*i’
TEXAS Application Report
INSTRUMENTS SPRA530

Cyclic Redundancy Check Computation:
An Implementation Using the
TMS320C54x

Patrick Geremia C5000

Abstract

Cyclic redundancy check (CRC) code provides a simple, yet powerful, method for the detection of
burst errors during digital data transmission and storage. CRC implementation can use either
hardware or software methods. This application report presents different software algorithms and
compares them in terms of memory and speed using the Texas Instruments (TIO) TMS320C54x
digital signal processor (DSP). Various common CRC codes will be used.

Tl is a trademark of Texas Instruments Incorporated.

Digital Signal Processing Solutions April 1999

Application Report
SPRA530

Contents

TaLi (oo 071 1T o IR

Coding Theory Behind CRC........c..uuiiiiii ettt a e e
Fundamentals of BIOCK COdiNg..........uvviieiiiiiiiiiiiiee e
(12O @o o [o [H U PRPPR S
CRC COUE EXAMPIES....eeiiieeeiiiiieie et a e

Algorithms for CRC COMPULALIONuviiiieiiiiiiiiiiee e
Bitwise AIGOITRIMeeiiiiiii e
Lookup Table AlGOrithmsoooiiiiiiec e
Standard Lookup Table Algorithm ...
Reduced Lookup Table Algorithm ...

TMS320C54X IMPIemMENtAtION.........uvviiiiiee it e e e e e
General CoNnSIderations............ccoeeeeeeeieie
RESUILS. ... et e e e e e e e e e e eaaaaas

CRC-C T T e e e e e

CRC-32 10

CRC fOr GSMITCH ..o
CRC for GSM/TCH/EFS PreCoder.........uuvvuruuuiviiiiriiinirrrsrnenrennennn.
GSM FIRE COUE.....cccoiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeee et

SUIMIMIBIY .ttt ettt ettt s s e e e e e e e e e e e e e e e s e e e e s e e e eeenemeeeeeneeenenenen
Code AVAIIADIIILY.cciiiiiei e e e
RETEIBNCES. ..ttt et s
Appendix A. CRC-CCITT LISNG ...t
Appendix B. CRC-32 ListingT ...
Appendix C. GSM/TCH LiStING...cciieiiiiiiiiiiee e
Appendix D. GSM/TCH/EFS Precoder ListingT ..
Appendix E. GSM FIRE Code ListingT ...

Figures

Figure 1. CRC Generation Using a Linear Feedback Shift Register (LFSR)

Tables
Table 1. Common CRC Codes and Associated Generator Polynomial
Table 2. Benchmarks for CRC-CCITToooviiiiiiiii,
Table 3. Benchmarks for CRC-32......cccoooiiiiiiie
Table 4. Benchmarks for GSM/TCHuuuvuiuiuiiiiiiiiiiiiiiiniereerrrrrrererrr—.—.
Table 5. Benchmarks for GSM/TCH/EFS PreCoder........ccceeuvvreuunnrnrnrnnnnnnnnnns
Table 6. Benchmarks for GSM FIRE COOE.........cccviiuuuininiiiiiiiniiininnennnnnnnnnnnes

Cyclic Redundancy Check Computation: An Implementation Using the TMS320C54x

Application Report Q’
SPRA530

Introduction

Error correction codes provide a means to detect and correct errors introduced by a
transmission channel. Two main categories of code exist: block codes and convolutional
codes. They both introduce redundancy by adding parity symbols to the message data.

Cyclic redundancy check (CRC) codes are a subset of cyclic codes that are also a subset
of linear block codes. The theory behind block coding and more specifically CRC coding
is briefly discussed in this application report as well as most common CRC codes.

CRC implementation can use either hardware or software methods. In the traditional
hardware implementation, a simple shift register circuit performs the computations by
handling the data one bit at a time. In software implementations, handling data as bytes
or words becomes more convenient and faster. You choose a particular algorithm
depending on which memory and speed constraints are required. Different types of
algorithms and the results are presented later in this application report.

Coding Theory Behind CRC

Fundamentals of Block Coding

A block code consists of a set of fixed-length vectors called code words. The length of a
code word is the number of elements in the vector and is denoted by n. The elements of
a code word are selected from an alphabet of g elements. When the alphabet consists of
two elements, 0 and 1, the code is binary; otherwise, it is nonbinary code. In the binary
case, the elements are bits. The following discussion focuses on binary codes.

There are 2" possible code words in a binary block code of length n. From these 2" code
words you may select M = 2* code words (k < n) to form a code. Thus a block of k
information bits is mapped into a code word of length n selected from the set of M = 2k
code words. This is called an (n,k) code and the ratio k/n is defined to be the rate of the
code.

The encoding and decoding functions involve the arithmetic operations of addition and
multiplication performed on code words. These arithmetic operations are performed
according to the conventions of the algebraic field that has, as its elements, the symbols
contained in the alphabet. For binary codes, the field is finite and has 2 elements, 0 and
1, and is called GF(2) (Galois Field).

A code is linear if the addition of any two-code vectors forms another code word. Code
linearity simplifies implementation of coding operations.

The minimum distance d;, is the smallest hamming distance between two code words.
The hamming distance is the number of symbols (bits in the binary case) in which they
differ. The minimum distance is closely linked to the capacity of the code to detect and
correct errors and is a function of the code characteristics. An (n,k) block code is capable

of detecting dnmi» — 1 errors and correcting %(dm,-,, -1) errors.

Cyclic Redundancy Check Computation: An Implementation Using the TMS320C54x 3

Application Report Q’
SPRA530

Suppose m; is the k-bits information word, the output of the encoder will result in an

n-bits code word c;, defined as ¢; = m,G (i =04.....,2K =1) where G is called the

generator matrix of dimension kxn. Every linear block code is equivalent to a systematic
code; therefore, it is always possible to find a matrix G generating code words formed by
the k information bits followed by the n-k parity check bits, for example, G = [Ik,P] where

I is the k x k identity matrix and Pis a kx(n— k) matrix of parity checks. The parity
check matrix H is defined as a (n- k)x k matrix so that GH' =0. If the code is
systematic, then H = lPT,I,,_kJ. Since all code words are linear sums of the rows in G,

we have c,-HT =0 forall /,(i =01....,.2¥ -1) . If a code word c is corrupted during

transmission so that the receive word is C = C+ €, where e is a non-zero error pattern,
then we call syndrome s the result of following multiplication,

s=cH" =(c+e)H" =cH' +eH” =eH" , where sis (n-k) - dimensional vector. The
syndrome s is dependent on the error pattern. If the error pattern is a code vector, the
errors go undetected. For all other error patterns, however, the syndrome is nonzero.
Decoding then uses standard array decoders that are based on lookup tables to
associate each syndrome with an error pattern. This method becomes impractical for
many interesting and powerful codes as (n - k) increases.

Cyclic codes are a subclass of linear block codes with an algebraic structure that enables
encoding to be implemented with a linear feedback shift register and decoding to be
implemented without using standard array decoders. Therefore, most block codes in use
today are cyclic or are closely related to cyclic codes. These codes are best described if
vectors are interpreted as polynomials. In a cyclic code, all code word polynomials are
multiples of a generator polynomial g(x) of degree n- k. This polynomial is chosen to

be a divisor of x” +1 so that a cyclic shift of a code vector yields another code vector. A
message polynomial m;(x) can be mapped to a code word polynomial
c;(X)=m;(X)x" K =r,(x) (i=04,....2¢ =1) (systematic form), where r;(x) is the

remainder of the division of m;(x)x" % by g(x).

The first step in decoding is to determine if the receive word is a multiple of g(X). This is
done by dividing it by g(x) and examining the remainder. Since polynomial division is a
linear operation, the resulting syndrome g(x) depends only on the error pattern. If g(x)

is the all-zero polynomial, transmission is errorless or an undetectable error has
occurred. If g(x) is nonzero, at least one error has occurred. This is the principle of CRC.

More powerful codes attempt to correct the error and use the syndrome to determine the
locations and values of multiple errors.

Cyclic Redundancy Check Computation: An Implementation Using the TMS320C54x 4

Application Report Q’
SPRA530

CRC Coding

CRC codes are a subset of cyclic codes and use a binary alphabet, 0 and 1. Arithmetic is
based on GF(2), for example, modulo-2 addition (logical XOR) and modulo-2
multiplication (logical AND).

In a typical coding scheme, systematic codes are used. Assume the convention that the
leftmost bit represents the highest degree in the polynomial. Suppose m(x) to be the
message polynomial, c(x) the code word polynomial and 9(x) the generator polynomial,
we have ¢(x) = m(x)g(x) which can also be written using the systematic form

c(x) = mOX" +1(x) , where "(X) is the remainder of the division of m)x" by 9(x)
and r(x) represents the CRC bits. The transmitted message ¢(x) contains k-information
bits followed by 7~k CRC bits, for example,

00) = mya X" o mo X+ X g . So encoding is straightforward:
multiply M) by X" that is, append 1=K bits to the message, calculate the CRC bits

n-k
m(x)x by 9(x) , and append the resulting 7~k CRC bits to the message.

by dividing
For the decoding part, the same algorithm can be used. If ¢'(x) is the received
message, then no error or undetectable errors have occurred if ¢'(x) is a multiple of

c'(x)x"k

9(x) , Which is equivalent to determining that if is a multiple of 9(x) , that is, if

' n-k
the remainder of the division from € (x)x by 9(x) is 0.

CRC Code Examples

The performance of a CRC code is dependent on its generator polynomial. The theory
behind its generation and selection is beyond the scope of this application report. This
application report will only consider the most common used ones (see Table 1).

Table 1. Common CRC Codes and Associated Generator Polynomial

CRC Code Generator Polynomial

CRC-CCITT (X25) X6 4 5d2 4 35 41

CRC-32 (Ethernet) 332 4 x26 4 (23 (22 4 (16 12 11,
P+ x"+ x5+ x* +x2 +x+1

GSM TCHIFS-HS-EFS Bx+1

(Channel coding for speech traffic

channels)

GSM TCH/EFS pre-coding rxt+x3+x2+1

(Preliminary channel coding for Enhanced

Full Rate)

GSM control channels — FIRE code 540 4,26 023 AT 3 g

(Channel coding for control channels)

Cyclic Redundancy Check Computation: An Implementation Using the TMS320C54x 5

Application Report ”
SPRA530

Algorithms for CRC Computation

Bitwise Algorithm

The bitwise algorithm (CRCB) is simply a software implementation of what would be done
in hardware using a linear feedback shift register (LFSR). Figure 1 illustrates a generic
hardware implementation. The shift register is driven by a clock. At every clock pulse, the
input data is shifted into the register in addition to transmitting the data. When all input
bits have been processed, the shift register contains the CRC bits, which are then shifted
out on the data line.

Figure 1. CRC Generation Using a Linear Feedback Shift Register (LFSR)

OGN

In the software implementation, the following algorithm can be used:

Assume now that the check bits are stored in a register referred as the CRC register, a
software implementation would be:

1) CRC €0

2) if the CRC left-most bit is equal to 1, shift in the next message bit, and XOR the CRC
register with the generator polynomial; otherwise, only shift in the next message bit

3) Repeat step 2 until all bits of the augmented message have been shifted in

Faster implementations can be achieved by handling the data as larger units than bits, as
long as the size does not exceed the degree of the generator polynomial. However, the
speed gain corresponds to a memory increase, since precomputed values (lookup tables)
will be used.

Cyclic Redundancy Check Computation: An Implementation Using the TMS320C54x 6

Application Report Q’
SPRA530

Lookup Table Algorithms

A code word can be written as c¢(x) = x" ¥ m(x) + r(x) = a(x)g(x) + r(x) , where r(x) is
the CRC polynomial of the input message m(x) . Let us augment the message by a bits.
We therefore have m'(x) = x%c(x) + b(x) , where b(x) = b,_;x®* +...+ b, is the new
added O -bit word. The CRC of the augmented message is the remainder of x”‘km'(x)

divided by g(x), let us call it 7'(x). We have r'(x) = Ry |[x"™*m'(x)]. Expanding the
dividend, we obtain:

x"Km (x) = x"K [x"’ c(x) + b(x)J = x"kp(x) + x% a(x)g(x) + X r(x), so that,
r'(x) = Ry [x”"kb(x) +x° r(x)J. Expanding the result, we have

rx)= Rg(x) |_(ba—1 + rn—k—l)xn_k_l+a +..+ (b + In—k-a)Xn_kJ+ rn—k—or—lxn_k_1 et rOXa

The last equation relates the check bits of the augmented message with the check bits of
the original message. Note that if n— k =a, then

r'(x) = Rg(x)[(b(,,_1 e)XTEC (b + rn_k_a)x”‘kj. Different algorithms for CRC
computation may be viewed as methods to compute r'(x) from r(x) and b(x) . Practical
values for a are 8 or 16, since it corresponds to many machine word lengths.

Standard Lookup Table Algorithm

The idea behind the standard lookup table algorithm is to precompute the CRC values of
all augmented bits combinations. Therefore, 29 (n - k) -bit word values are necessary,
which limits practical implementations to small a values.

Assume now that the check bits are stored in a register named CRC, the algorithm will be
(ifa<n-k):

1) CRC < 0, that is, set the (rn_k_l,...,ro) bitsto 0

2) XOR the a input bits with the CRC register content shifted right by Nn—K —a bits,
that is, XOR with the (rn_k_l,...,rrkk_a) bits
3) find the corresponding value in the lookup table and XOR the CRC register content

shifted left by o bits, that is, XOR with the (r,_;,...,) bits. This is the new CRC
value.

4) Repeat steps 2 to 3 until you reach the end of the message.

In the case where @ = n— K, steps 2) and 3) will be slightly different:
2) XOR the a input bits with the CRC register, that is, XOR with the (rn_k_l,...,ro) bits

3) Find the corresponding value in the lookup table. This is the new CRC value.

Cyclic Redundancy Check Computation: An Implementation Using the TMS320C54x 7

Application Report Q’
SPRA530

Reduced Lookup Table Algorithm

This algorithm is a variant of the standard lookup table algorithm to fit applications where
memory space is of primary importance. The amount of required memory to store the

lookup table is significantly reduced and equal to a (N — K) -bit words. The basic idea is

MK L (b + Ik)x”_kJ into the sum

to split the expression R, [(bo,_l +)X
Rg(x) |_(ba—l + rn—k—l)xn_k_l+a J

either 0 or 1. If (byq—; + Ip_k—1-;) i 0, then Ry, l(ba_l_,- + r,,_k_l_,-)x”_k"1+"_"J is equal to

ot Ry [(b0 + r,,_k_a)x”"kJ. Each term of the sum can be

0. So you only need to precompute a values corresponding to R, [x”"k_1+"'/J with
i =0,...,(a =1). The algorithm will be (ifa < n-k):

1) CRC < 0, that is, set the (r,,_k_l,...,ro) bitsto 0

2) XOR the a input bits with the CRC register content shifted right by a bits, XOR with
the (r,,_k_l,..., r,,_k_a) bits

3) on each bit of this value (a bits), if it is equal to 1 then find the corresponding value in
the lookup table and XOR the CRC register content with it

4) XOR this value with the CRC shifted left by a bits, that is, XOR with the (ra_l,...,ro)
bits. This is the new CRC value.

5) Repeat steps 2 to 4 until you reach the end of the message.

In the case where @ = n— K, steps 2) and 4) will be slightly different:
2) XOR the a input bits with the CRC e.g. XOR with the (F,_, ;,....T,) bits,

4) The value computed in step 3) is the new CRC value

Note that only step 3 differs from the standard lookup table algorithm. As expected, there
is an increase of processing due to the fact that each bit must be tested and if it is equal
to 1 then a XOR operation must be performed.

Cyclic Redundancy Check Computation: An Implementation Using the TMS320C54x 8

Application Report Q’
SPRA530

TMS320C54x Implementation

General Considerations

The TMS320C54x DSP is a 16-bit fixed-point DSP. Interesting for the implementation of
the examples given:

O 40-bit Arithmetical and Logical Unit (ALU)
Two 40-bit accumulators (A and B)
Efficient memory addressing modes

Multiple bus structure

 a a g

Barrel shifter

CRC codes with a size smaller than 40 bits are relatively easy to implement. Depending
on the type of algorithm used, 8-, 16-, or up to 32-bit data is used.

Results

Tables 2 to 6 illustrate the results obtained from simulation done on 256 input words,
which were randomly generated by a C-program using the rand() function. CRCB, CRCT,
and CRCR are the function names corresponding, respectively, to the bit-wise algorithm,
standard lookup table algorithm, and reduced lookup table algorithm. You can refer to the
assembly code in the appendixes.

As expected from the theory, we have a trade-off between memory requirement and
processing speed between the different algorithms. One trade-off is that the reduced
look-up table algorithm does not offer any advantage over the two others; this is
understandable, since in both cases, testing of all input bits must be performed.

CRC-CCITT
The standard lookup table algorithm is 2.7 times faster than the bit-wise

implementation, but requires 16.5 times more memory , due to the lookup table
essentially (see Table 2).

Table 2. Benchmarks for CRC-CCITT

Algorithm Cycles Program T Data’ Tables'
CRCB 91* 10 - -
(25343%) 7%
CRCT 12" 10 1 256
(9472%) (23%
CRCR o1* 15 - 16
(25602°) (26%)

T Number of 16-bit words.

$ To process one word. Includes return instruction.

8§ To process array of 256 words. Includes function calls, returns, main loop, and
specific initialization.

11 To process one byte. Includes return instruction.

Cyclic Redundancy Check Computation: An Implementation Using the TMS320C54x 9

Application Report Q’
SPRA530

CRC-32

The standard lookup table algorithm is 3.8 times faster than the bit-wise

implementation, but requires 10.7 times more memory , due to the lookup table
essentially (see Table 3).

Table 3. Benchmarks for CRC-32

Algorithm Cycles Program ' Data’ Tables'
CRCB 139° 12 16 -
(37693% (34%
CRCT 13" 11 - 512
(9984%) (24%)
CRCR 16" 22 2 32
(42750°) (28%)

T Number of 16-bit words
$ To process one word. Includes return instruction.

8§ To process array of 256 words. Includes function calls, returns, main loop, and
specific initialization.
11 To process one byte. Includes return instruction.

CRC for GSM/TCH
Only one algorithm has been implemented (see Table 4) due to the small CRC size
(3 bits). The lookup table oriented algorithms would have required to work on 3-bit
entities that are not really supported efficiently by the TMS320C54x architecture.

Table 4. Benchmarks for GSM/TCH

Algorithm Cycles Program ' Data’ Tables'
CRCB 89" 10 - -
(24859%) (21%
CRCT' - - - -
CRCR! — — —

1 Number of 16-bit words

$ To process one word. Includes return instruction.

8§ To process array of 256 words. Includes function calls, returns, main loop, and
specific initialization.

11 To process one byte. Includes return instruction.

Cyclic Redundancy Check Computation: An Implementation Using the TMS320C54x 10

Application Report Q’

SPRA530

CRC for GSM/TCH/EFS Precoder
The standard lookup table algorithm is 3 times faster than the bit-wise

implementation, but requires 16.2 times more memory , due to the lookup table
essentially (see Table 5).

Table 5. Benchmarks for GSM/TCH/EFS Precoder

Algorithm Cycles Program T Data’ Tables"
CRCB 91* 10 - -
(25343%) 7%
CRCT g’ 1 256
(8448%) (19%
CRCR 53" 14 - 8
(31486°) (25%)

T Number of 16-bit words

$ To process one word. Includes return instruction.

8§ To process array of 256 words. Includes function calls, returns, main loop, and
specific initialization.

11 To process one byte. Includes return instruction.

GSM FIRE Code

The reduced lookup table algorithm is not implemented, because it would not have had
any advantages over the bit-wise algorithm. This is even more obvious than for the
previous codes, since the FIRE code is 40 bits long and fetching 40 bits from memory
requires extra overhead.

The standard lookup table algorithm is 2.7 times faster than the bit-wise
implementation, but requires 14.3 times more memory , due to the lookup table
essentially (see Table 6).

Table 6. Benchmarks for GSM FIRE Code

Algorithm Cycles Program T Data’ Tables"
CRCB 137* 12 - -
(37258% (40%
CRCT 20" 18 - 768
(13570°%) (33%
CRCR' - - - -

T Number of 16-bit words

$ To process one word. Includes return instruction.

8§ To process array of 256 words. Includes function calls, returns, main loop, and
specific initialization.

11 To process one byte. Includes return instruction.

Cyclic Redundancy Check Computation: An Implementation Using the TMS320C54x

11

Application Report Q’
SPRA530

Summary

Three CRC computation algorithms and their implementation using the TMS320C54x
DSP have been considered in this application report, as well as various commonly used
CRC codes.

The bit-wise algorithm and the standard lookup table algorithm appear to be the most
appropriate depending on the application requirements, that is, memory usage or
computation time optimization. The results of the simulation based on five CRC codes
show that the standard lookup table algorithm is about 3 times faster, but requires about
14 times more memory than the bit-wise algorithms.

The code provided in this application report is easily adaptable to other CRC codes and

should provide you a good startup point, when considering implementation of cyclic
redundancy check.

Code Availability

The associated program files are available from Texas Instruments TMS320 Bulletin
Board System (BBS). Internet users can access the BBS via anonymous ftp.

References
1. Ramabadran T.V., Gaitonde S.S., “A tutorial on CRC computations”, IEEE Micro, Aug
1988

2. ETSI GSM 05.03 Specification, “Channel Coding” , August 1996, Version 5.2.0.
3. John G. Proakis, “Digital Communications”, 3" edition.

Cyclic Redundancy Check Computation: An Implementation Using the TMS320C54x 12

Application Report
SPRA530

Appendix A CRC-CCITT Listing '

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkhkkkkhkkkkkkhkkkkkkkkkkkkkkx

*

* (C) Copyright 1997, Texas Instruments Incorporated
*

*kkkhk *kkkkk *kkk *kkk *

.mmregs
.def Entry, Reset
title "CRC CCITT"

genCRC .set 1021h ; Generator CRC Polynomial value
;g(X) =x16 +x12+ x5+ 1
inport .set Oh ;10 address

.asg NOP,PIPELINE

*kkkkk *kkkkk *kkk *kkk *

Stack setup
* Reset vector

*kkkhk *kkkkk *kkkhk *kkk *

BOS .usect "stack",0fh ; setup stack
TOS .usect "stack",1 ; Top of stack at reset

.sect "vectors"

Reset:
bd Entry ; reset vector
stm #TOS,SP ; Setup stack

kkkkkkkkkkkkkhkkkkkkkkkkkkkkkkhkkkkkkhkkkkkkkhkkkkkkkkkkkkkkkx

* Main Program

*kkkhk *kkkkk *kkkhk *kkkkk *

.sect "program"
Entry
.include "c5xx.inc"
Id #crc,DP ; scratch pad mem -> DP=0

portr #inport,@nbDataln ; nb words
addm #-1,@nbDataln ; for repeat

T Part of the tables are truncated.

Cyclic Redundancy Check Computation: An Implementation Using the TMS320C54x

13

Application Report
SPRA530

*kkkhk *kkkkk *kkk

* CRCB (word wise)

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkhkkkhkkkkkkkkkkkkkkkkkkkk

stm #input,AR2 ; copy inputwords in RAM
rpt @nbDataln ;
portr #inport,*AR2+ ; read them from 10 space

Id #genCRC,16,B ; BH = CRC gen. poly.
mvdm @nbDataln,AR1 ; AR1 = length of message
stm #input,AR2 ; AR2 points to input word

ld *AR2+,16,A ;initialize CRC register

next calld CRCB ; perform CRC computation
or *AR2+ A
nop
banz next,*AR1- ; process all input words
sth A @crc ; store result in memory

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkhkkkkhkkkkhkhkkkkkkkkkkkkkkx

* CRCT (byte wise)

*kkkhk *kkkkk

stm #input,AR2 ; AR2 points to inputword
mvdm @nbDataln,AR1 ; AR1 = length of message
Id #0,A : clear Acc A

rsbx SXM ; NO sign extension

stm #t_start, AR3 ; AR3 = LTU start address

nextl calld CRCT ; process LSByte
ld *AR2,-8,B ; BL = LSByte
ld *AR2+,B
calld CRCT ; process MSByte
and #O0FFh,B ; BL = MSByte

banz nextl,*AR1-

st A,@crc : store result

*kkkhk *kkkkk

* CRCR (word wise)

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkx

stm #input,AR2 ; AR2 points to inputword
mvdm @nbDataln,AR1 ; AR1 = length of message

Id #0,A : clear Acc A

stm #rtw_start-1,AR3 ; AR3=LTU start address-1
next2 xor *AR2+A ; AL = CRC XOR inputWord

calld CRCRW ; process input word

and #OFFFFh,A
banzd next2,*AR1-

Cyclic Redundancy Check Computation: An Implementation Using the TMS320C54x

14

Application Report
SPRA530

stm #rtw_start-1,AR3 ; AR3=LTU start address-1
st A,@crc : store result

done b done

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkhkkkkhkkkkhkkhkkkkkkkkhkkkkkkx

* CRCB routine : bit-wise CRC calculation

*input : 1) 16-bit input words in AL

* 2) CRC generator polynomial in BH
* 3)OVM =0

* ouput : CRC value in AH

* BRC, REA, RSA, A, C, SP modified

* Code size = 10 words
*Cycles =11+ 5*N =91 for N = 16 bits

*A=]A31............. Al6 Al5................ AQ|
¥ e CRC ------ > < input bit S---->
*B =|B31............. B16 B15................ BO|

* <-- polynomial --->

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkhkhkkkkkkkkkkkkkkx

CRCB stm #16-1,BRC ; BRC = 16-1
rptb CRC_end-1 ; repeat block
sftl A1A ;A=A<<1, C=MSB
PIPELINE
PIPELINE
XC 1,C ;
xor B,A if C=1,
; AH = new CRC
;= AH XOR gen.
CRC_end ret ; end of repeat

*kkkhk *kkkkk *kkk *kkk *

* CRCT routine : standard lookup table CRC calculation
* with bytes as input

*input : 1) 8-bit words in AL

* 2) AR3 = LTU start address
* 3) DP = 0 = DP(temp)

* 4) SXM =0

* ouput : CRC value in AL

* A, B, AR4, SP modified

* code size = 10 words
* cycles = 12 cycles

Cyclic Redundancy Check Computation: An Implementation Using the TMS320C54x

Application Report

SPRA530
*A=]A31........... A16 A15.....cccenee AO|
* <-mmee- CRC ------- >
*B= B3l B7........ BO|
* <-- inpu t-->
kkkkkkkkkkkkhkkhkkkkhkkkhkkkhkhkhkkhkkkhkkkhkkhkkhkhkkkhhhkhhkhkkhkhkhkhkhkhkkhkkhkkkkix
CRCT ; AL (low part of Acc A) = CRC bits

st A,-8@AR4 :AR4=CRC >>8

stt A,8,@temp ;temp=CRC << 8

xor @AR4,B ; B = (inputByte) XOR (CRC>>8)
; = Offsetin LTU

adds @AR3,B ; B = Offset + LTU start address

stim B,AR4 ; AR4 = absolute address in LTU

retd
Id @temp,A :AL=CRC << 8
xor *AR4,A ; AL = new CRC

*kkkkk *kkkkk *kkk *kkk *

* CRCRW routine : reduced lookup table CRC calculation
* with words as input

*input : 1) 16-bit words in AL

* 2) AR3 = LTU start address - 1

* ouput : CRC value in AL

* A, B, C, AR3, BRC, RSA, REA, SP modified

* Code size = 15 words
*Cycles =11+ 5*N =91 for N = 16 bits

*A=]A31..........s A16 A15.....cccenee AO|
* <o CRC ------- >
CRCRW
stm #16-1,BRC ; BRC = 16-1
rptbd #loop-1 ; repeat block
ld #0,B ; reset B
nop
ror A ; get MSBit in Carry
mar *AR3+ ;increment index in LTU
nop
xc 1,C ; test Carry
xor *AR3,B ;if 1 then B = B XOR table[i++]
loop retd ; end of repeat
xor B,A : AL = new CRC
nop
.bss input,257 ; augmented message

; (16 bits appended)

Cyclic Redundancy Check Computation: An Implementation Using the TMS320C54x

16

Application Report
SPRA530

crc .usect "scratchPad",32 ;scratch pad memory
temp .set crc+l
nbDataln .set temp+1

.sect "reducedTablew" ; reduced LUT
; (based on words)
rtw_start

.word 01021h

.word 02042h

.word 04084h

.word 08108h

.word 01231h

.word 02462h

.word 048C4h

.word 09188h

.word 03331h

.word 06662h

.word OCCC4h

.word 089A9%h

.word 0373h

.word 06EG6h

.word ODCCh

.word 01B98h

rtw_len .set 16

.sect "table"; LTU (based on bytes)
t_start

.word 00h

.word 01021h

.word 02042h

.word 03063h

.word OED1h

.word 01EFOh
t len .set 256

Cyclic Redundancy Check Computation: An Implementation Using the TMS320C54x

Application Report
SPRA530

Appendix B CRC-32 Listing '

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkhkkkkhkhkkkkkkkkhkkkkkkx

*

* (C) Copyright 1997, Texas Instruments Incorporated
*

*kkkhk *kkkkk *kkk *kkk *% *

.mmregs
.global Entry, Reset
title "CRC 32"

hgenCRC .set 004C1h ; CRC Gen. Poly. MSB's
lgenCRC .set 01DB7h ; CRC Gen. Poly. LSB's
; g(X) = X32 + X26 + x23 + x22 +x16 +x12 + x11 +
; X10 + X8+ X7 +x5+x4 +x2+x+1

inport .set Oh ; 10 address

.asg NOP,PIPELINE

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkx

* Stack setup
* Reset vector

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkhkkkkkkkkhkkkkkkkkkkkkkkkx

BOS .usect "stack",0fh ; setup stack
TOS .usect "stack",1 ; Top of stack at reset

.sect "vectors"

Reset:
bd Entry ; reset vector
stm #TOS,SP ; Setup stack

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkhkhkkkkkkkkkhkkkkkkkkkkkkkkx

* Main Program

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkk

.sect "program"
Entry
.nclude "c5xx.inc"

Id #crc,DP ;scratch pad mem -> DP=0
portr #inport,@nbDataln ; reads in nb words

addm #-1,@nbDataln ; for repeat

stm #input,AR2 ; copy inputwords in RAM
rpt @nbDataln
portr #inport,*AR2+ ; read them from 10 space

T Part of the tables are truncated.

Cyclic Redundancy Check Computation: An Implementation Using the TMS320C54x

18

Application Report
SPRA530

*kkkhk *kkkkk *kkk *kkk *

* CRCB (word wise)

*kkkhk *kkkkk *kkk *kkk *

Id #hgenCRC,16,B ; BH = CRC gen. poly. MSB's
or #lgenCRC,B ; BL = CRC gen. poly. LSB's
mvdm @nbDataln,AR1 ; AR1 = length of message
stm #input,AR2 ; AR2 points to input word

stm #16,BK ; circular buffer size = 16
Id #0,A ; init Accumulator A

stm #16-1,BRC :BRC =16-1

rptbd initbitpos-1 ; repeat block

stm #bitpos,AR3 ; AR3 -> bitpos

stl A,*AR3+% ; initialize bit positions
add #1,A
initbitpos ; end of repeat
mar *AR3+% ; Begin with bit #0
stm #0,T ; init T register
did *AR2+A ; CRC register intialized
next call CRCB ; perform CRC computation
banzd next,*AR1- ; process all input words
mar *AR2+
nop
dst A,@crc ; store result in memory

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkhkkkkhkkkkkkkkkkkkkkkkkkkkx

* CRCT (byte wise)

kkkkkkkkkkkkhkkkkkkhkkkhkkkhkhkhkkhkkkhkkkhkkhkkhkhkkkhkhkhhkkhkkkhkhkhhkhkhhkhkkhkkkkix
stm #input,AR2 ; AR2 points to inputword
mvdm @nbDataln,AR1 ; AR1 = length of message
Id #0,A : clear Acc A
rsbx SXM ; o sign extend

stm #t_start, AR3 ; AR3 = LTU start address

nextl calld CRCT ; process LSByte
ld *AR2,-8,B ; BL = LSByte
ld *AR2+,B
calld CRCT ; process MSByte
and #0FFh,B ; BL = MSByte

banz nextl,*AR1-

dst A,@crc : store result

*kkkhk *kkkkk *kkkkk *kkkhk *

* CRCR (word wise)

kkkkkkkkkkkkkhkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkx

stm #2,AR0 ;index = 2

stm #input,AR2 ; AR2 points to inputword

mvdm @nbDataln,AR1 ; AR1 = length of message
Id #0,A : clear Acc A

Cyclic Redundancy Check Computation: An Implementation Using the TMS320C54x

Application Report
SPRA530

next2 calld CRCRW ;process input word
ld *AR2+,B
nop
banz next2,*AR1-

dst A,@crc ;store result

done b done

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkx

* CRCB routine : bit-wise CRC calculation

*input : 1) AR2 points to 16-bit word input value
* 2) CRC generator polynomial in B (32 bits)
* 3)OVM =0

* ouput : CRC value in A (32 bits)

*BRC, REA, RSA, A, C, T, TC, AR3, SP modified

* Code size = 12 words
*Cycles =11+ 8*N =139 for N = 16 bits

*A=|A3l............ A16 A15................ AO|
* e CRC - >
*B=|B31............. B16 B15................ BO|

R polynomial -------------- >

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkx

CRCB stm #16-1,BRC ;BRC=16-1
rptb CRCB_end-1 ; repeat block

bitt *AR2 ; Test bit #(15-T)

sftl A1A A=A

Id *AR3+%,T ; T = next bit position

xc 1,TC

or #1A ;ifTC=1, A(LSB) =1

xc 1,C

xor B,A ;if C=1, A=new CRC
CRCB_end

ret

*kkkkk *kkkkk *kkk *kkk *

* CRCT routine : standard lookup table CRC calculation
* with bytes as input

*input : 1) 8-bit words in B

* 2) AR3 = LTU start address
* 3)DP=0

* 4) SXM =0

* ouput : CRC value in A (32 bits)

Cyclic Redundancy Check Computation: An Implementation Using the TMS320C54x

Application Report
SPRA530

* A, B, AR4, SP modified

* code size = 11 words
* cycles = 13 cycles

*A=|A3l............. Al6 Al5................ AO|
e CRC --------mmmmmeem >
*B = |B31............. B16.......... B7........ BO|
* <--- input-->
CRCT ; AL (low part of Acc A) = low part of CRC

; AG (high part of Acc A) = high part of CRC

sth A,-8, @AR4 ; AR4 =CRC >>24

xor @AR4,B ;B = (inputByte) XOR (CRC>>24)
; = Offsetin LTU

sftt B,1,B ; multiply by 2 because 32 bits

add @AR3,B ;B =Offset+ LTU start address

stim B,AR4 :; AR4 = absolute address in LTU

sftt A8A A=A<<8

retd

did *AR4,B ;B =LTU[inputbyte XOR (CRC>>24)]

xor B,A ; A=new CRC

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkx

* CRCRW routine : reduced lookup table CRC calculation
* with words as input

*input : 1) input word in B

* 2) DP = DP(temp) = DP(temp1)
* 3)SXM =0

* ouput : CRC value in A (32 bits)

* A, B, C, ARS, BRC, RSA, REA, SP modified

* Code size = 22 words
*Cycles =16+ 11*N =192 for N = 16 bits (worst case)

* =16 + 7*N = 128 for N = 16 bits (best case)
* =160 average
*A=|A3l............. Al6 Al5................ AO|
e CRC --------mmmmmeem >
CRCRW
stm #16-1,BRC
sth A @templ ; templ = CRC >> 16
st A,@temp ;temp=A=CRC<<16
Id @templ,A :A=CRC>> 16
xor B,A ; A =(CRC >> 16) XOR inputByte
ld #0,B ; clear Acc B

rptbd #loop-1
stm #rtw_start,AR3 ; AR3 = LTU start address
ror A ; get A(LSB) in Carry bit

Cyclic Redundancy Check Computation: An Implementation Using the TMS320C54x

Application Report
SPRA530

bc noCarry,NC
dst A ,@templ
did *AR3,A ;if C=1then B = B XOR table[i++]

xor A,B
did @templ,A
noCarry mar *AR3+0
loop retd
Id @temp,16,A ; A=temp = CRC << 16
xor B,A :new CRCin A

.bss input,258 ; augmented message
; (32 bits appended)
bitpos .usect "circ",16 ; contain bit number

.def crc
crc .usect "scratchPad",32 ; scratch pad memory
temp .set crc+2
templ .set temp+2
nbDataln .set templ+2

.sect "table" ; LTU (byte wise)
t_start

dong 00h

Jlong 04C11DB7h

Jong 09823B6Eh

Jdong 0D4326D%h

long 0B8757BDAh

long 0B5365D03h

dong OB1F740B4h
t len .set 512

.sect "reducedTablew" ; reduced LTU (word wise)
rtw_start
dong 04C11DB7h
Jong 09823B6Eh
Jong 0130476DCh
Jong 02608EDB8h
dong 04C11DB70h
dong 09823B6EOh
dong 034867077h
Jlong 0690CEOEEh
Jdong 0D219C1DCh
Jdong OAOF29EOFh
dong 0452421A%h
dong 08A484352h
dong 010519B13h
Jdong 020A33626h
Jdong 041466C4Ch
Jong 0828CD898h
rtw_len .set 32

Cyclic Redundancy Check Computation: An Implementation Using the TMS320C54x

Application Report
SPRA530

Appendix C GSM/TCH Listing

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkhkhkkkkkkkkkkkkkkx

*

* (C) Copyright 1997, Texas Instruments Incorporated
*

*kkkhk *kkkkk *kkk *kkk *

.mmregs
.global Entry, Reset
title "CRC - GSM/all TCH"

genCRC .set 6000h ; Generator CRC Polynomial value
; (left aligned x3 + x + 1)
inport .set Oh
.asg NOP,PIPELINE

*kkkhk *kkkkk *kkk *kkk *

Stack setup
* Reset vector

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkhkkkkkkkkhkkkkkkkkkkkkkkkx

BOS .usect "stack",0fh ; setup stack

TOS .usect "stack",1 ; Top of stack at reset
.sect "vectors"

Reset:
bd Entry : reset vector
stm #TOS,SP ; Setup stack

*kkkkk *kkkkk *kkk *kkk *

* Main Program

*hkhkhkkkhkkkhhkhAhkkhkhkkhhkhkhrhhhhkhrkhhhkhrhhhhkhhhhhrkhhhkhikk
.sect "program"

Entry
.include "c5xx.inc"
Id #crc,DP ;scratch pad mem -> DP=0

portr #inport,@nbDataln ;reads in nb words
addm #-1,@nbDataln ;for repeat

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkx

* CRCB (word wise)

*kkkhk *kkkkk *kkk *kkk *

stm #input,AR2 ; copy inputwords in RAM
rpt @nbDataln :
portr #inport,*AR2+ ; read them from 10 space

Id #genCRC,16,B ; BH = CRC gen. poly.

Cyclic Redundancy Check Computation: An Implementation Using the TMS320C54x

23

Application Report

SPRA530
mvdm @nbDataln,AR1 ; AR1 = length of message
stm #input,AR2 ; AR2 points to input word
Id *AR2+,16,A ; initialize CRC register
next calld CRCB ; perform CRC computation
stm #16-1BRC ;BRC=16-1
banz next,*AR1- ; process all input words
calld CRCB
stm #3-1,BRC ; trailing bits
sth A @crc ; store result in memory

done b done

*kkkkk *kkkkk *kkk *kkk *

* CRCB routine : bit-wise CRC calculation

*input : 1) 16-bit words in AL

* 2) CRC generator polynomial in BH (left justified)
* 3)OVM =1

* 4) number of bits to test in BRC

* ouput : CRC value in AH (left justified)

* BRC, REA, RSA, AR2, A, C, SP madified

* Code size = 10 words
*Cycles =9+ 5*N=89forN =16

* A =]A31..A29........ A16 Al5............... AO|

* <-CRC--> <-mee input bit S---->
*B=|B31..B29....cceiiiieiee BO|

* <-poly->

kkkkkkkkkkkkkhkkkkkkkkkkkkkkkkhkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkx

CRCB rptbd CRC_end-1 ; repeat block

or *AR2+A ; get next input word
nop

sftl A1A A=A<<1

PIPELINE

PIPELINE

XC 1,C ; test Carry bit

xor B,A cif C=1then A=A XORB

; =new CRC
CRC_end ret

.bss input,257 ; augmented message

; (3 bits appended)

crc .usect "scratchPad",32 ; scratch pad memory
nbDataln .set crc+l

Cyclic Redundancy Check Computation: An Implementation Using the TMS320C54x

Application Report
SPRA530

Appendix D GSM/TCH/EFS Precoder Listing

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkhkkkkkkkkhkkkkkkkkkkkkkkkx

*

* (C) Copyright 1997, Texas Instruments Incorporated
*

*kkkhk *kkkkk *kkk *kkk *

.mmregs
.global Entry, Reset
title "CRC - GSM/EFR pre coding"

genCRC .set 1D00Oh ; Generator CRC Polynomial value
;(left aligned)
;g(X)=x8+x4+x3+x2+1
inport .set Oh ;1O space address
.asg NOP,PIPELINE

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkhkkkkkkhkkkkkkkkkkkkkkx

Stack setup
* Reset vector

*kkkhk *kkkkk *kkk *kkk *

BOS .usect "stack",0fh ; setup stack
TOS .usect "stack",1 ; Top of stack at reset

.sect "vectors"

Reset:
bd Entry ; reset vector
stm #TOS,SP ; Setup stack

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkx

* Main Program

*kkkhk *kkkkk *kkk *kkk *

.sect "program"
Entry
.include "c5xx.inc"

Id #crc,DP ; scratch pad mem -> DP=0
portr #inport,@nbDataln : reads in nb words
addm #-1,@nbDataln ; for repeat

stm #input,AR2 ; copy inputwords in RAM
rpt @nbDataln ;
portr #inport,*AR2+ ; read them from 1O space

T Part of the tables are truncated.

Cyclic Redundancy Check Computation: An Implementation Using the TMS320C54x

25

Application Report
SPRA530

*kkkhk *kkkkk *kkk *kkk *

* CRCB (word wise)

*kkkhk *kkkkk *kkk *kkk *

Id #genCRC,16,B ; BH = CRC gen. poly.
mvdm @nbDataln,AR1 ; AR1 = length of message.
stm #input,AR2 ; AR2 points to input word

Id *AR2+,16,A ; initialize CRC register

next calld CRCB ; perform CRC computation.
or *AR2+,A ; store input word in AL
nop
banz next,*AR1- ; process all input words
sth A,-8,@crc ; store result in memory

*kkkhk *kkkkk *kkk *kkk *

* CRCT (byte wise)

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkhkkkkhkkkkhkhkkkkkkkkkkkkkkx

stm #input,AR2 ; AR2 points to inputword
mvdm @nbDataln,AR1 ; AR1 = length of message

Id #0,A ; clear Acc A

Id #genCRC,B ; init Acc B with gen. poly.
sftl B,-8,B ; right justify it

rsbx SXM ; NO sign extension

stm #t_start, AR3 ; AR3 = LTU start address
nextl Id *AR2,-8,B ; BL = MSByte

call CRCT ; process MSByte
Id *AR2+,B ;

and #00FFh,B ; BL = LSByte
call CRCT ; process LSByte

banz nextl,*AR1-

st A ,@crc ;store result

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkx

* CRCR (byte wise)

*kkkhk *kkkkk *kkk *kkk *

stm #input,AR2 ; AR2 points to inputword
mvdm @nbDataln,AR1 ; AR1 = length of message

Id #0,A : clear Acc A

next2 Id *AR2,-8,B ; BL = MSByte
call CRCR ; process MSByte
Id *AR2+,B ;
and #00FFh,B ; BL = LSByte
call CRCR

banz next2,*AR1-

st A ,@crc ;store result
done b done

Cyclic Redundancy Check Computation: An Implementation Using the TMS320C54x

Application Report
SPRA530

*kkkhk *kkkkk *kkk *kkk *

* CRCB routine : bit-wise CRC calculation

*input : 1) 16-bit words in AL

* 2) CRC generator polynomial in BH (left justified)
* ouput : CRC value in AH (left justified)

* BRC, REA, RSA, A, C, SP modified

* Code size = 10 words
*Cycles =11+5*N=91forN =16

*A=|A31.....A24... A16 Al5................ AQ|
* <--CRC--> < input bit S---->
*B =|B31....B24. ..t BO|

* <--poly -->

*kkkhk *kkkkk *kkk *kkk *

CRCB stm #16-1,BRC ;BRC =16-1
rptb CRC_end-1 ; repeat block
sftl A,1,A ;A=A<<1,get MSBin carry

PIPELINE

PIPELINE

xc 1,C ; test on Carry

xor B,A ;ifC=1then A =o0ld_CRC XOR g(x)
CRC_end ret

*kkkkk *kkkkk *kkk *kkk *

* CRCT routine : standard lookup table CRC calculation
* with bytes as input

*input : 1) 8-bit words in AL

* 2) AR3 = LTU start address
* 3) DP = 0 = DP(temp)

* ouput : CRC value in AL

* A, B, AR4, SP modified

* code size = 6 words
* cycles = 8 cycles

*A=|A3l............ Al6 Al5...... AT....... AQ|
* <--- CRC-->
CRCT ; AL (low part of Acc A) = CRC bits
xor AB ;B =(inputByte) XOR (CRC)
; = Offsetin LTU

adds @AR3,B ; B = Offset + LTU start address
stim B,AR4 ; AR4 = absolute address in LTU
retd
nop
ldu *AR4,A ; AL =new CRC

;= LTU[inputbyte XOR CRC]

Cyclic Redundancy Check Computation: An Implementation Using the TMS320C54x

Application Report
SPRA530

*kkkhk *kkkkk *kkk *kkk *

* CRCR routine : reduced lookup table CRC calculation
* with bytes as input

*input : 1) 8-bit words in AL
* 4) SXM =0

* ouput : CRC value in AL

* A, B, AR3, C, SP modified

* code size = 14 words
*Cycles =13+ 5*N =53 for N = 8 bits

*A=|A31............. Al16 Al5...... AT....... AQ|
* <--- CRC-->
CRCR
xor AB ; B = (inputByte) XOR (CRC)
;. = Offsetin LTU
Id #0h,A

stm #8-1,BRC

rptbd #loop-1

stm #rt_start-1,AR3 ; AR3=LTU start address-1

ror B

mar *AR3+

nop

xc 1,C

xor *AR3,A ;if C=1then B = B XOR table[i++]
loop ret

.bss input,257 ; augmented message
; (8 bits appended)

crc .usect "scratchPad",32 ;scratch pad memory
temp .set crc+l
nbDataln .set temp+1

.sect "table"
t_start
.word 00h
.word 01Dh
.word 03Ah
.word OFEh
.word 0D9%h
.word 0C4h
t len .set 256

.sect "reducedTable"
rt_start

.word 01Dh

.word 03Ah

.word 074h

.word OES8h

Cyclic Redundancy Check Computation: An Implementation Using the TMS320C54x

Application Report
SPRA530

.word OCDh
.word 087h
.word 013h
.word 026h
rt_len .set 8

Cyclic Redundancy Check Computation: An Implementation Using the TMS320C54x

Application Report
SPRA530

Appendix E GSM FIRE Code Listing '

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkhkkkkhkkkkhkhkkkkkkkkkkkkkkx

*

* (C) Copyright 1997, Texas Instruments Incorporated
*

*kkkkk *kkkkk *kkk *kkk *

.mmregs
.global Entry, Reset
titte "GSM Fire code"

hgenCRC .set 0482h ;generator polynomial is equal to
IgenCRC .set 0009h ;x40 + x26 + x23 + X17 +x3 + 1
inport .set Oh

.asg NOP,PIPELINE

*kkkhk *kkkkk *kkk *kkk *

Stack setup
* Reset vector

*kkkkk *kkkkk *kkk *kkkkkk *

BOS .usect "stack",0fh ; setup stack
TOS .usect "stack",1 ; Top of stack at reset

.sect "vectors"

Reset:
bd Entry ; reset vector
stm #TOS,SP ; Setup stack

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkhkkkkkkkkhkkkkkkkkkkkkkkkkx

* Main Program

*kkkhk *kkkkk *kkkhk *kkk *

.sect "program"
Entry
.include "c5xx.inc"
rsbx ovm
rsbx sxm
Id #crc,DP ; scratch pad mem -> DP=0
portr #inport,@nbDataln : nb words

addm #-1,@nbDataln ; for repeat

T Part of the tables are truncated.

Cyclic Redundancy Check Computation: An Implementation Using the TMS320C54x

30

Application Report
SPRA530

*kkkhk *kkkkk *kkk *kkk

* CRCB (word wise)

*kkkhk *kkkkk *kkk *kkk *

stm #input,AR2 ; copy inputwords in RAM
rpt @nbDataln ;
portr #inport,*AR2+ ; read them from 10 space

Id #hgenCRC,16,B ; BH = CRC gen. poly. MSBs
or #lgenCRC,B ; BL = CRC gen. poly. LSBs
mvdm @nbDataln,AR1 ; AR1 = length of message
stm #input,AR2 ; AR2 points to input word

stm #16,BK : Circular buffer size is 16
Id #0,A : clear Acc A
stm #16-1,BRC :BRC =16-1
rptbd initbitpos-1 ; repeat block
stm #bitpos,AR3 ; AR3 -> hitpos
stl A *AR3+% ; initialize bitpos
;with bit positions

add #1,A
initbitpos ; end of repeat
mar *AR3+% ;
stm #0,T ;init T reg
did *AR2+A ; CRC reqister intialized
next calld CRCB ; perform CRC computation
stm #16-1,BRC ;BRC=16-1
banzd next,*AR1- ; process all input words
mar *AR2+ ; AR2 points to next input
nop
calld CRCB ; last 8 bits
stm #8-1,BRC :BRC =8-1
mvdk @AG,@crc ; store result in memory

mvdk @AH,@crc+1
mvdk @AL,@crc+2

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkhkkkkhkkkkkkhkkkkkkkkkkkkkkx

* CRCT (byte wise)

*kkkhk *kkkkk *kkk *kkk *

stm #input,AR2 ; AR2 points to inputword
mvdm @nbDataln,AR1 ; AR1 = length of message

Id #0,A : clear ACC A
stm #t_start, AR3 ; AR3 = LTU start address
stm #3,T ; multiplication operand
; (for calculating index
; in LTU table)
nextl calld CRCT ; process LSByte
ld *AR2,-8,B ; BL = LSByte
ld *AR2+,B
calld CRCT ; process MSByte

and #OFFh,B ; BL = MSByte
banz nextl,*AR1-

Cyclic Redundancy Check Computation: An Implementation Using the TMS320C54x

31

Application Report
SPRA530

mvdk @AG,@crc ; store result in memory
mvdk @AH,@crc+1
mvdk @AL,@crc+2

done b done

* CRCB routine : bit-wise CRC calculation

*input : 1) 16-bit input words in AL

* 2) CRC generator polynomial in BH

* 3)OVM =0

* ouput : CRC value in A (40 bits)

* BRC, REA, RSA, A, C, T, TC, AR3, SP modified

* Code size = 12 words
*Cycles =9+ 11*N =137 for N = 16 bits

* A = |A39..A32 A31....A16 Al5................ AQ|
* < CRC >

*B =|B39..B32 B31....B16 B15
*

e polynomial --------------
CRCB
rptb CRCB_end-1 ; repeat block
bitt *AR2 ; Test bit #(15-T)
sfta A,1,A A=Al
Id *AR3+%,T ; T = next bit position
xc 1,TC
or #1A ;ifTC=1, A(LSB) =1
xc 1,C
xor B,A ; If C=1, A =new CRC
CRCB_end
ret

*kkkhk *kkkkk *k%k *kkk *

* CRCT routine : standard lookup table CRC calculation
* with bytes as input

*input : 1) 8-bit words in AL

* 2) AR3 = LTU start address
* 3) DP = 0 = DP(temp)

* 4) SXM =0

* 4)FRCT =0

* ouput : CRC value in AL

* A, B, AR4, SP modified

* code size = 18 words
* cycles = 20 cycles

Cyclic Redundancy Check Computation: An Implementation Using the TMS320C54x

Application Report

SPRA530
*A=|A31............. A16 Al5................ AQ|
L — CRC ------- >
*B=|B31l...ooiiiieeeeeenn B7........ BO|
* <-- inpu t-->
CRCT
mvmd AG,@AR4 ; AR4 =CRC >> 32
xor @AR4,B ; B = (inputByte) XOR (CRC>>32)
; = Offsetin LTU
sfta A8A ;A=A<<8
mpy @BL,B
add @AR3,B ;B = Offset + LTU start address
stim B,AR4 ; AR4 = absolute address in LTU
PIPELINE
PIPELINE
mvdk *AR4+,@BG
mvdk *AR4+,@BH
mvdk *AR4+,@BL
retd
xor B,A ;A=newCRC
nop
.bss input,259 ; augmented message
; (40 bits appended)
bitpos .usect "circ",16 ; contain bit position

crc .usect "scratchPad",32 ;scratch pad memory
nbDataln .set crc+3
temp .set crc+4 ;mustbe aligned to even boundary

.sect "table"
t start .word 0O0h
.word 00h
.word 00h
.word 00h
.word 0482h
.word 09h
.word 03h
.word 086FCh
.word 070Eh
.word 03h
.word 0827Eh
.word 0707h
t len .set 768

Cyclic Redundancy Check Computation: An Implementation Using the TMS320C54x

Application Report
SPRA530

Tl Contact Numbers

INTERNET Asia

Tl Semiconductor Home Page Phone

www.ti.com/sc International +886-2-23786800

Tl Distributors Domestic

www.ti.com/sc/docs/distmenu.htm AEIJ'?tIr\Ja“ab 188%%%%16%1]5 0

umber -800-800-

PROI?UCT INFORMATION CENTERS China 10810

Americas Tl Number -800-800-1450

Phone +1(972) 644-5580 Hong Kong 800-96-1111

Fax +1(972) 480-7800 TI Number -800-800-1450

Email sc-infomaster@ti.com India 000-117

Europe, Middle East, and Africa TI Number -800-800-1450

Phone Indonesia 001-801-10
Deutsch +49-(0) 8161 80 3311 TI Number -800-800-1450
English +44-(0) 1604 66 3399 Korea 080-551-2804
Esparfiol +34-(0) 90 2354 0 28 Malaysia 1-800-800-011
Francais +33-(0) 1-30 70 11 64 TI Number -800-800-1450
Italiano +33-(0) 1-30 70 11 67 New Zealand 000-911

Fax +44-(0) 1604 66 33 34 Tl Number -800-800-1450

Email epic@ti.com Philippines 105-11

Japan TI Number -800-800-1450

Phone Singapore 800-0111-111
International ~ +81-3-3457-0972 TI Number -800-800-1450
Domestic ~ 0120-81-0026 Tawan 080-006800

Fax Thailand ~ 0019-991-1111
International ~ +81-3-3457-1259 TI Number -800-800-1450
Domestic ~ 0120-81-0036 Fax 886-2-2378-6808

Email pic-japan@ti.com Email tiasia@ti.com

Cyclic Redundancy Check Computation: An Implementation Using the TMS320C54x

Application Report Q’
SPRA530

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their
products or to discontinue any product or service without notice, and advise customers to
obtain the latest version of relevant information to verify, before placing orders, that
information being relied on is current and complete. All products are sold subject to the
terms and conditions of sale supplied at the time of order acknowledgement, including
those pertaining to warranty, patent infringement, and limitation of liability.

T1 warrants performance of its semiconductor products to the specifications applicable at
the time of sale in accordance with TI's standard warranty. Testing and other quality
control techniques are utilized to the extent Tl deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except
those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE
POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR
ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS"). TI SEMICONDUCTOR
PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE
SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS
IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design
and operating safeguards must be provided by the customer to minimize inherent or
procedural hazards.

Tl assumes no liability for applications assistance or customer product design. Tl does
not warrant or represent that any license, either express or implied, is granted under any
patent right, copyright, mask work right, or other intellectual property right of Tl covering
or relating to any combination, machine, or process in which such semiconductor
products or services might be or are used. TI's publication of information regarding any
third party's products or services does not constitute TI's approval, warranty, or
endorsement thereof.

Copyright O 1999 Texas Instruments Incorporated

Cyclic Redundancy Check Computation: An Implementation Using the TMS320C54x 35

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.

Tl warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent
Tl deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TIPRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER'’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

Tl assumes no liability for applications assistance or customer product design. Tl does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of Tl covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI's publication of information regarding any third
party’s products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright 00 2000, Texas Instruments Incorporated

