DOWN	ı	1	TTL level input. When asserted (low input) the receiver outputs are low.
V _{CC}	I	4	Power supply pins for TTL outputs.
GND	ı	5	Ground pins for TTL outputs.
PLL V _{CC}	ı	1	Power supply for PLL.
PLL GND	ı	2	Ground pin for PLL.
LVDS V cc	I	1	Power supply pin for LVDS inputs.
LVDS GND	Ī	3	Ground pins for LVDS inputs.

Note 8: These receivers have input failsafe bias circuitry to guarantee a stable receiver output for floating or terminated receiver inputs. Under these conditions receiver inputs will be in a HIGH state. If a clock signal is present, outputs will all be HIGH; if the clock input is also floating/terminated outputs will remain in the last valid state. A floating/terminated clock input will result in a LOW clock output.

Pin Diagram for TSSOP Packages DS90CR286AMTD

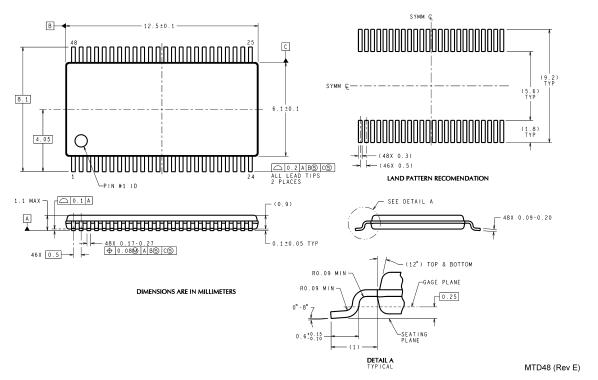

56 V_{CC} 55 RXOUT21 RxOUT22 • RxOUT23 -54 RXOUT20 53 RXOUT19 3 RxOUT24 -4 GND 52 GND RxOUT25 51 RxOUT18 6 RxOUT26 -51 RXOUT18 50 RXOUT17 49 RXOUT16 VCC 47 RXOUT15 46 RXOUT14 45 RXOUT14 RxOUT27 8 LVDS GND -9 RxINO--RxIN0+ 10 RxIN1- 11 45 RXOUT 13 44 GND 43 RXOUT 12 $RxIN1 + \frac{12}{13}$ $\mathsf{LVDS}\,\mathsf{V}_\mathsf{CC}$ LVDS V_{CC} 14 LVDS GND 15 42 RxOUT11 RxIN2-41 RXOUT11 41 RXOUT10 40 VCC 39 RXOUT9 38 RXOUT6 37 RXOUT7 36 GND 35 RXOUT6 34 RXOUT5 33 RXOUT5 32 RXOUT5 RXIN2-16 RXIN2+ 17 RxCLKIN-RxCLKIN+ 18 RxCLKIN+ 19 RxIN3- 20 RxIN3+ 21 LVDS GND 21 PLL GND 23 PLL V_{CC} 24 PLL GND 25

31 VCC 30 RXOUT2 29 RxOUT1

10087323

PWR DWN 26 RxCLK OUT 27 RxOUTO 28

28 GND



Physical Dimensions inches (millimeters) unless otherwise noted В 8.1 4.05 O.2 A BS CS ALL LEAD TIPS 2 PLACES LAND PATTERN RECOMENDATION 0.1 A 56X 0.09-0.20 0.1±0.05 TYP 12°) TOP & BOTTOM R0.09 MIN GAGE PLANE R0.09 MIN 0.25 DIMENSIONS ARE IN MILLIMETERS SEATING PLANE DETAIL A

56-Lead Molded Thin Shrink Small Outline Package, JEDEC Dimensions shown in millimeters only Order Number DS90CR286AMTD NS Package Number MTD56

MTD56 (Rev D)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

48-Lead Molded Thin Shrink Small Outline Package, JEDEC Dimensions shown in millimeters only Order Number DS90CR216AMTD NS Package Number MTD48

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

National Semiconductor Americas Customer Support Center

Email: new.feedback@nsc.com Tel: 1-800-272-9959

www.national.com

National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530 85 86

Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171
Français Tel: +33 (0) 1 41 91 8790

National Semiconductor
Asia Pacific Customer
Support Center
Email: ap.support@nsc.com

National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560