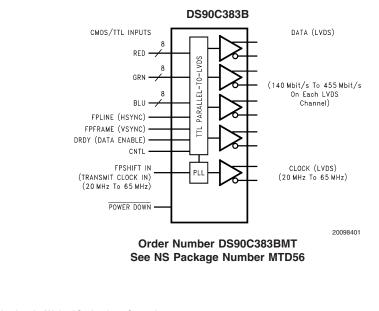

DS90C383B +3.3V Programmable LVDS Transmitter 24-Bit Flat Panel Display (FPD) Link-65 MHz **General Description**

The DS90C383B transmitter converts 28 bits of CMOS/TTL data into four LVDS (Low Voltage Differential Signaling) data streams. A phase-locked transmit clock is transmitted in parallel with the data streams over a fifth LVDS link. Every cycle of the transmit clock 28 bits of input data are sampled and transmitted. At a transmit clock frequency of 65 MHz, 24 bits of RGB data and 3 bits of LCD timing and control data (FPLINE, FPFRAME, DRDY) are transmitted at a rate of 455 Mbps per LVDS data channel. Using a 65 MHz clock, the data throughput is 227 Mbytes/sec. The DS90C383B transmitter can be programmed for Rising edge strobe or Falling edge strobe through a dedicated pin. A Rising edge or Falling edge strobe transmitter will interoperate with a Falling edge strobe Receiver (DS90CF386) without any translation logic.


This chipset is an ideal means to solve EMI and cable size problems associated with wide, high speed TTL interfaces.

Features

- No special start-up sequence required between clock/data and /PD pins. Input signal (clock and data) can be applied either before or after the device is powered.
- Support Spread Spectrum Clocking up to 100kHz frequency modulation & deviations of ±2.5% center spread or -5% down spread.
- "Input Clock Detection" feature will pull all LVDS pairs to logic low when input clock is missing and when /PD pin is logic high.
- 18 to 68 MHz shift clock support
- Best-in-Class Set & Hold Times on TxINPUTs
- Tx power consumption < 130 mW (typ) @65MHz Grayscale
- 40% Less Power Dissipation than BiCMOS Alternatives
- Tx Power-down mode $< 60\mu$ W (typ)
- Supports VGA, SVGA, XGA and Dual Pixel SXGA.
- Narrow bus reduces cable size and cost
 - Up to 1.8 Gbps throughput
 - Up to 227 Megabytes/sec bandwidth
 - 345 mV (typ) swing LVDS devices for low EMI
- PLL requires no external components
- Compatible with TIA/EIA-644 LVDS standard
- Low profile 56-lead TSSOP package
- Improved replacement for:

Block Diagram

TRI-STATE® is a registered trademark of National Semiconductor Corporation.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (V _{CC})	-0.3V to +4V
CMOS/TTL Input Voltage	-0.3V to (V _{CC} + 0.3V)
LVDS Driver Output Voltage	–0.3V to (V _{CC} + 0.3V)
LVDS Output Short Circuit	
Duration	Continuous
Junction Temperature	+150°C
Storage Temperature	−65°C to +150°C
Lead Temperature	
(Soldering, 4 sec)	+260°C
Maximum Package Power Dis	sipation Capacity @ 25°C
MTD56 (TSSOP) Package:	
DS90C383B	1.63 W
Package Derating:	
DS90C383B	12.5 mW/°C above +25°C

ESD Rating	
(HBM, 1.5 kΩ, 100 pF)	7 kV
(EIAJ, 0Ω, 200 pF)	500V

Recommended Operating Conditions

	Min	Nom	Max	Units
Supply Voltage	3.0	3.3	3.6	V
(V _{CC})				
Operating Free Air				
Temperature (T _A)	-10	+25	+70	°C
Supply Noise			200	mV_{PP}
Voltage (V _{CC})				
TxCLKIN frequency	18		68	MHz

Electrical Characteristics

Over recommended operating supply and temperature ranges unless otherwise specified.

Symbol	Parameter	Condition	is	Min	Тур	Max	Units
CMOS/TT	L DC SPECIFICATIONS						•
V _{IH}	High Level Input Voltage			2.0		V _{CC}	V
V _{IL}	Low Level Input Voltage			GND		0.8	V
V _{CL}	Input Clamp Voltage	I _{CL} = -18 mA			-0.79	-1.5	V
I _{IN}	Input Current	V $_{\rm IN}$ = 0.4V, 2.5V or V _{CO}	>		+1.8	+10	μA
		V _{IN} = GND	V _{IN} = GND				μA
LVDS DC	SPECIFICATIONS	·					
V _{OD}	Differential Output Voltage	R _L = 100Ω		250	345	450	mV
ΔV_{OD}	Change in V _{OD} between					35	mV
	complimentary output states						
Vos	Offset Voltage (Note 4)			1.13	1.25	1.38	V
ΔV_{OS}	Change in V _{OS} between					35	mV
	complimentary output states						
l _{os}	Output Short Circuit Current	$V_{OUT} = 0V, R_L = 100\Omega$			-3.5	-5	mA
l _{oz}	Output TRI-STATE® Current	Power Down = 0V,			±1	±10	μA
		V_{OUT} = 0V or V _{CC}					
TRANSM	ITTER SUPPLY CURRENT						
ICCTW	Transmitter Supply Current	$R_L = 100\Omega$,	f = 25MHz		31	45	mA
	Worst Case	C _L = 5 pF,					
		Worst Case Pattern					
		(<i>Figures 1, 4)</i> " Typ "	f = 40MHz		37	50	mA
		values are given for V					
		cc = 3.6V and T _A =					
		+25°C, " Max " values	f = 65 MHz		48	60	mA
		are given for V $_{\rm CC}$ =					
		3.6V and T _A = -10° C					

0
S
Q
0
C
ώ
$\boldsymbol{\omega}$
ω
TT

Electrical Characteristics (Continued)

Over recommended operating supply and temperature ranges unless otherwise specified.

Symbol	Parameter	Condition	IS	Min	Тур	Max	Units
TRANSM	ITTER SUPPLY CURRENT						
ICCTG	Transmitter Supply Current 16 Grayscale	$R_L = 100\Omega,$ $C_L = 5 pF,$ 16 Grayscale Pattern	f = 25MHz		29	40	mA
		(Figures 2, 4)" Typ " values are given for V cc = 3.6V and T _A =	f = 40MHz		33	45	mA
		+25°C, " Max " values are given for V $_{CC}$ = 3.6V and T $_{A}$ = -10°C	f = 65 MHz		39	50	mA
ICCTZ	Transmitter Supply Current Power Down	Power Down = Low Driver Outputs in TRI-S Power Down Mode	Power Down = Low Driver Outputs in TRI-STATE under		17	150	μA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The tables of "Electrical Characteristics" specify conditions for device operation.

Note 2: Typical values are given for V_{CC} = 3.3V and T $_A$ = +25 $^\circ\text{C}$ unless specified otherwise.

Note 3: Current into device pins is defined as positive. Current out of device pins is defined as negative. Voltages are referenced to ground unless otherwise specified (except V_{OD} and ΔV_{OD}).

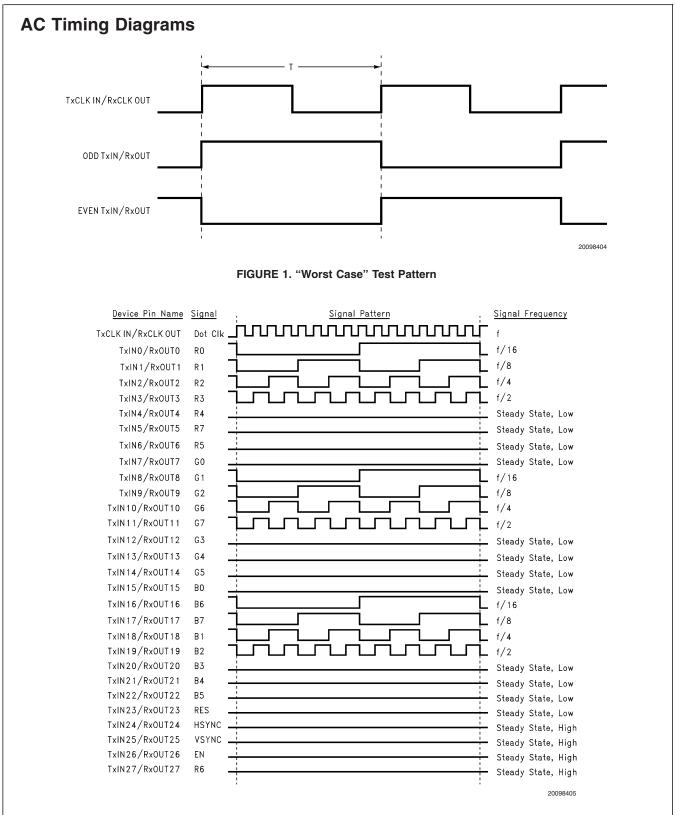
Note 4: V_{OS} previously referred as V_{CM} .

Recommended Transmitter Input Characteristics

Over recommended operating supply and temperature ranges unless otherwise specified

Symbol	Parameter	Min	Тур	Мах	Units
TCIT	TxCLK IN Transition Time (Figure 5)			5	ns
TCIP	TxCLK IN Period (Figure 6)	14.7	Т	50	ns
TCIH	TxCLK IN High Time (Figure 6)	0.35T	0.5T	0.65T	ns
TCIL	TxCLK IN Low Time (Figure 6)	0.35T	0.5T	0.65T	ns
TXIT	TxIN, and Power Down pins Transition Time	1.5		6.0	ns
TXPD	Minimum pulse width for Power Down pin signal	1			us

Transmitter Switching Characteristics


Over recommended operating supply and temperature ranges unless otherwise specified

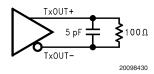
Symbol	Parameter	Min	Тур	Max	Units	
LLHT	LVDS Low-to-High Transition Time (Figure 4)		0.75	1.4	ns	
LHLT	LVDS High-to-Low Transition Time (Figure 4)			0.75	1.4	ns
TPPos0	Transmitter Output Pulse Position for Bit 0 (Figure 11) (Note	-0.20	0	+0.20	ns	
	5)					
TPPos1	Transmitter Output Pulse Position for Bit 1			2.20	2.40	ns
TPPos2	Transmitter Output Pulse Position for Bit 2		4.20	4.40	4.60	ns
TPPos3	Transmitter Output Pulse Position for Bit 3] [6.39	6.59	6.79	ns
TPPos4	Transmitter Output Pulse Position for Bit 4		8.59	8.79	8.99	ns
TPPos5	Transmitter Output Pulse Position for Bit 5		10.79	10.99	11.19	ns
TPPos6	Transmitter Output Pulse Position for Bit 6	1 [12.99	13.19	13.39	ns

Symbol	Parameter		Min	Тур	Мах	Units
TPPos0	Transmitter Output Pulse Position for Bit 0 (<i>Figure 11</i>) (Note 5)	f = 40 MHz	-0.25	0	+0.25	ns
TPPos1	Transmitter Output Pulse Position for Bit 1	1 1	3.32	3.57	3.82	ns
TPPos2	Transmitter Output Pulse Position for Bit 2	1	6.89	7.14	7.39	ns
TPPos3	Transmitter Output Pulse Position for Bit 3	1	10.46	10.71	10.96	ns
TPPos4	Transmitter Output Pulse Position for Bit 4		14.04	14.29	14.54	ns
TPPos5	Transmitter Output Pulse Position for Bit 5		17.61	17.86	18.11	ns
TPPos6	Transmitter Output Pulse Position for Bit 6		21.18	21.43	21.68	ns
TPPos0	Transmitter Output Pulse Position for Bit 0 (<i>Figure 11</i>) (Note 5)	f = 25MHz	-0.45	0	+0.45	ns
TPPos1	Transmitter Output Pulse Position for Bit 1	1 1	5.26	5.71	6.16	ns
TPPos2	Transmitter Output Pulse Position for Bit 2	1 1	10.98	11.43	11.88	ns
TPPos3	Transmitter Output Pulse Position for Bit 3	1 1	16.69	17.14	17.59	ns
TPPos4	Transmitter Output Pulse Position for Bit 4	1	22.41	22.86	23.31	ns
TPPos5	Transmitter Output Pulse Position for Bit 5	1	25.12	28.57	29.02	ns
TPPos6	Transmitter Output Pulse Position for Bit 6		33.84	34.29	34.74	ns
TSTC	TxIN Setup to TxCLK IN (Figure 6)		2.5			ns
THTC	TxIN Hold to TxCLK IN (Figure 6)		0.5			ns
TCCD	TxCLK IN to TxCLK OUT Delay (<i>Figure 7</i>) 50% duty cycle input clock is assumed, $T_A = -10^{\circ}$ C, and 65MHz for " Min ", $T_A = 70^{\circ}$ C, and 25MHz for " Max ", $V_{CC} = 3.6$ V, R_{-} FB = V_{CC}		3.340		7.211	ns
	TxCLK IN to TxCLK OUT Delay (<i>Figure 7</i>) 50% duty cycle input clock is assumed, $T_A = -10^{\circ}$ C, and 65MHz for " Min ", $T_A = 70^{\circ}$ C, and 25MHz for " Max ", $V_{CC} = 3.6$ V, R_FB = GND		3.011		6.062	ns
SSCG		f = 25MHz		100kHz ± 2.5%/-5%		
	Spread Spectrum Clock support; Modulation frequency with a linear profile(Note 6).	f = 40MHz		100kHz ± 2.5%/-5%		
		f = 65MHz		100kHz ± 2.5%/-5%		
TPLLS	Transmitter Phase Lock Loop Set (Figure 8)				10	ms
TPDD	Transmitter Power Down Delay (Figure 10)				100	ns

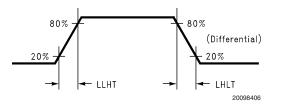
Note 5: The Minimum and Maximum Limits are based on statistical analysis of the device performance over process, voltage, and temperature ranges. This parameter is functionality tested only on Automatic Test Equipment (ATE).

Note 6: Care must be taken to ensure TSTC and THTC are met so input data are sampling correctly. This SSCG parameter only shows the performance of tracking Spread Spectrum Clock applied to TxCLK IN pin, and reflects the result on TxCLKOUT+ and TxCLK- pins.

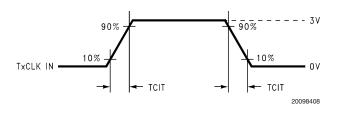
Note 7: The worst case test pattern produces a maximum toggling of digital circuits, LVDS I/O and CMOS/TTL I/O.

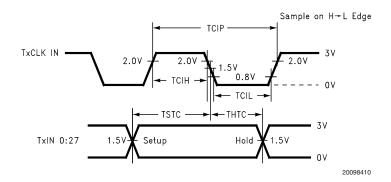

Note 8: The 16 grayscale test pattern tests device power consumption for a "typical" LCD display pattern. The test pattern approximates signal switching needed to produce groups of 16 vertical stripes across the display.

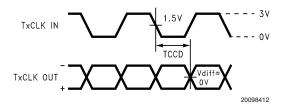
Note 9: Figures 1, 2 show a falling edge data strobe (TxCLK IN/RxCLK OUT).


Note 10: Recommended pin to signal mapping. Customer may choose to define differently.

DS90C383B


AC Timing Diagrams (Continued)


FIGURE 3. DS90C383B (Transmitter) LVDS Output Load


FIGURE 4. DS90C383B (Transmitter) LVDS Transition Times

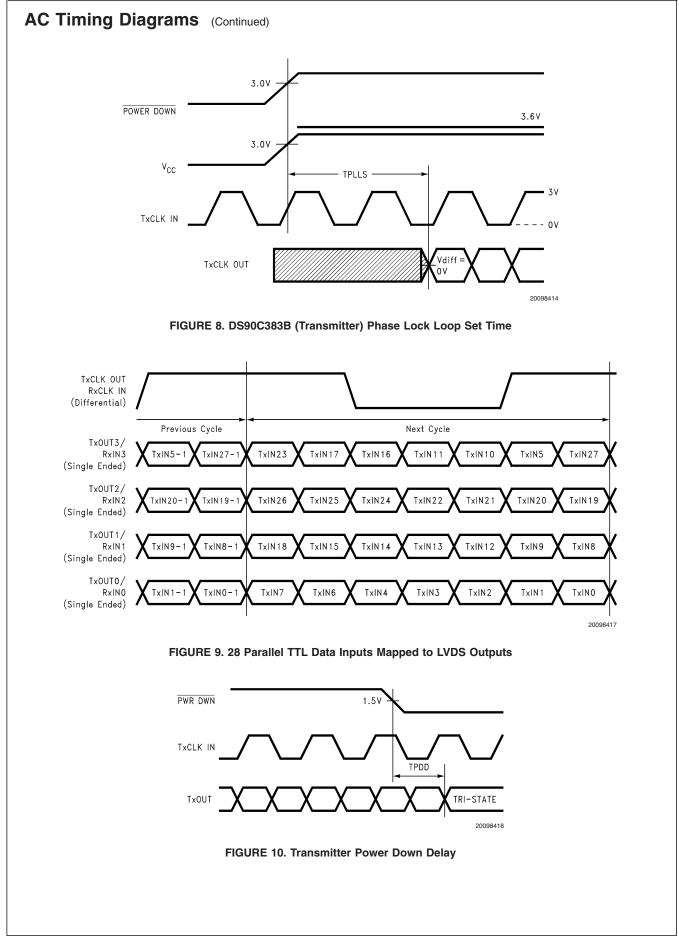

FIGURE 5. DS90C383B (Transmitter) Input Clock Transition Time

FIGURE 6. DS90C383B (Transmitter) Setup/Hold and High/Low Times (Falling Edge Strobe)

FIGURE 7. DS90C383B (Transmitter) Clock In to Clock Out Delay (Falling Edge Strobe)

DS90C383B

AC Timing Diagrams (Continued)

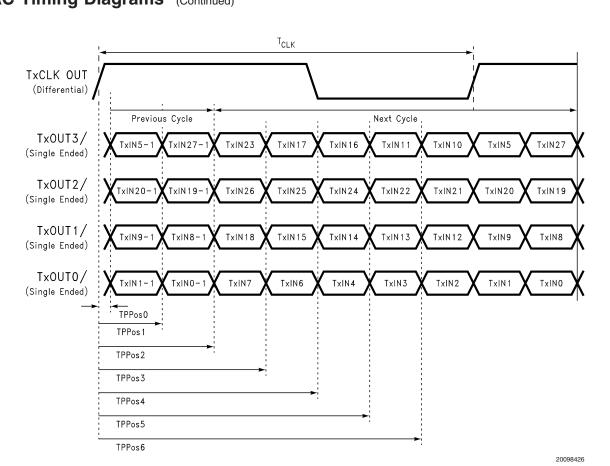


FIGURE 11. Transmitter LVDS Output Pulse Position Measurement

DS90C383B Pin Description—FPD Link Transmitter

Pin Name	I/O	No.	Description
TxIN	I	28	TTL level input. This includes: 8 Red, 8 Green, 8 Blue, and 4 control lines—FPLINE,
			FPFRAME and DRDY (also referred to as HSYNC, VSYNC, Data Enable).
TxOUT+	0	4	Positive LVDS differential data output.
TxOUT-	0	4	Negative LVDS differential data output.
FPSHIFT IN	I	1	TTL level clock input. The falling edge acts as data strobe. Pin name TxCLK IN.
R_FB	I	1	Programmable strobe select (See Table 1).
TxCLK OUT+	0	1	Positive LVDS differential clock output.
TxCLK OUT-	0	1	Negative LVDS differential clock output.
PWR DOWN	I	1	TTL level input. Assertion (low input) TRI-STATES the outputs, ensuring low current at power
			down. See Applications Information section.
V _{cc}	I	3	Power supply pins for TTL inputs.
GND	I	5	Ground pins for TTL inputs.
PLL V _{CC}	I	1	Power supply pin for PLL.
PLL GND	I	2	Ground pins for PLL.
LVDS V _{CC}	I	1	Power supply pin for LVDS outputs.
LVDS GND	1	3	Ground pins for LVDS outputs.

Applications Information

The DS90C383B are backward compatible with the DS90C383/DS90CF383, DS90C383A/DS90CF383A and are a pin-for-pin replacement.

This device may also be used as a replacement for the DS90CF583 (5V, 65MHz) and DS90CF581 (5V, 40MHz) FPD-Link Transmitters with certain considerations/ modifications:

- 1. Change 5V power supply to 3.3V. Provide this supply to the V_{CC}, LVDS V_{CC} and PLL V_{CC} of the transmitter.
- The DS90C383B transmitter input and control inputs accept 3.3V LVTTL/LVCMOS levels. They are not 5V tolerant.
- To implement a falling edge device for the DS90C383B, the R_FB pin (pin 17) may be tied to ground OR left unconnected (an internal pull-down resistor biases this pin low). Biasing this pin to Vcc implements a rising edge device.

TRANSMITTER INPUT PINS

The TxIN and control input pins are compatible with LVC-MOS and LVTTL levels. These pins are not 5V tolerant.

TRANSMITTER INPUT CLOCK/DATA SEQUENCING

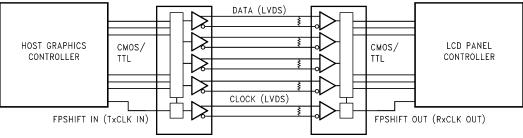
The DS90C383B does not require any special requirement for sequencing of the input clock/data and PD (PowerDown) signal. The DS90C383B offers a more robust input sequencing feature where the input clock/data can be inserted after the release of the PD signal. In the case where the clock/ data is stopped and reapplied, such as changing video mode within Graphics Controller, it is not necessary to cycle the PD signal. However, there are in certain cases where the PD may need to be asserted during these mode changes. In cases where the source (Graphics Source) may be supplying an unstable clock or spurious noisy clock output to the LVDS transmitter, the LVDS Transmitter may attempt to lock onto this unstable clock signal but is unable to do so due the instability or quality of the clock source. The PD signal in these cases should then be asserted once a stable clock is applied to the LVDS transmitter. Asserting the PWR DOWN pin will effectively place the device in reset and disable the PLL, enabling the LVDS Transmitter into a power saving standby mode. However, it is still generally a good practice to assert the PWR DOWN pin or reset the LVDS transmitter whenever the clock/data is stopped and reapplied but it is not mandatory for the DS90C383B.

SPREAD SPECTRUM CLOCK SUPPORT

The DS90C383B can support Spread Spectrum Clocking signal type inputs. The DS90C383B outputs will accurately track Spread Spectrum Clock/Data inputs with modulation frequencies of up to 100kHz (max.)with either center spread of $\pm 2.5\%$ or down spread -5% deviations.

POWER SOURCES SEQUENCE

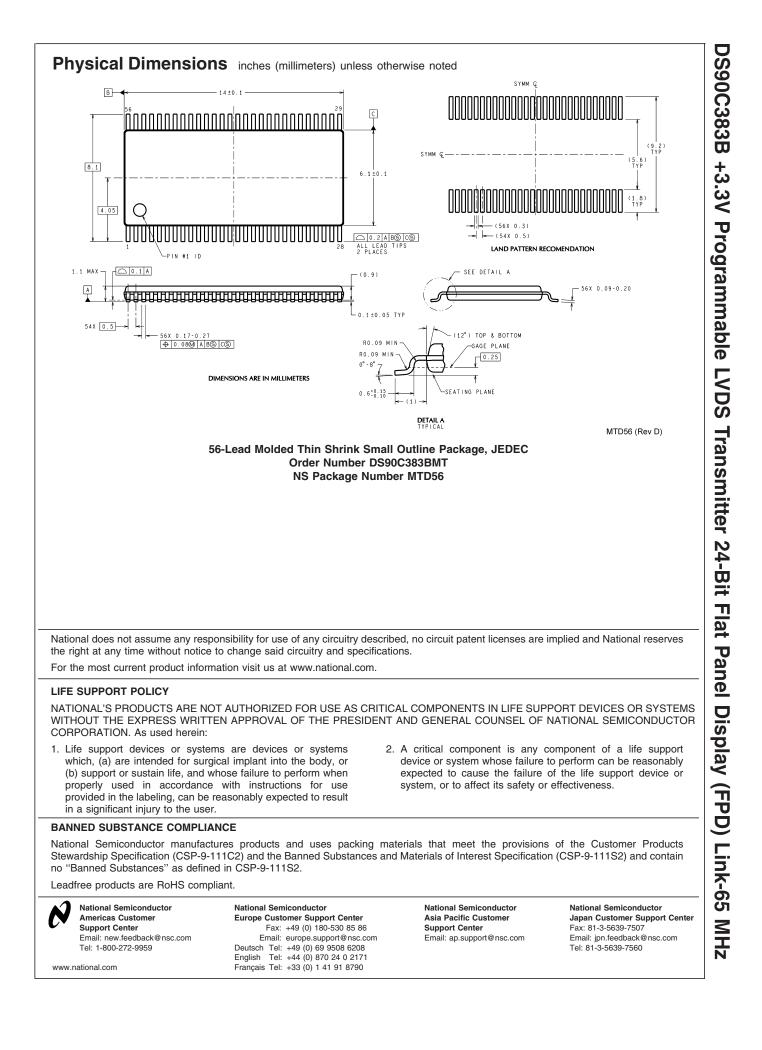
In typical applications, it is recommended to have V_{CC}, LVDS V_{CC} and PLL V_{CC} from the same power source with three separate de-coupling bypass capacitor groups. There is no requirement on which VCC entering the device first.


DS90C383B

Pin Diagram

DS90C383B	
$\begin{array}{c} V_{CC} & 1 \\ \hline Z \\ TxIN5 & 3 \\ \hline TxIN6 & 4 \\ \hline TxIN7 & 5 \\ \hline GND & 5 \\ \hline GND & 5 \\ \hline TxIN8 & 7 \\ \hline TxIN9 & 7 \\ \hline TxIN9 & 7 \\ \hline TxIN9 & 7 \\ \hline TxIN11 & 11 \\ \hline TxIN12 & 11 \\ \hline TxIN12 & 11 \\ \hline TxIN13 & 13 \\ \hline GND & 14 \\ \hline TxIN15 & 16 \\ \hline TxIN16 & 16 \\ \hline R \\ - FB & 17 \\ \hline TxIN17 & 19 \\ \hline TxIN17 & 19 \\ \hline TxIN18 & 20 \\ \hline GND & 21 \\ \hline TxIN20 & 22 \\ \hline TxIN22 & 25 \\ \hline V_{CC} & 27 \\ \hline TxIN24 & 28 \\ \hline TxIN25 \\ \hline \end{array}$	56 TxIN4 55 TxIN3 54 TxIN3 52 GND 51 TxIN1 50 TxIN1 50 TxIN1 50 TxIN10 50 TxIN10 50 TxIN10 50 TxIN10 49 LVDS GND 48 TxOUT0+ 45 TxOUT1+ 45 TxOUT2- 41 TxOUT2- 40 TxCLKOUT- 39 TxCLKOUT- 39 TxCLKOUT- 39 TxCLKOUT- 39 TxCLKOUT- 30 TxOUT3- 36 LVDS GND 37 PLL GND 34 PLL VCC 32 PLL GND 31 TxCLK IN 30 TxIN26 29 GND

20098423



20098403

TABLE 1. Programmable	Transmitter	(DS90C383B)
-----------------------	-------------	-------------

Pin	Condition	Strobe Status
R_FB	$R_FB = V_{CC}$	Rising edge strobe
R_FB	R_FB = GND or NC	Falling edge strobe

