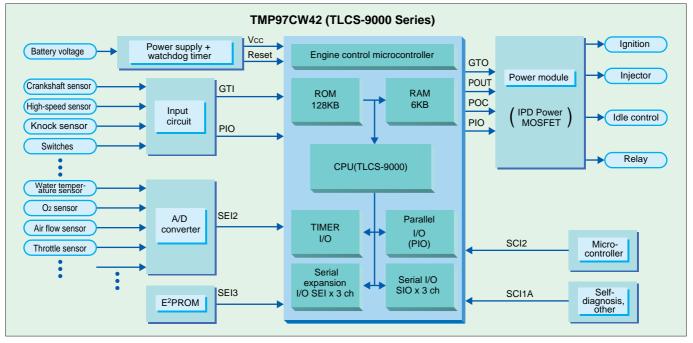
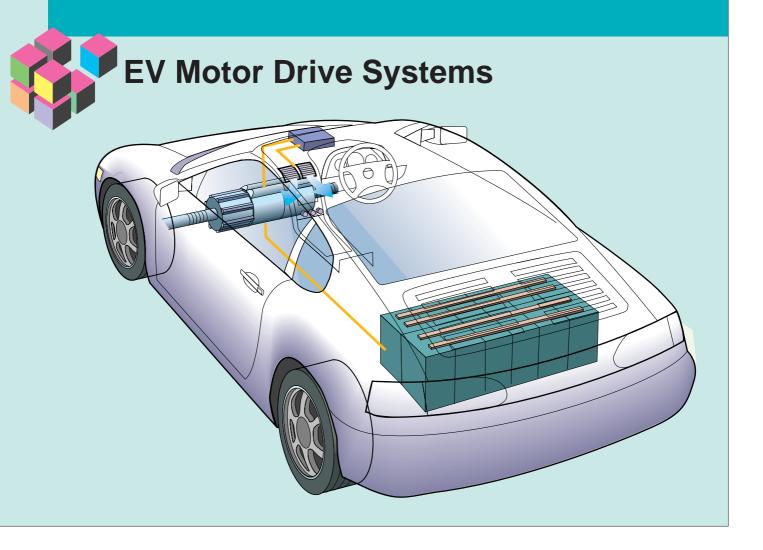

TOSHIBA

SYSTEM CATALOG

FOR AUTOMOBILES

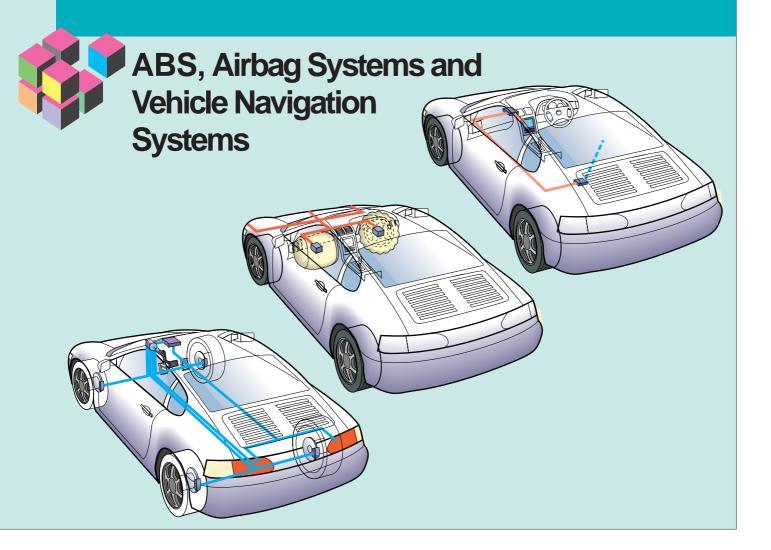



Engine Control Unit System Trends

Engine and transmission control systems will be required to be equipped with more advanced functions in response to stricter emission and fuel consumption regulations.

System Trend	Semiconductor Product Trend (Microcontrollers)
Higher precision	 Higher precision and increased memory capacity of 16-bit microcontrollers and timer I/O
Increased complexity	 More advanced functions and greater intelligence of I/O accompanying increased number of functions being controlled

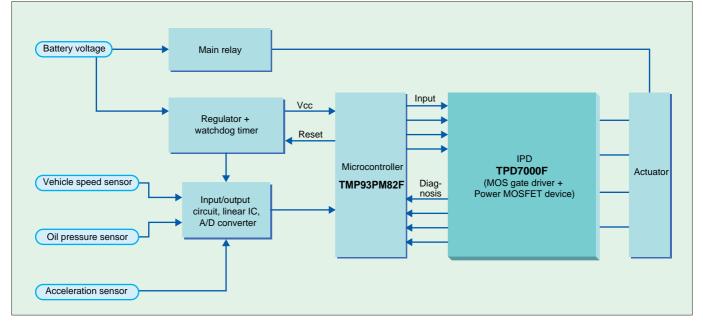
Block Diagram of an Engine Control Unit



EV Motor Drive System Trends

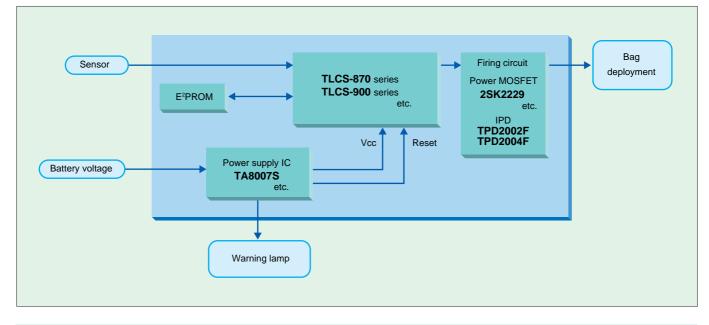
System Trend	Semiconductor Product Trend
Increased capacity and reduced size	 Inhibition of heat generation by reducing loss of IGBT chip Inhibition of heat generation by using soft recovery of FWD chips Increased heat radiation by using an insulator with high thermal conductivity
Increased functions Increased reliability	 Use of IPM with built-in drive circuit Use of IPM with built-in protective circuit

Block Diagram of an EV Motor Drive System



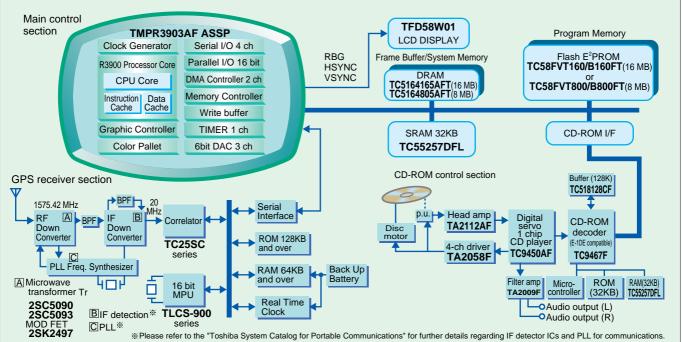
ABS System Trends

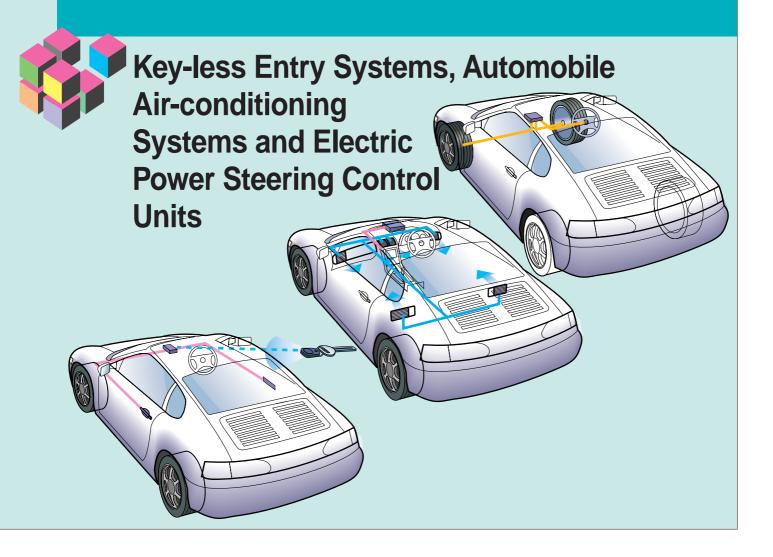
System Trend	Semiconductor Product Trend (Power Devices)
Lower cost	IPDs — More refined, lower loss (no heat sink necessary), multiple outputs Power MOSFET devices — More refined, lower loss (no heat sink necessary), more compact packages
Reduced size and weight	IPDs — Control circuit and power MOSFET device integrated on a single chip, lower loss (no heat sink necessary) Power MOSFET devices — Lower loss (no heat sink necessary), more compact packages
Increased reliability	IPDs — Protective functions during abnormal loads, built-in diagnostic circuit


ABS Block Diagram

Airbag System Trends

System Trend	Semiconductor Product Trend (Power MOSFET)
Lower cost	More refined, lower loss (no heat sink necessary), more compact package
Reduced size and weight	Lower loss (smaller heat sink), more compact package

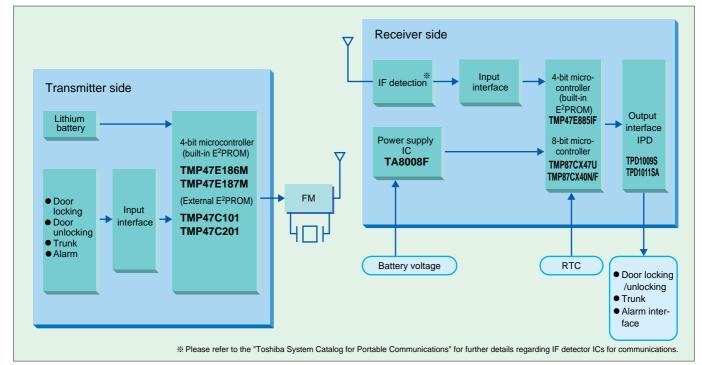

System Block Diagram



Vehicle Navigation System Trends

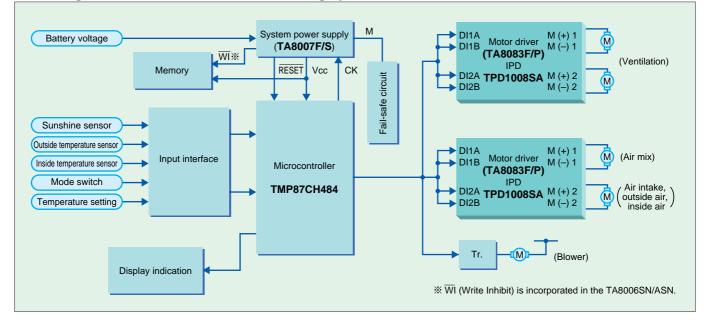
System Trend	Semiconductor Product Trend
Car multi-media applications	 Increased processing speed of main controller (32-bit RISC core, high-speed image processing ASIC) IC for CD-ROM (20 times speed to 24 times speed), IC for DVD-ROM

System Block Diagram



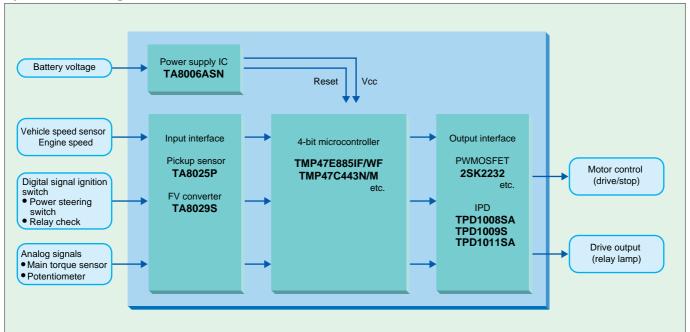
Key-less Entry System Trends

System Trend	Semiconductor Product Trend (Microcontrollers)
Reduced size	Smaller packageLower power consumption


System Block Diagram

Automobile Air-conditioning System Trends

System Trends	Semiconductor Product Trends (Driver ICs)
Advanced functions	 Detailed setting control Built-in self-diagnostic functions
Reduced energy consumption	Built-in low standby mode
Reduced cost and size	 2-circuit built-in motor driver Compact package (surface mounting)


Block Diagram of an Automobile Air-conditioning System

Electric Power Steering Control Unit Trends

System Trend	Semiconductor Product Trend (Microcontrollers)
High performance	Low voltage operation

System Block Diagram

TLCS-47E Series

Features

- 4-bit microcontrollers
- ROM size: 1K to 4K, RAM size: 64 to 256 nibbles
- Instructions: 90
- Minimum instruction execution time: 1.3 μs (operating at 6.0 MHz)
- 5 interrupt factors (2 external, 3 internal)
 6 interrupt factors (2 external, 4 internal)
- I/O ports: 11 to 23
- Hold function

Broad Temperature Range

Device	Function	ROM (bytes)	RAM (bytes)	I/O ports	Min. instruction execution time (μs)	Operating voltage (V)	Operating temper- ature (°C)	Package	OTP version	
+ TMP47E186M/187M ^(Note 2)	E ² PROM16 bytes, SPI	1K	64	11		2.0 to 5.5 (Note 1)	-40 to 85	SOP16	(Note 2) TMP47P186M/187M	
TMP47C241IN/IM	A/D converter,	014	400	04	1.3	2.7 to 6.0		SDIP28 SOP28	TMP47P241VN/VM	
TMP47C241WN	LED driver	2K	128	21			-40 to 110			

+: Covered by U.S. Patent No. 4,382,279 owned by BULL CP8.

Note 1: During CR oscillation (2.7 to 5.5 V when oscillator connected) Note 2: 186: CR oscillation version 187: Oscillator version

Please refer to Toshiba's List of Microcomputer Products for information on other TLCS-47E standard products.

About OTP products:

OTP products will be supported for system development and assessment.

TLCS-470 Series

Features

- 4-bit microcontrollers
- ROM size: 4K to 8K, RAM size: 256 to 1024 nibbles
- Instructions: 92
- Minimum instruction execution time: 1.3 μs (operating at 6.0 MHz)
- 6 interrupt factors (2 external, 4 internal)
 I/O ports: 28 to 56
- Hold function
- Dual clock system

Broad Temperature Range

Device	Function	ROM (bytes)	RAM (bytes)	I/O ports	Min. instruction execution time (µs)	Operating voltage (V)	Operating temper- ature (°C)	Package	OTP version
+TMP47E885IF	E ² PROM (64 bytes), PWM, UART, A/D converter,		540	36	1.3	4.5 to 5.5	-40 to 85	QFP44	TMP47P885F
+TMP47E885WF	16-bit timer/counter, input capture, output compare	8K	512				-40 to 110		

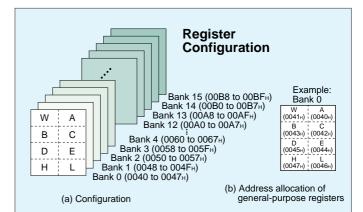
+: Covered by U.S. Patent No. 4,382,279 owned by BULL CP8.

Please refer to Toshiba's List of Microcomputer Products for information on other TLCS-470 standard products.

About OTP products:

OTP products will be supported for system development and assessment.

Please refer to Toshiba's List of Microcomputer Products for information on other TLCS-47/470A standard products.


TLCS-870 Series

Features

- Original architecture
- ROM size: 8K to 60K bytes RAM size: 256 to 2K bytes
- Instructions: 412 instructions of 129 types
- Minimum instruction execution time: 0.5 μs (operating at 8.0 MHz) Multiplication instructions (8 bits x 8 bits) Division instructions (16 bits ÷ 8 bits) Various bit operating instructions 16-bit data operating instructions
 - 1-byte jump/call instructions
- Maximum of 15 interrupt factors High-speed task switching by register bank switching
- Dual clock system capable of switching between high-speed and low power consumption operation
- General-purpose register bank 8-bit registers x 8 x max. of 16 banks
- I/O ports: 35 to 90
- Various standby modes

Broad Temperature Range

- Multi-function timer/counter 16-bit timer/counter: 1 to 2 ch 8-bit timer/counter: 2 to 4 ch Time-based timer: 1 ch Watchdog timer: 1 ch
- Divider output function

Device	Functions	ROM (bytes)	RAM (bytes)	I/O ports	Min. instruction execution time (μs)	Power supply voltage (V)	Operating temper- ature (°C)	OTP version	Package
TMP87CH48IU	LED driver 10-bit A/D converter x 16 ch Timer/counter x 4 ch Watchdog timer Time-based timer UART x 1 ch Clock-synchronized SIO or I ² C x 1 ch	16K	512	56	0.50/122 0.95/122	4.5 to 5.5 2.7 to 5.5	-40 to 85	TMP87PH48U	μQFP64

Please contact our sales or supervisory technical division when considering the I/W version for consultation regarding product details. OTP products are not compatible with the I/W version.

Please refer to Toshiba's List of Microcomputer Products for information on other TLCS-870 series standard products.

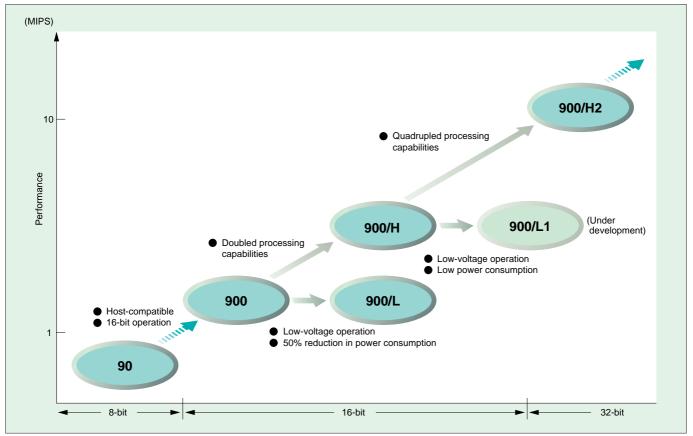
About OTP products: OTP products will be supported for system development and assessment.

TMP68HC11 Series

The TMP68HC11 series consist of a lineup of 8-bit single-chip CMOS microcontrollers with various highly functional peripheral devices integrated onto a single chip. These microcontrollers are fully compatible with Motorola's 68HC11 [mask set ID: C11W (68HC11A)/C27B (68HC11E)].

Device	ROM	E ² PROM	RAM	Time	er I/O	8-bit event	SCI	SPI	ADC	Operating	Package
Device	(bytes)	(bytes)	(bytes)	Capture	Compare	counter	301	JF1	ADC	temperature (°C)	гаскауе
T5B74-OR/WT (TMP68HC11AOR/WT)	_		256	16 bits x 3	16 bits x 5	0	0	0	8 bits x 8 ch	-40 to 85/105 ^(*1)	QFJ52
+ T5B74-1R/WT (TMP68HC11A1R/WT)	—	512	256	16 bits x 3	16 bits x 5	0	0	0	8 bits x 8 ch	-40 to 85/105 (*1)	QFJ52
+ T5B74-XXXX-R/WT (TMP68HC11A8R/WT) XXXX:ROM CODE	8K	512	256	16 bits x 3	16 bits x 5	0	0	0	8 bits x 8 ch	-40 to 85/105 ^(*1)	QFJ52
T5B75-OR/WT (TMP68HC11EOR/WT)	—		512	16 bits x 3 or x 4	16 bits x 5 or x 4	0	0	0	8 bits x 8 ch	-40 to 85/105 ^(*1)	QFJ52
+ T5B75-1R/WT (TMP68HC11E1R/WT)		512	512	16 bits x 3 or x 4	16 bits x 5 or x 4	0	0	0	8 bits x 8 ch	-40 to 85/105 (*1)	QFJ52
+ T5B75-XXXX-R/WT (TMP68HC11E9R/WT) XXXX:ROM CODE	12K	512	512	16 bits x 3 or x 4	16 bits x 5 or x 4	0	0	0	8 bits x 8 ch	-40 to 85/105 ^(*1)	QFJ52

+: Covered by U.S. Patent No. 4,382,279 owned by BULL CP8.


*1: Type no. suffixes: -40 to 85°C/QFJ52 = RT -40 to 105°C/QFJ52 = WT

16/32-bit Microcontrollers

900 Family

These 16/32-bit microcontrollers were designed to realize improved C language code efficiency.

Core Deployment Corresponding to the Application

Core Features

Item	900,900/L Series	900/H Series	900/H2 Series						
Max. operating frequency (@ input frequency)	10 MHz(@20 MHz)	12.5 MHz(@25 MHz)	20 MHz(@10 MHz)						
Min. instruction execution time	200ns	160ns	50ns						
Address space	Max. 16M bytes of linear address space for both program and data								
Data transfer rate (micro DMA)	1.6 μs	0.64 μs	0.25 μs						
32-bit length data processing instructions	Transfer, arithm	netic processing, logic processing,	shift instructions						
Bit processing instructions	Transfe	r, logic processing, test, set, reset,	, search						
Multiplication instruction execution time (16 x 16 \rightarrow 32)	2.6 µs	600ns							
Dynamic bus sizing	8/16 bits 8/16/32 bits								

Device	Functions	ROM (bytes)	RAM (bytes)	I/O ports	Min. instruction execution time (ns)	Operating voltage (V)	Operating temperature (°C)	Package
★TMP95FW86F	SIC/UART x 1 (UART x 2) 16-bit timer x 3 16-bit compare x 10 to 14 16-bit capture x 2 to 6 PWM: 8 bits x 3 10-bit A/D converter x 12	128K (Note)	4K	77	200	Vcc = 5 V Vpp = 12 V	-40 to 85	QFP100
☆TMP93CM82F	SCI x 1, SCI/UART x 1, UART x 2 18-bit timer x 1 16-bit compare x 8 (output)		2K	44	250	Vcc = 5 V	-40 to 110	QFP80
☆TMP93PM82F	16-bit capture x 6 (input) 10-bit A/D converter x 8	OTP 32K	21		230	VCC = 3 V	-40 10 110	QITOU

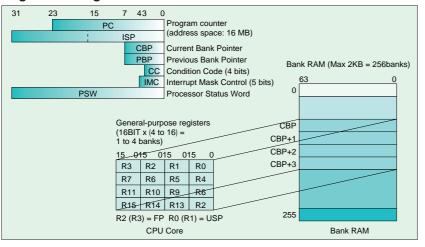
☆: Under development ★: Samples currently being shipped Note: Flash E²PROM (USP 4, 382, 279 owned by BULLCP8)

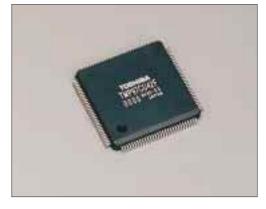
Please refer to Toshiba's List of Microcomputer Products for information on other standard products of the TLCS-900, 900/L and 900/H series.

TLCS-9000 Sereies

CPU Features

- [1] High-speed processing machine comparable to RISC
 - Register-to-register operations:
 - 1 clock (50 ns @20 MHz)......20 MIPS peak • 16-bit multiplication: 7 clocks (350 ns @20 MHz)


[2] Register bank machine


- 256 banks max.
- Overlap window possible

Register Configuration

[3] Powerful instruction set

- Instruction crossing: Addressing, register and data processing widths (8, 16 and 32 bits) can be combined as desired
- Three operand instructions (ADD3, SUB3)
- Bit field instructions (data transfer of 1 to 16 bits in length)
- Product sum instructions (with or without code)
- Table jump instruction TJP: PC ← PC + (mem)

Development Tools

C Compiler for TLCS-9000

C Language Dramatically Enhances Development Efficiency of TLCS-9000 Series

C language was developed for the purpose of structural programming, and allows description relatively close to that of assembly language. In addition, it is also extremely effective for improving program development efficiency.

Language Specifications

The language specifications of the TLCS-9000 compiler comply with ANSI standards. They provide functions that are suited for the development of microcontroller application systems, and generate ROM-convertible objects.

Features

 Compact object generation as a result of exhaustive optimization

- Absolute addresses can be designated for each section
- Easy linking with programs created with an assembler
- Designation of interrupt processing functions: Interrupt processing statement
- Control of internal I/O: Supports header files for internal I/O control.
 - The compiles of the manufacturers indicated below are also supported.
 - Microtech Research Corp., U.S.A.

• Gaio Technology Corp. In-circuit Emulator

The in-circuit emulator for the TLCS-9000 is supported by the manufacturers indicated below.

- •Yokogawa Digital Computer Co., Ltd.
 - AD200B-S560S+PT451
- •Hewlett-Packard Japan, Ltd. HP64770B

	Enhanced timer	function versions	Built-in A/D con	verter versions					
Device	TMP97CU42AF	TMP97CW42AF	TMP97CS44AF	★ TMP97CU44AF					
Functions	Timer Timer output Timer input Serial DMAC Memory contro	: 24 bits x 1 ch : 24 ch : 8 ch : 7 ch : 6 ch oller : 4 ch	Timer Timer output Timer input Serial DMAC Memory contro A/D converter						
Built-in ROM (bytes)	96K	128K	64K	96K					
Built-in RAM (bytes)	5.25K	6K	3.5K	5.25K					
I/O ports	9	8	95						
Min. instruction execution time	62.5 @16 MHz	50 @20 MHz	62.5 @ [.]	16 MHz					
Operating temperature (°C)		-40 to 110							
Package		QFP120							
Write-once PROM version	TMP97PU42AF	TMP97PW42AF TMP97PU44AF							

★ : Samples currently being shipped

32-bit RISC Processors

TMPR3903AF

The TMPR3903AF is a 32-bit, high-performance RISC ASSP that operates around the R3900 core and integrates a graphic control function, memory controller and other components suitable for building a car navigation system onto a single chip. Use of the TMPR3903AF facilitates the creation of car navigation systems featuring reduced size, lower costs and faster speed. In addition, as a result of being provided with a built-in graphic control function, it can also be applied to PDA, electronic instru-

ment, Karaoke and FA display panels requiring compact size and

Block Diagram

SYSCLK FCLKEN FCLK CLKEN PLI OFF \leftarrow XTAL1 \leftarrow XTAL2 **Clock Generator** PLL Test Circuit TX39 Core sxtest pcst[2:0] dclk dsa0/tpc ENDIAN SNOOP Instruction Cache dbge sdi/dint TX39 dreset Data Cache test[2:0] RD ← WR ← LAST ← BSTART ← BE[3:0] ← HALT ← RESET → DOZE ← HALF → BUSERR → BUSGNT BUSREQ DMAC → DACK[1:0] — DREQ[1:0] CS[1:0]/RAS[1:0] Bus MC → CAS[3:0] Interface BUSERR -AR AG AB IREF A[31:2] ← D[31:0] ← GDC **↔** INTC Timer TXD[3:0] SIO — RXD[3:0] — CTS[1:0] → RTS[1:0] PIO[15:0] /GD[15:0] PIO

Features

CPU Core

color display functions.

The TMPR3903AF uses the R3900 32-bit CPU core. Toshiba has improved this core for embedded applications with the MIPS R3000A.

- Originally developed by Toshiba based on the R3000A architecture.
- Achieves low-voltage operation, low power consumption and high-speed processing for embedded applications.
- Additional functions:
 - Loaded with instruction/data Cache (4KB/1KB)
 - Cache-lock function
 - High-speed addition and multiplication instructions for DSP functions (1 clock)
 - Branch-likely instruction
 - Non-maskable interrupts
- Operating frequency: 40 MHz (10 MHz external)
- Package: 208-pin PQFP (QFP208-P-2828-0.50)
- Power supply voltage: 3.3 V ± 0.3 V
- Max. power consumption: 800 mW
- Operating temperature: -40 to 85°C

Graphic Control Function

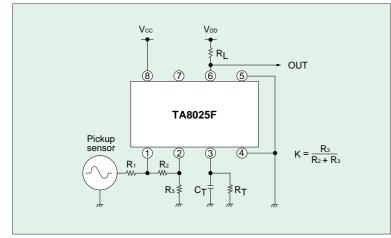
- Supports frame-buffer structure with DRAM
 - Unified memory architecture
 - Generation of RAS/CAS signals
 - Reading of display data by high-speed hyperpage mode
 - Built-in 32-bit buffer
- Four-layer overlay processing by hardware
 - Layer A : 16 colors selectable from 65,536 colors or natural drawing (16 bits/pixel)
 - Layers B-D: 16 colors selectable from 65,536 colors (including 1 transmission color)
 - (Colors can be set independently for layers A-D)
- Generation of synchronous signals for display (HSYNC, VSYNC/CSYNC)
- Built-in color palette and video DAC (3 channels)
- Drawing functions can be provided with software. Basic routine library (drawing commands) provided.
- Display sync signals (HSYNC, VSYNC) can be input from the outside.

Peripheral Controllers

- Memory controller (MC)
 - Chip select signal: 6 outputs
- DMA controller (DMAC)
 - 2 independent channels
 - Dual address mode
- Interrupt controller (INTC)
 - Internal: 9 factors; external: 3 factors
 - Non-maskable interrupt
- Timer/counter (TIMER)
 - 24-bit up-counter, 3 channels
 - Supports watchdog timer mode
- Serial I/O (SIO)
 - 4-channel UART
 - Also used as digital RGB output

Vehicle-use MOS/Bipolar LSIs

Toshiba offers a complete lineup of MOS and bipolar LSIs, designed and developed for high reliability, for use in automobiles to accommodate a wide range of needs.


MOS IC/LSI

Device	Function	Features	Operating voltage (V)	Operating temperature (°C)	Package
TC9538N/U	Car clock	Digital car clock with built-in VFD driver (variable dimming)	3.5 to 6.0	-40 to 85	SDIP42 μFP44

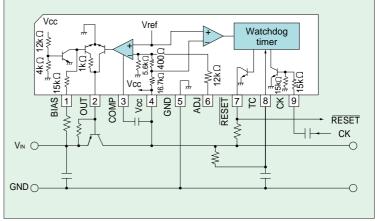
Bipolar ICs/LSIs

Device	Function	Features	Operating voltage (V)	Operating temperature (°C)	Package
TD6330BP	Stepping motor driver	4-phase stepping motor driver (application example: odometer)	6 to 16		DIP16
TA8020S/AS	Lamp broken wire	Lamp broken wire detection IC, 2 circuits built in	8 to 16	-40 to 85	SIP9
TA8021S	sensor	Lamp broken wire detection IC, 3 circuits built in	81016		3179
TD6336P	Output expansion interface	Serial input, 8-stage parallel output/serial output	4 to 6	-40 to 105	DIP16/HSOP20
TD6337P	VFD driver	Serial input, 10-stage parallel output/serial output	4 to 6	-40 to 85	DIP18
TD6338P		Serial input, 10-stage parallel output/serial output	4 10 8		DIF 16
TD6347S/F	Timer	Built-in power on reset, 3 inputs, open collector output	5 to 16	-40 to 85	SIP9/SSOP10
TA8025P/F	Pickup sensor interface	Automatic Vth control	4.5 to 16	-40 to 105	DIP8/SOP8
TA8026P/AP	Flasher controller	Built-in reference voltage for lamp current correction, lamp broken wire detection function	8 to 16	-40 to 110	DIP8
TA8028S	Duty controller	Analog input	8 to 16	-40 to 85	SIP7
TA8029S	29S FV converter Built-in comparator (2 circuits), built-in s		5 to 16	-40 10 65	SIP9

TA8025F Application Circuit Example

TA7900S Series

Members of the TA7900S series feature silicon monolithic bipolar linear integrated circuits designed for use in vehicleuse microcontrollers and equipped with numerous functions including a built-in system reset function.


Features

- \bullet Built-in high-precision output power: 5 \pm 0.25 V
- Equipped with output voltage adjustment terminals
- Built-in power on reset and low voltage reset functions (VREG x 92%)
- Built-in watchdog timer
- Operating temperature range: -40 to 85°C
- Operating voltage range: Max. 40 V

TA7900S Block Diagram

Example of Pin Arrangement and Application Circuit

System Power Supply ICs

	Output	Max.	Output		Reset fu	unctions		Protective	functions	Power supply	Max.	Operating	
Device	transformer Tr.	input voltage (V)	voltage (V)	Watchdog Timer	Power On Reset	Write Inhibit	CPU Monitor	Over- current	Over- voltage	wonitor voltage (% x Vreg)	standby current (mA)	temper- ature range (°C)	Package
TA7900S/F			5.0 ± 0.25									-40 to 85	SIP9/SOP14
TA7900S-H/F-H	External	40	5.0 ± 0.5	0	0		—	—		92	6.5	-40 to 105	SIP9/SOP14
TA7900S-D/F-D			5.0 ± 0.10									-40 to 85	SIP9/SOP14
TA8000S/F			5.0 ± 0.25									-40 to 85	SIP9/SOP14
TA8000S-H/F-H	External	80	5.0 ± 0.5	0	0	—	—		—	85	6.5	-40 to 105	SIP9/SOP14
TA8000S-D/F-D			5.0 ± 0.10									-40 to 85	SIP9/SOP14
TA8001S	Internal 10 mA	30	5.0 ± 0.5										
TA8002S	External	40	5.0 ± 0.5	—	0		—		—	92	0.3	-40 to 85	SIP7
TA8002AS	External	40	5.0 ± 0.25										
TA8005S/F	External	60	5.0 ± 0.25	0	0	—	—	—	—	85	1.4	-40 to 85	SIP9/SOP14
TA8006SN	External	60	5.0 ± 0.15	0	0	0		0	0	84/92	0.7	-40 to 105	SSIP12
TA8006ASN	External	60	5.0 ± 0.15		0			Ext.R	43 V	88/96			SSIP12
TA8007S			5.0 ± 0.25						_	92			
TA8007F	External	60	5.0 ± 0.15	0	0	—	0		0 40 V	92	1.2	-40 to 105	SIP9/ SSOP16
TA8007AS			5.0 ± 0.25							88			
TA8008F	External	60	5.0 ± 0.15	0	0			0 600 mA		92	0.95	-40 to 105	SSOP16
TA8030S/F		7		0	0	0				85/92	4.5	-40 to 85	SIP7/SOP8
TA8041HA	Internal 250 mA (main) Internal 100 mA (sub)	60	5.0 ± 0.15 x 2	0	0	0				84/92 88/96	1.0	-40 to 105	HZIP12
☆ TA8042F ^{※1}	Internal 100 mA	60	5.0 ± 0.15	0	0			0 200 mA		92	1.2	-40 to 105	HSOP20
☆ TA8044F ^{※2}	External External	60	3.4 ± 0.15 5.1 +0.15,-0.18	0	0			400 mA Ext.R		93	0.8	-40 to 125	SSOP16
TA8045BF	Internal 50 mA	60	5.0 ± 0.15	0	0			0 100 mA	0 28 V	92	0.4	-40 to 105	SSOP16

☆: Under development

*1: ES NOW *2 : ES 98. 3Q

IGBT Modules

IGBT Modules

Either 600 V-resistant or 1200 V-resistant series can be selected according to the application. In particular, Toshiba has released third-generation products for the 600 V-resistant series that offer the following features:

- High-speed switching (t_f = 0.2 μs typ.) and low saturation voltage (V_{CE(sat)} = 2.1 V typ.); and,
- Full square, reverse bias safe operating area (RBSOA).

			VCE(sat)	(max.)		Switching time	
Device	Vces (V)	Ic (A)	(V)	lc (A)	ton (typ.) (μs)	toff (typ.) (μs)	tf (typ.) (μs)
MG100J2YS50	600	100	2.7	100	0.4	0.5	0.3
MG100J6ES50	600	100	2.7	100	0.4	0.5	0.3
MG150J2YS50	600	150	2.7	150	0.4	0.5	0.3
MG200J2YS50	600	200	2.7	200	0.4	0.5	0.3
MG300J2YS50	600	300	2.7	300	0.4	0.5	0.3
MG400J1US51	600	400	2.7	400	0.4	0.5	0.3
MG400J2YS50	600	400	2.7	400	0.4	0.5	0.3
MG600J1US51	600	600	2.7	600	0.4	0.5	0.3
MG800J1US51	600	800	2.7	800	0.4	0.5	0.3
MG100Q2YS50	1200	100	3.6	100	0.2	0.6	0.3
MG150Q2YS50	1200	150	3.6	150	0.2	0.6	0.3
MG200Q1US51	1200	200	3.6	200	0.2	0.6	0.3
MG200Q2YS50	1200	200	3.6	200	0.2	0.6	0.3
MG300Q1US51	1200	300	3.6	300	0.2	0.6	0.3
MG300Q2YS50	1200	300	3.6	300	0.2	0.6	0.3
MG400Q1US51	1200	400	3.6	400	0.2	0.6	0.3
MG600Q1US51	1200	600	3.6	600	0.2	0.6	0.3

Note: Modules rated below the rated current of 100 A are also available.

Intelligent Power Modules (IPM)

An output switching device, its drive circuit and protective circuits are contained within a single package, offering the following characteristics:

- High reliability : Self-protection from overcurrent and overheating; and
- High efficiency: Greater ease of automation of assembly as a result of having more peripheral circuits and components built in.

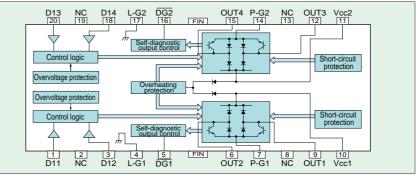
Device	VCES (V)	Ic (A)	Device	Vces (V)	Ic (A)
MIG200J201H	600	200	MIG150Q201H	1200	150
MIG300J101H	600	300	MIGISUQ201H	1200	150
MIG400J101H	600	400	MIG200Q101H	1200	200
WIG4003101H	600	400	MIG300Q101H	1200	300

Note: Modules rated below the rated current of 100 A are also available.

Power Drivers

Actuator Drivers

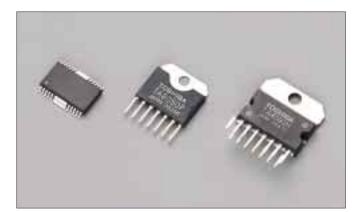
These driver ICs can be controlled by TTL-compatible input, and contain built-in overvoltage, overcurrent and overheating protective functions.


High-side/Low-side Drivers

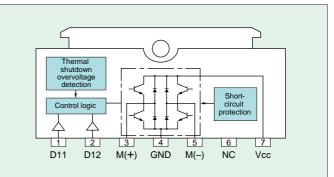
			Max.	Output	Standby	Self-		Protective	functions		
Functio	n	Device	voltage	current	current		Overcurre	Overcurrent detection		Overvoltage detection	Package
			(V)	(A)	(mA)	function	function Current (A)		detection (°C)	(V)	
High-side driver	2 circuits	☆TA8061H	60	1.5	0.5	Short/open	3.0	Latch		27.5	HZIP12
Lligh oide driver	2 circuits	TA8062S	50	0.3	5.0		0.55	Limiter	150	30	SIP7
High-side driver	2 circuits	☆TA8062AS	50	0.3	0.1		0.55	Limiter	150	30	SIP7
	4 circuits	☆TA8063F	60	0.5 x 4	0.1	Short	1.0	Switching		30	HSOP20
Low-side driver	2 circuits	TA8066AS	50	0.3	0.1		0.55	Limiter	150	30	SIP7
	4 circuits	TA8069F	60	0.5 x 4	0.1	Short	1.0	Switching	150	30	HSOP20

☆: Under development ES Now

And the second s



Motor Drivers


These drivers are direct-driving bidirectional DC motors. Forward, reverse, stop and brake modes are available depending on the combination of inputs, and various protective functions (overvoltage, overcurrent and overheating) are built in.

H Switch Motor Drivers

			Max.	Output	Max.	Self-		Protective	e functions	i	
Functio	Function Device	Device	voltage		standby current	diagnostic	Overcurre	ent detection	Overheating detection	Overvoltage detection	Package
			(V)		(mA)	function	Current (A)	Function	(°C)	(V)	
		TA8050P		1.5	15.0		3.0	Switching		27.5	HSIP7
		TA8050AK	60	1.5	0.1		3.3	Switching		30.0	HSIP7(BS)
		TA8051P		3.0	0.1		5.0	Switching		27.5	HZIP12
	1 circuit	TA8052S	50	0.3	5.0		0.55	Limiter		30.0	SIP7
H switch motor driver	i circuit	TA8052AS	50	0.3	0.1		0.55	Limiter	150	30.0	SIP7
motor unver		TA8053H		3.0	0.1	Short	5.0	Switching	150	29.0	HZIP12
		TA8080K		1.0	15.0		2.0	Switching		30.0	HSIP7
		TA8081P	60	0.7	0.1	Short	1.5	Switching		30.0	DIP16
	2 circuits	TA8082H]	1.5 X 2	0.1	Short/open	3.0	Switching		32.5	HZIP15
		TA8083P/F		0.5 X 2	0.1	Short	1.0	Switching		30.0	DIP16/HSOP20

TA8050P Block Diagram

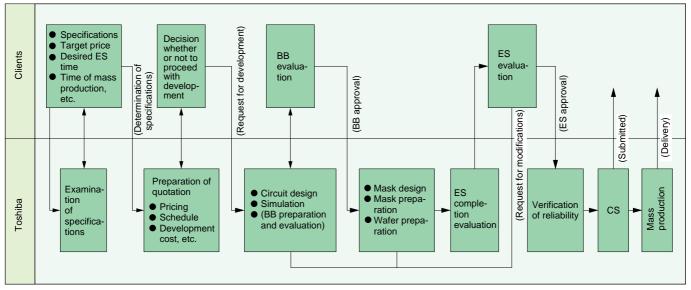
ASIC

What features and functions a new product should have, and what additional functions and new ideas can be incorporated are factors provided by ASICs that are indispensable in the diverse development of new products. In particular, as the current life cycle of products is becoming shorter and shorter, competitive strength in the marketplace depends upon how fast a new product can be developed with higher added value. Toshiba's gate-array and cell-based ICs respond to the growing need for ASICs in a flexible and developer-friendly manner.

Gate Array and Cell-based ICs

Series name	TC140G series	TC160G series	TC25SC series						
	1.0 µm	0.8 µm	0.8 µm						
Process technology	HC ² MOS silicon gates, 2-layer metal wiring								
Delay time (internal gate, typical)	0.4 ns	0.33 ns							
Number of gates	1K to 68K	4K to 210K	700K to 100K						
The TC140G series/TC160G series consist of gate array ICs, while the TC25SC series consists of cell-based ICs. Highly functional cells such as RAM and ROM can be loaded onto these gate array and cell-based ICs.									

Wide Variety of Package Variations


Toshiba offers a wide variety of packages, from 16-pin DIP to 160-pin QPF-P, to respond to a diverse range of ASIC needs.

Material Mounting method	Plastic
Lead-inserted type	16-, 18-, 24-, 28-, 40-, 42- and 48-pin DIP
Leau-inserteu type	42- and 64-pin SDIP
Surface-mounted type	100-, 120-, 144- and 160-pin QPF-P

Fully Customized ICs/LSIs

The field of applications for vehicle-use onboard electronic systems is continuously expanding, and the need is growing for multiple functions, high-precision and high-density mounting. Although Toshiba provides a complete lineup of standard vehicle-use semiconductor devices to accommodate these needs, Toshiba also recommends fully customized and semi-customized products to facilitate more appropriate designs and greater task dedication.

Flow of Development Work

Toshiba's Production Process

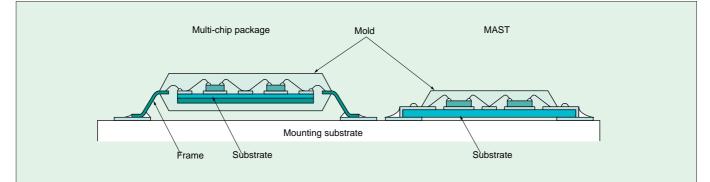
CMOS, bipolar, bipolar + I²L, BiCMOS, hybrid IC, multi-chip package IC (MCP)

MCP (Multi-Chip Packages)

Multi-chip packages are the fruit of new integration technology, which enables integration of multiple semiconductor chips with existing envelopes into a single package.

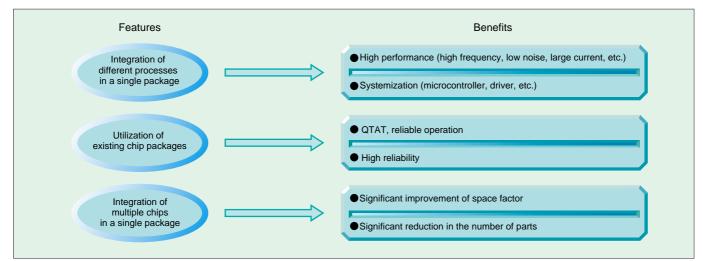
Multi-chip packages consist of a multiple number of LSIs and individual semiconductor devices loaded onto a lead frame. The devices are connected with bonding wires via the lead frame or a circuit board, and contained in a standard LSI package by transfer molding. As a result, the level of reliability of the sealed package is comparable to that of conventional monolithic ICs.

Since this technology can utilize existing LS assembly and testing processes without requiring any modifications, it enables production at a lower cost than hybrid ICs. What is more, since it allows the use of existing LSIs and discrete semiconductor devices, reliable ICs can be provided at minimal development risk.


Multi-Chip Technology

Toshiba's multi-chip technology can be broadly divided into general type, high-density type and Micro Assembly System Technology (MAST).

٦	Туре	Multi-chip	MAST	
		General type	High-density type	Chips are loaded onto a circuit board,
Co	oncept	Simple integration of multiple chips into a single package	Interconnection of chips by loading a circuit board onto a lead frame island	producing an LCC-type package with one side that is resin-sealed
S	Surface mount- ing area	\$	**	
	No. of parts	*	**	
Conf	figuration		Conductor wiring C.R Island	BICMOS CMOS CMOS CMOS CMOS CMOS CMOS CMOS


Example of Multi-Chip Mounting

Toshiba's multi-chip technology enables high-density mounting as illustrated below.

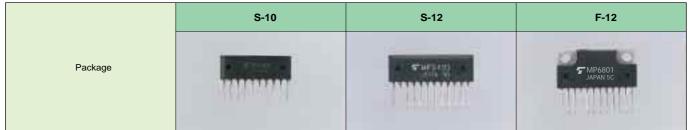
Features of Multi-Chip Packages

Toshiba's multi-chip technology offers the features described below.

Power MOSFET Devices

L²-π-MOSV

This ultra-low on resistance series realizes high-density integration of 4.4 Mcells/inch² through the use of Toshiba's original microtechnology. **Lineup**


Lineup		Max. rating				max (0)	
Device				Po Package		RDS (ON) max. (Ω)	
	VDSS (V)	ID (A)	PD (W)	i donage	VGS = 10 V	VGS = 4 V	
2SK2614	50	20	40	DP	0.046	0.08	
2SK2507	50	25	25	TO-220(NIS)	0.046	0.08	
2SK2886	50	45	40	TO-220(NIS)	0.02	0.036	
2SK2550 Note 1	50	45	100	TO-3P(N)	0.03		
2SK2551 Note 1	50	50	150	TO-3P(N)	0.011		
2SK2745	50	50	150	TO-3P(N)	0.0095	0.016	
2SK2615	60	2	1.5	PW MINI	0.3	0.44	
2SK2229	60	5	1.3	TPS	0.16	0.30	
2SK2741	60	5	2.5	SP	0.16	0.30	
2SK2231	60	5	20	PW MOLD	0.16	0.30	
2SK2782	60	20	40	DP	0.055	0.09	
2SK2232	60	25	35	TO-220(NIS)	0.046	0.08	
2SK2311	60	25	40	TO-220FL/SM	0.046	0.08	
2SK2385	60	36	40	TO-220(NIS)	0.030	0.055	
2SK2233	60	45	100	TO-3P(N)	0.030	0.055	
2SK2266	60	45	65	TO-220FL/SM	0.030	0.055	
2SK2398 Note 1	60	45	125	TO-3P(N)	0.030		
2SK2312	60	45	45	TO-220(NIS)	0.017	0.025	
2SK2376	60	45	100	TO-220FL/SM	0.017	0.025	
2SK2173	60	50	125	TO-3P(N)	0.017	0.025	
2SK2445 Note 1	60	50	150	TO-3P(N)	0.018	_	
2SK2313	60	60	150	TO-3P(N)	0.011	0.015	
2SK2267	60	60	150	TO-3P(L)	0.011	0.015	
2SK2200	100	3	1.3	TPS	0.35	0.45	
2SK2201	100	3	20	PW MOLD	0.35	0.45	
2SK2399	100	5	20	PW MOLD	0.23	0.30	
2SK2400	100	5	1.3	TPS	0.23	0.30	
2SK2391	100	20	35	TO-220(NIS)	0.085	0.13	
2SK2314	100	27	50	TO-220AB	0.085	0.13	
2SK2789	100	27	60	TO-220FL/SM	0.085	0.13	
2SJ360	-60	-1	0.5	PW MINI	0.73	1.2	
2SJ377	-60	-5	20	PW MOLD	0.19	0.28	
2SJ378	-60	-5	1.3	TPS	0.19	0.28	
2SJ438	-60	-5	25	TO-220(NIS)	0.19	0.28	
2SJ349	-60	-20	35	TO-220(NIS)	0.045	0.090	
2SJ401	-60	-20	100	TO-220FL/SM	0.045	0.090	
2SJ334	-60	-30	45	TO-220(NIS)	0.038	0.060	
2SJ402	-60	-30	100	TO-220FL/SM	0.038	0.060	
2SJ380	-100	-12	35	TO-220(NIS)	0.21	0.32	
2SJ412	-100	-16	60	TO-220FL/SM	0.21	0.32	
2SJ464	-100	-18	45	TO-220(NIS)	0.09	0.12 ote 1: 10 V drive type	

Note 1: 10 V drive type

Power Modules

These multi-chip modules consist of a multiple number of transistors, MOSFET devices, diodes or other discrete chips loaded on a frame.

Power Transisters and MOSFET Modules

3-phase Hall Motors (3-phase Bridge Drivers)

	Pasia corresponding block	Classification Device	Package	Rating		Configuration	Remarks	
	Basic corresponding block	Classification Device		Раскаде	V	А	Configuration	Remarks
		MOSFET	MP6403	S-12	±60	±5	P x 3 + N x 3	
		WOOT ET	MP6801	F-12	±60	±10	P x 3 + N x 3	

DC Brush Motors (H-bridge Drivers)

	MOSFET	MP4207	S-10	±60	±5	P x 2 + N x 2	
	Darlington	MP4005	S-10	±80	±4	P x 2 + N x 2	
	Dannigion	MP4503	F-12	±80	±4	P x 2 + N x 2	

2-phase Stepping Motors, General-purpose Solenoids (with Built-in Zener Diode between C-B, 4 In1)

	MOSFET	MP4208	S-10	-60	-5	P x 4	Without Zener diodes between D–G
	Darlington with	MP4101	S-10	60 ± 10	4	N x 4	
		MP4020	S-10	60 ± 10	5	N x 4	Large energy resistance
	Zener diodes	MP4021	S-10	100 ± 15	2	N x 4	
		MP4024	S-10	100 ± 15	3	N x 4	Built-in bias resistance

2-phase Stepping Motors, General-purpose Solenoids (with Built-in Flyback Voltage Absorption Diodes, 4 In 1)

	MOSFET	MP4403	S-12	120	5	N x 4	
		MP4703	F-12	120	5	N x 4	
	Darlington	MP4303	S-12	100	2	N x 4	
	High-β	MP4304	S-12	80	3	N x 4	Low VCE(sat)

Rectifiers

Diodes

Switching Diodes (S-MINI)

	VR = 80 V, IO = 100 mA	Circuit examples
Anode common	1SS181	
Cathode common	1SS184	
Series	1SS226	
Single	1SS187, 1SS190, 1SS193, 1SS196	00

Zener Diodes

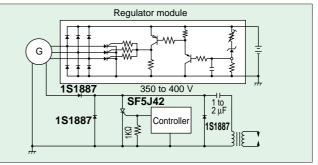
P (W)	Package	Device	Remarks
0.2	S-MINI	02CZ2.0 to 47	For hybrid ICs

Thyristors

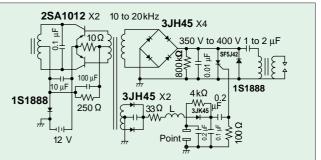
Rectifiers

	Rated	Withsta	nd voltage (V)	
Application example	current (A)	400	600	1000
Power supply	1.0	U1GC44	U1JC44	
rectification, harness and	1.0	S5688G	S5688J	S5688N
flywheel	1.2	1S1887A	1S1888A	
	0.5	U05GH44	U05JH44	
Converter output	0.5	TVR5G	TVR5J	
rectification	1.0	1GH45	1JH45	
	3.0	3GH45	3JH45	
Fluxbool	1.0	1G4B42	1J4B42	
Flywheel	5.0	5GL2CZ47A	5JLZ47	
Battery	1.5	1R5GZ41	1R5JZ41	
reverse connection	2.0	U2GC44	U2JC44	
protection	3.0	3GZ41	3JZ41	

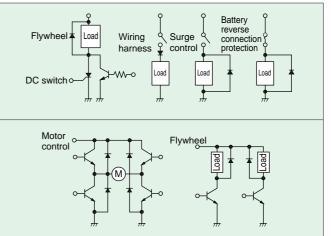
Zener Diodes


Rated power (W)	Withstand energy* (W)	Device
1.0	230	U1ZB6.8 series
1.0	320	1ZB6.8 series
1.5	800	2Z12 series
2.0	600	U2Z12 series
3.0	1000	3Z12 series
5.0	6000	U5ZA27, U5ZA27C
	power (W) 1.0 1.5 2.0 3.0	power (W) energy* (W) 1.0 230 320 320 1.5 800 2.0 600 3.0 1000

* Limit value for square wave (tw = 1 ms)

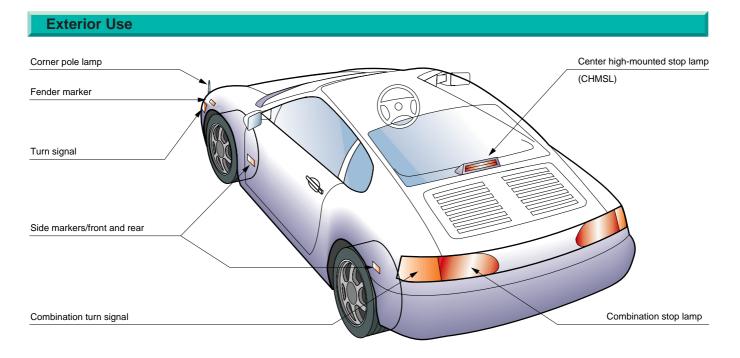

Thyristors

Application everyple	Rated					
Application example	current (A)	400	600	800		
	3.0	SF3G48	SF3J48			
CDI and DC switches		SF3GZ47	SF3JZ47			
	5.0	SF5G42	SF5J42			
Disk charge head lamp				S6992		


Regulator and CDI Ignition Diagram for 2-wheel Vehicles

CDI Ignition Diagram for 4-wheel Vehicles

Other Circuits


LED Lamps

TOSBRIGHT® – High Brightness LED Lamp Series

Many types of LED lamps are used in illumination applications both on the outside and inside of vehicles by taking advantage of their ease of design, low power consumption and high reliability. They also offer outstanding space efficiency from the viewpoint of maintenance.

Features

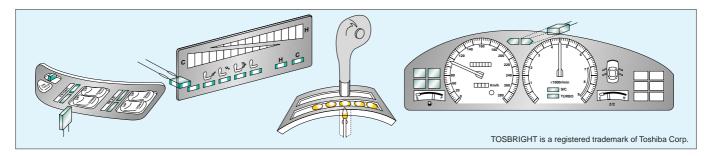
- Standard products are available that offer high reliability (weather resistance).
 - $T_{stg} = -40$ to $120^{\circ}C$ $T_{opr} = -30$ to $85^{\circ}C$
- Rapid response
- New lineup for the TLGE and TLPGE series. Realizes even higher brightness for green LED lamps.
- InGaAIP LEDs achieve higher levels of brightness for red, orange, yellow, green and bright green lamps, making it possible to switch from bulbs to LED lamps.

ø5 mm Diameter Type

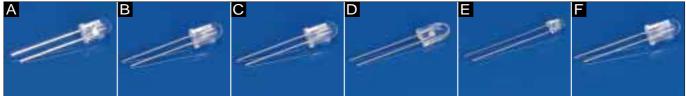
A	Device	Typical characteristics							
Appear- ance		Typ. luminosity (mcd)	Emission wavelength λp (nm)	Directionality (°)	Operating temperature (°C)	Luminescent material	Response time *(ns)	Recommended applications	
А	TLSH156P	1000	623	30	-30 to 85	InGaAIP	60	** CHMSL	
В	TLSH157P	2300	623	22	-30 to 85	InGaAIP	60	Rear combination lamps	
с	TLPGE183P	1200	562	7	-30 to 85	InGaAIP	60	Corner pole lamps Fender markers	
с	TLGE183P	4500	574	7	-30 to 85	InGaAIP	60		
В	TLRH157P	1600	644	22	-30 to 85	InGaAIP	60		
В	TLOH157P	2000	612	22	-30 to 85	InGaAIP	60	Side markers Turn signals	
А	TLYH156P	1200	590	30	-30 to 85	InGaAIP	60	Rear combination lamps	
В	TLYH157P	2300	590	22	-30 to 85	InGaAIP	60		

Preliminary discussions regarding compatibility of specifications are required in the case of using LED lamps in automotive applications.

Please contact our sales representative when considering such applications.

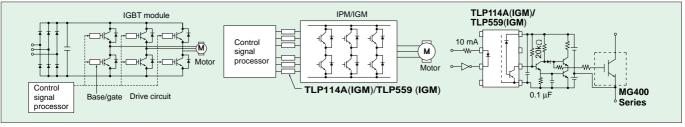

* Response time: Standard rise time ** CHMSL: Center high-mounted stop lamp

Measurement conditions: Ta = 25° C, IF = 20 mA


Interior Use

Backlighting Illumination

	Device	Typical characteristics							
Appear- ance		Typ. brightness (mcd)	Emission wavelength λp (nm)	Directionality (°)	Operating temperature Topr (°C)	Luminescent material	Dimensions (mm)	Recommended applications	
D	TLGD233P	250	567		-20 to 75	GaP	🗌 2.5 x 5	Heater controls Power windows	
E	TLYH262	300	590	70	-30 to 85	InGaAlP	¢3.1		
E	TLRH262	220	644	70	-30 to 85	InGaAlP	¢3.1	Instrument panel Monitor backlighting	
E	TLOH262	260	612	70	-30 to 85	InGaAlP	¢3.1		
E	TLGE262	150	547	65	-30 to 85	InGaAlP	¢3.1		
E	TLPEG262	45	562	65	-30 to 85	InGaAlP	¢3.1		
F	TLSH180P	8000	623	8	-30 to 85	InGaAIP	¢5	Matar poodloo	
F	TLOH180P	7000	612	8	-30 to 85	InGaAIP	¢5	Meter needles	


Appearance

Photocouplers

• Toshiba offers a lineup of TLP559/TLP114A photocouplers that are suitable for driving IPM/IGM intelligent power module interfaces.

Example of Application Circuit Configuration

High-speed IC Photocouplers

I	Device	Pin configuration	Features	Response time (typ.)	Output current	lf (IN)	Vcc	Isolation voltage (for 1 minute)
TLP1	114A (IGM)		5-pin mini flat	0.45 μs t _{PLH −} t _{PHL} ≤ 0.7 μs	25%(min.) to 75% (max.)	- 16 mA	30 V (max.)	3750 Vrms
TLP5	559 (IGM)		Without base connection Shielded high CMR		Current transfer ratio			2500 Vrms

Photocouplers are intended for use in general electronic equipment (such as office equipment, communication equipment, measuring instruments and home appliances). Please contact our sales representative when exceptionally high levels of quality and reliability are required for vehicle use.

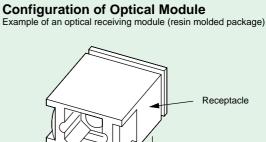
Optical Transmission Device: TOSLINK[®]

Accompanying the dramatic improvements in the performance of audio systems and vehicle navigation systems achieved in recent years, there has been an increase in signal capacity and the number of cables.

This has resulted, however, in problems relating to signal noise and increased vehicle weight.

Signal transmission by means of optical cables provides an effective way of eliminating EMI noise from system signals and reducing cable weight.

Features of TOSLINK

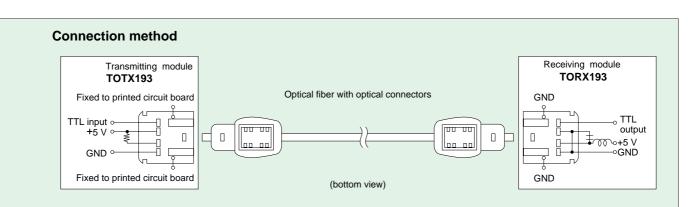

- TTL interface, +5 V power supply
- The transmitting unit contains a built-in transmission circuit that drives the LED using a differential circuit.
- The receiving unit contains a built-in waveform shaping circuit that uses an ATC (Automatic Threshold Control) circuit.

Features of Optical Fiber

- Not affected by noise and does not generate noise.
- Narrow core and light weight.

Applications

- Audio systems
- Navigation systems



Receiving unit

Transparent resin mold

Receiving IC

PIN-PD

			(Ta=25°C)				
Product description	Optical unit	Optical unit	Optical module				
Item	TOTU180A TORU180	TOTU193 TORU193	TOTX193 TORX193				
Shape							
Optical unit structure	Ceramic package	backage					
Туре							
Data rate	DC to 6 Mb/s (NRZ)						
Transmission distance	nsmission distance up to 40 m		10 m				
Pulse width distortion	±55ns	±25ns					
Operating temperature	-40 to 85°C						
Applicable optical connector			JIS F05 type				
Applicable optical fiber	APF (980 μ	m/1000 μm)	APF (980 μm/1000 μm)				

Notes: 1) TOSLINK is a trademark of Toshiba Corp.

2) Do not use these products in applications in which their misoperation or malfunction can lead to loss of human life, injury or property damage.

OVERSEAS SUBSIDIARIES AND AFFILIATES

Headquarters-Irvine, CA 9775 Toledo Way, Irvine, CA 92718, U.S.A. Tel: (714)455-2000 Fax: (714)859-3963

Altamonte Springs, FL(Orland) 600 S, North Lake Blvd., Suite 250, Altamonte Springs, FL 32701, U.S.A. Tel: (407)332-0966 Fax: (407)339-3777

Deerfield, IL(Chicago) One Pkwy., North, Suite 500, Deerfield, IL 60015-2547, U.S.A. Tel: (847)945-1500 Fax: (847)945-1044

Denver, CO 8400 E, Prentice Englewood, CO 80111, U.S.A. Tel: (303)220-9848 Fax: (303)220-9856

Edison, NJ 2035 Lincoln Hwy. Ste. #3000, Edison NJ 08817, U.S.A. Tel: (908)248-8070 Fax: (908)248-8030

Irvine, CA 2 Venture Plaza, Suite 500, Irvine, CA 92718, U.S.A. Tel: (714)453-0224 Fax: (714)453-0125

Microelectronics Center-Sunnyvale, CA

1220 Midas Way, Sunnyvale, CA 94088-3509, U.S.A. Tel: (408)739-0560 Fax: (408)746-0577

Norcross, GA(Atlanta)

655 Engineering Dr. #160, Norcross, GA 30092, U.S.A. Tel: (404)368-0203 Fax: (404)368-0075

Richardson, TX(Dallas)

777 East Campbell Rd., Suite 650, Richardson, TX 75081, U.S.A. Tel: (214)480-0470 Fax: (214)235-4114

Wakefield, MA(Boston) 401 Edgewater Place, Suite #360, Wakefield, Essex, MA 01880-6229, U.S.A. Tel: (617)224-0074 Fax:(617)224-1095

San Jose Engineering Center, CA

1060 Rincon Circle, San Jose, CA 95131, U.S.A. Tel: (408)456-8900 Fax: (408)456-8910

Toshiba Electronics Europe GmbH

Düsseldorf Head Office Hansaallee 181, D-40549 Düsseldorf Germany Tel: (0211)5296-0 Fax: (0211)5296-400

München Office Büro München Hofmannstrasse 52, D-81378, München, Germany Tel: (089)748595-0 Fax: (089)748595-42

Toshiba Electronics France SARL

Immeuble Robert Schumann 3 Rue de Rome, F-93561, Rosny-Sous-Bois, Cedex, France Tel: (1)48-12-48-12 Fax: (1)48-94-51-15

Toshiba Electronics Italiana S.R.L.

Centro Direzionale Colleoni Palazzo Perseo Ingr. 2-Piano 6, Via Paracelso n.12, 1-20041 Agrate Brianza Milan, Italy Tel: (039)68701 Fax:(039)6870205

Toshiba Electronics España, S.A.

Parque Empresarial San Fernando Edificio Europa, 1^a Planta, ES-28831 Madrid, Spain Tel: (91)660-6700 Fax:(91)660-6799

Toshiba Electronics(UK) Limited

Riverside Way, Camberley Surrey, GU15 3YA, U.K. Tel: (01276)69-4600 Fax: (01276)69-4800

Toshiba Electronics Scandinavia AB

Gustavslundsvägen 12, 2nd Floor S-161 15 Bromma, Sweden Tel: (08)704-0900 Fax: (08)80-8459

Toshiba Electronics Asia (Singapore) Pte. Ltd.

Singapore Head Office

438B Alexandra Road, #06-08/12 Alexandra Technopark, Singapore 119968 Tel: (278)5252 Fax: (271)5155, (270)6056

Bangkok Office

135 Moo 5 Bangkadi Industrial Park, Tivanon Rd., Bangkadi Amphur Muang Pathumthani 12000, Thailand Tel: (2)501-1635 Fax: (2)501-1638

Toshiba Electronics Trading (Malaysia)Sdn. Bhd.

Kuala Lumpur Head Office

Suite W1203, Wisma Consplant, No.2, Jalan SS 16/4, Subang Jaya, 47500 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: (3)731-6311 Fax: (3)731-6307

Penang Office

Suite 13-1, 13th Floor, Menard Penang Garden, 42-A, Jalan Sultan Ahmad Shah, 100 50 Penang, Malaysia

Tel: 4-226-8523 Fax: 4-226-8515

The information contained herein is subject to change without notice.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.

TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

The products described in this document may include products subject to the foreign exchange and foreign trade laws.

The products described in this document contains components made in the United States and subject to export control of the U.S. authorities. Diversion contrary to the U.S. law is prohibited

Toshiba Electronics Asia, Ltd.

Hong Kong Head Office

Level 11, Top Glory Insurance Building, Grand Century Place, No.193, Prince Edward Road West, Mong Kok, Kowloon, Hong Kong Tel: 2375-6111 Fax: 2375-0969

Seoul Branch

14/F, KEC B/D, 257-7 Yangjae-dong, Seocho-ku, Seoul, Korea Tel: (02)589-4334 Fax: (02)589-4302

Seoul Branch, Gumi Office

6/F, Ssangyong Investment Securities B/D, 56 Songjung-Dong, Gumi City Kyeongbuk, Korea Tel: (0645)456-7613-6 Fax: (0546)456-7617

Shenzhen Office

Rm 3010-3012, Shun Hing Square, Di Wang Commercial Centre, 333 Shennan Road East, Shenzhen, China, 518008 Tel: (0755)246-1582 Fax: (0755)246-1581

Toshiba Technology Development

(Shanghai) Co., Ltd. 23F, Shanghai Senmao International Building, 101 Yin Cheng East Road, Pudong New Area, Shanghai, 200120, China Tel: (21)6841-0666 Fax: (21)6841-5002

Tsurong Xiamen Xiangyu Trading Co., Ltd.

8N, Xiamen Sez Bonded Goods Market Building, Xiamen, Fujian, China Tel: (0592)562-3798 Fax: (0592)562-3799

Beijing Office

Rm 714, Beijing Fortune Building, No.5 Dong San Huan Bei-Lu, Chao Yang District, Beijing, China, 10004 Tel: (010)6595-8795 Fax: (010)6590-8791

Toshiba Electronics Taiwan Corporation

Taipei Head Office

17F, Union Enterprise Plaza Bldg. 109 Min Sheng East Rd., Section 3, 0446 Taipei, Taiwan R.O.C. Tel: (02)514-9988 Fax: (02)514-7892

Kaohsiung Office

16F-A, Chung-Cheng Bldg., Chung-Cheng 3Rd., 80027, Kaohsiung, Taiwan R.O.C. Tel: (07)222-0826 Fax: (07)223-0046

Toshiba Display Devices (Thailand) Co., Ltd.

142 Moo 5, Bangkadi Industrial Park, Tivanon Rd., Pathumthani 12000, Thailand Tel: (2)501-1200 Fax: (2)501-1209

In Touch with Tomorrow

TOSHIBA CORPORATION

Electronic Devices Sales & Marketing Group 1-1, Shibaura 1-chome, Minato-ku, Tokyo, 105-8001, Japan Tel: (03)3457-3405 Fax: (03)5444-9324