TOSHIBA GT15Q311

TOSHIBA INSULATED GATE BIPOLAR TRANSISTOR SILICON N CHANNEL IGBT

G T 1 5 Q 3 1 1

HIGH POWER SWITCHING APPLICATIONS

MOTOR CONTROL APPLICATIONS

The 3rd Generation

Enhancement-Mode

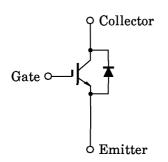
High Speed : $t_f = 0.32 \,\mu s$ (Max.)

Low Saturation Voltage : $V_{CE (sat)} = 2.7 \text{ V (Max.)}$

FRD included between Emitter and Collector

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERIS	SYMBOL	RATING	UNIT		
Collector-Emitter Voltag	v_{CES}	1200	V		
Gate-Emitter Voltage	v_{GES}	±20	V		
Collector Current	DC	$I_{\mathbf{C}}$	15	A	
Conector Current	1ms	I_{CP}	30	A	
Emitter-Collector	DC	$I_{\mathbf{F}}$	15	Α	
Forward Current	1ms	$I_{\mathbf{FM}}$	30	A	
Collector Power Dissipation (Tc = 25°C)		$P_{\mathbf{C}}$	160	w	
Junction Temperature	$T_{ m j}$	150	°C		
Storage Temperature Ra	$\mathrm{T_{stg}}$	-55~150	$^{\circ}\mathrm{C}$		

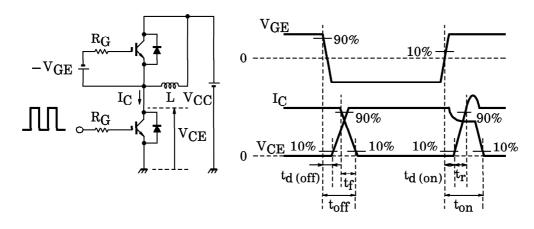

15.9MAX 15.3MAX GATE COLLECTOR (HEAT SINK)

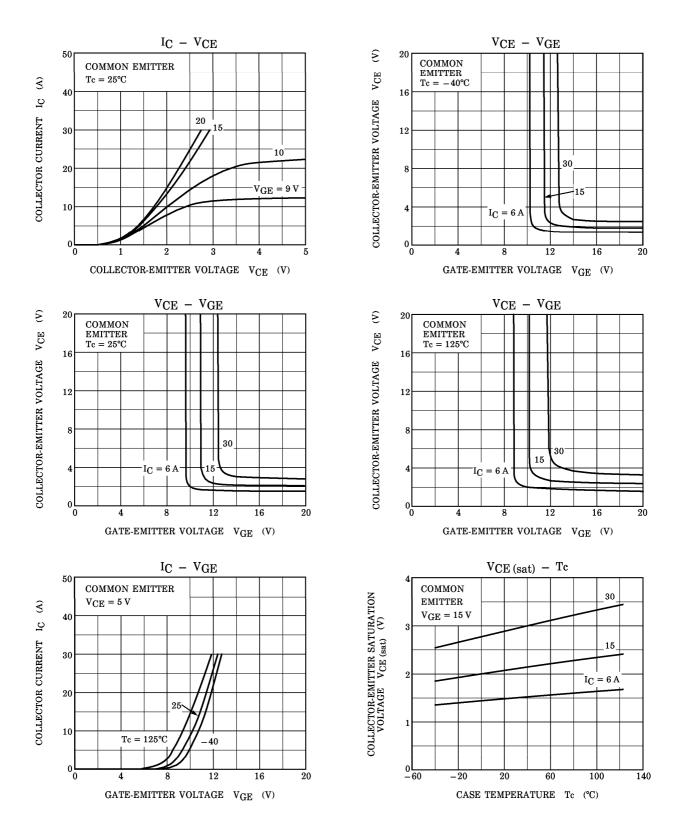
Unit in mm

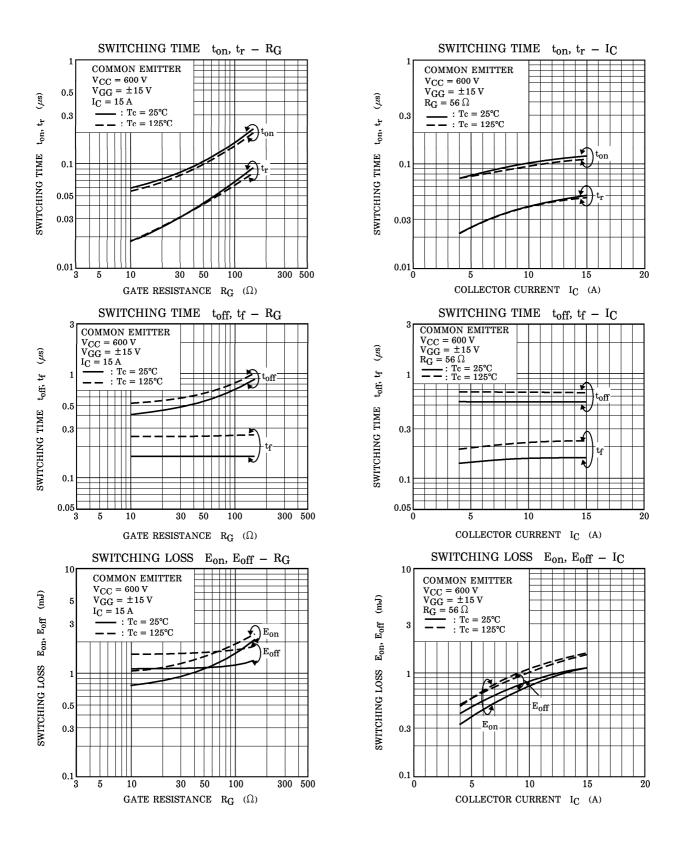
JEDEC EIAJ TOSHIBA 2-16H1A

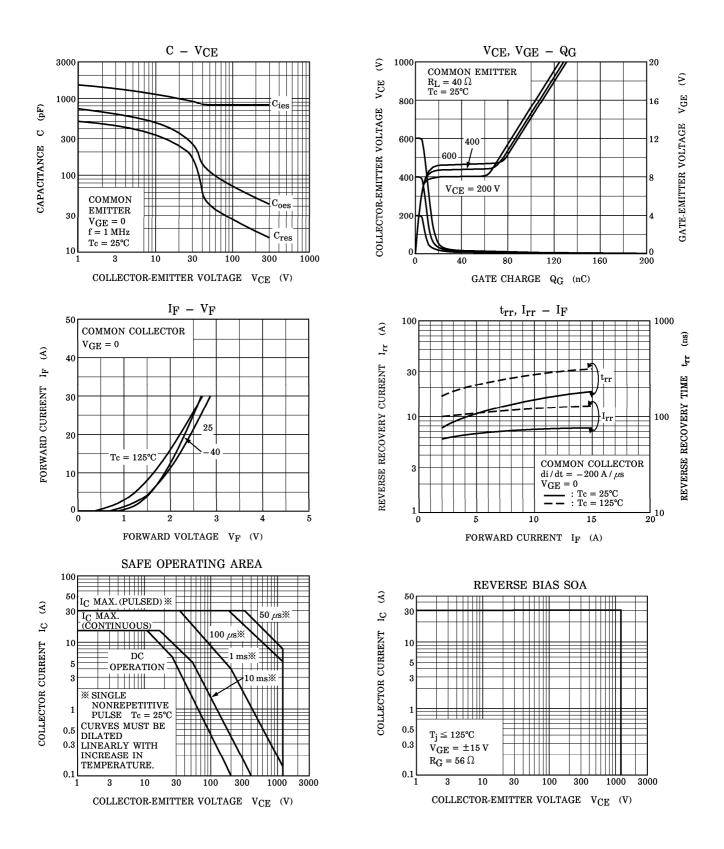
Weight: 3.65 g

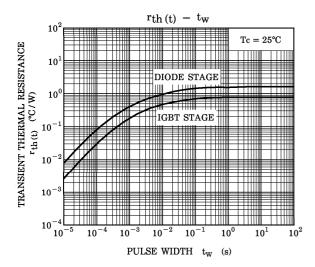
EOUIVALENT CIRCUIT




TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor ■ TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.
 ● The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
 ● The information contained herein is subject to change without notice.


ELECTRICAL CHARACTERISTICS (Ta = 25°C)


CHARAC	TERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Gate Leakage Current		$I_{ ext{GES}}$	$V_{GE} = \pm 20 V, V_{CE} = 0$	_	_	±500	nA
Collector Cut-C	Off Current	ICES	$V_{CE} = 1200 \text{ V}, V_{GE} = 0$	_	_	1.0	mA
Gate-Emitter (Cut-Off Voltage	V _{GE} (OFF)	$I_{C} = 1.5 \text{ mA}, V_{CE} = 5 \text{ V}$	4.0	_	7.0	V
Collector-Emitt Voltage	ter Saturation	V _{CE} (sat)	$I_{C} = 15 \text{ A}, \text{ V}_{GE} = 15 \text{ V}$	_	2.1	2.7	V
Input Capacitance		Cies	$V_{CE} = 50 \text{ V}, V_{GE} = 0, f = 1 \text{ MHz}$	_	950	_	рF
	Rise Time	t _r	Inductive Load	_	0.05	_	
Switching	Turn-On Time	ton	$V_{CC} = 600 \text{ V}, I_{C} = 15 \text{ A}$	_	0.12	_	
Time	Fall Time	tf	$V_{GG} = \pm 15 V, R_G = 56 \Omega$	_	0.16	0.40	μ s
	Turn-Off Time	$t_{ m off}$	(Note)	_	0.56	_	
Peak Forward	Voltage	$V_{\mathbf{F}}$	$I_{F} = 15 \text{ A}, V_{GE} = 0$	_	_	3.0	V
Reverse Recovery Time t ₁		t _{rr}	$I_{\rm F} = 15 {\rm A, \ di / dt} = -200 {\rm A / \ \mu s}$	_	_	350	ns
Thermal Resistance (IGBT)		R _{th (j-c)}	_	_	_	0.78	°C/W
Thermal Resistance (Diode)		$ m R_{th(j-c)}$	_		_	1.60	°C/W


(Note): Switching time measurement circuit and input/output waveforms

