

TRIPLE IGBT/MOS DRIVER

- THREE POWER IGBT/MOS AND PULSE TRANSFORMER DRIVERS
- CURRENT SENSE COMPARATOR WITH 1ms INHIBITION TIME FUNCTION
- INSTANTANEOUS SIGNAL TRANSMISSION
- 0.6 Amp PER CHANNEL PEAK OUTPUT CURRENT CAPABILITY
- LOW OUTPUT IMPEDANCE TYP : 7Ω at 200mA
- CMOS/LSTTL COMPATIBLE INVERTING INPUT WITH HYSTERESIS
- 4V TO 16V SINGLE SUPPLY OPERATION
- CURRENT AMPLIFIER
- LOW BIAS CURRENT TYP: 1.5mA
- ADJUSTABLE UNDERVOLTAGE LOCKOUT LEVEL
- STAND-BY MODE
- DURING POWER UP NO RANDOM OUTPUT STATE
- ENHANCED LATCH-UP IMMUNITY
- CHANNEL PARALLELING CAPABILITY

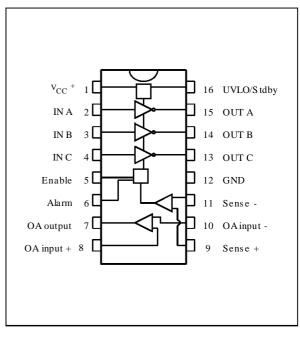
N DIP16 (Plastic Package) (Plastic Micropackage)

ORDER CODES

Part Number	Temperature	Package		
Part Number	Range	N	D	
TD310I	-40°C, +125°C	•	•	

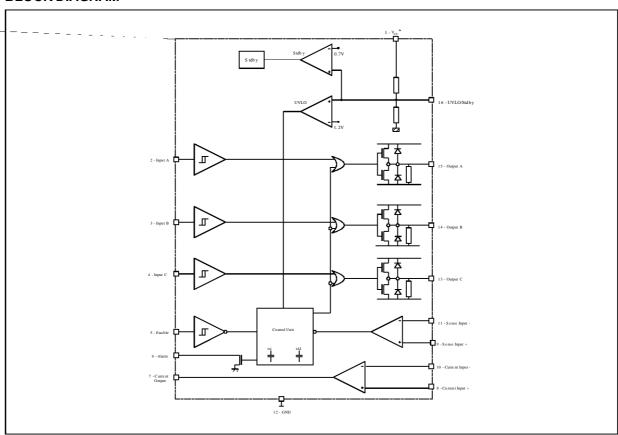
DESCRIPTION

The TD310 is designed to drive one, two or three Power IGBT/MOS and has driving capability for pulse transformer. So it is perfectly suited to interface control IC with Power Switches in low side or half-bridge configuration.


The typical application shown figure 1 implements the TD310 in a pulse controlled half-bridge drive. Positive and negative pulses are applied to the pulse transformer to charge and discharge the IGBT/MOS gate capacitance. More sophisticated secondary circuits provide low impedance gate drive and short-circuit protection as shown in application note n° AN461.

On Figure 2, TD310 is implemented as a low side driver in a typical 3 phase motor drive.

Figure 3 presents a general purpose low side gate drive.


In both case, the current amplifier provides interfacing between a sense resistor and an A/D converter.

PIN CONNECTIONS

October 1997 1/9

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vcc	Supply Voltage	18	V
Vi	Input Voltage	0 to V _{CC}	V
Vis	Sense Input Voltage	-0.3 to V _{CC}	V
Tj	Junction Temperature	-40 to 150	°C
T _{amb}	Ambient Temperature	-40 to 125	°C

OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
Vcc	Supply Voltage	4 to 16	V

INSTRUCTIONS FOR USE

- 1 $\;$ The TD310 supply voltage must be decoupled with a $1\mu F$ min. capacitor.
- 2 If the application involving TD310 requires maximum output current capability, this current must be pulsed: pulse width 1μsec, duty cycle 1% at T_{amb}.

ELECTRICAL CHARACTERISTICS

 $V_{CC} = 15V$, $T_{amb} = 25^{\circ}C$ (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit
Icc	Supply Current with Inputs in High State		1.5	2	mA
	LOGIC INPUT (all inputs)	•	,		
VIH	High Input Voltage	2			V
VIL	Low Input Voltage			0.8	V
I _{IH}	High Input Current		10		pА
I _{IL}	Low Input Current		10		pА
t _{dH,} t _{eH} t _{dL,} t _{eL}	Propagation Delay (10% input to 10% output) Output Rise Output Fall $T_{min.} \le T_{amb} \le T_{max.}$		200 60	400 400	ns
t _{ii}	Input Inhibiting Time		100		ns
t _{dd}	Differential Delay Time Between Channels		20		ns
	OUTPUT DRIVERS				
V_{sod}	Sourcing Drop Voltage (A/B/C outputs) I _{source} = 200mA			3	V
V _{sid}	Sinking Drop Voltage (A/B/C outputs) I _{sink} = 200mA			5	V
V_{dem}	Demagnetising Drop Voltage (A/B/C outputs) I _{demag.} = 100mA			2	V
R _{opd}	Output Pull Down Resistor		47		kΩ
	ALARM OUTPUT				
Is	Low Level Sinking Current Vo = 0.8V	5	35		mA
I _{sh}	High Level Sinking Current			1	μΑ
t _A	Alarm Output : Delay Time to Alarm Fall if Sense Input Triggered			500	ns
	SENSE INPUT				
V_{ios}	Input Offset Voltage			20	mV
t_{Ai}	Inhibition Time if Sense Input Triggered		1		ms
ts	Delay Time to Output Fall if Sense Input Triggered All outputs inhibited			600	ns
t _{si}	Inhibition Time of Sense Input		300		ns
V _{shys}	Sense Hysteresis		40		mV
	OPERATIONAL AMPLIFIER				
V _{icm}	Common Mode Input Voltage Range	0	to V _{CC} ⁺ -	1.5	V
Vio	Input Offset Voltage			10	mV
GBP	Gain Bandwidth Product		1		MHz
A_{vd}	Open Loop Gain	60			dB
SR	Slew Rate at Unity Gain $R_L = 100k\Omega$, $CL = 100pF$, $V_i = 3 to 7V$		0.6		V/µs
	STAND-BY				
V _{stdby}	Standby Mode Threshold Voltage	0.3		1.1	V
I _{stdby}	Standby Mode Supply Current		30		μΑ
	UNDER VOLTAGE LOCKOUT				
l _{adj}	Under Voltage Level Adjust Current		1		μA/V
V _{st1}	Internal Stop Threshold (without external adjustement)	10.7		13.3	V
V _{hys}	Threshold Hysteresis		0.8		V

UVLO/stbdy pin functionning modes

Due to the wide supply voltage range of the TD310, the UVLO function (Under Voltage Lock Out) is externally adjustable by a resistor bridge.

The bridge rate can be calculated in relation with the expected UVLO protection level as follows:

$$V_{UVLO} \times \frac{R1}{R1+R2} = 1.2V$$
 (where R1 is the lower resistor of the bridge)

The internal resistor sets the default UVLO value to 12V (*) and might influence the external bridge rate if the values of the external resistors are too high.

The standby threshold value depends of the UVLO value as follows:

$$V_{stdby} = 0.7/1.2 V_{UVLO}$$

Both UVLO and stdby functions can be inhibited by connecting the UVLO/stdby pin to V_{CC}⁺ via a pull up resistor (ex $150k\Omega$).

The following table summarizes the functions of the TD310:

	Pin	16	9/11	5	2/3/4	15/14 /13	6	7/8/10	
	Configuration	UVLO/stdby	Sense+/Sense-	Enabl e	In A/B/C	Out A/B/C	Alarm	Op. Amp.	Consumption
			+>-	Х	Х	L	L		
Normal	1	Н	+<-	Н	IN	ĪN	Н	OK	H (1.5mA)
				L	Х	L	''		
Stdby	2	L	+>-	Х	X	ı	L	HZ	L (30μA)
Oldby		_	+<-			_	Н	112	Ε (σομΑ)
UVLO	3	М	Х	Х	Х	L	L	OK	Н

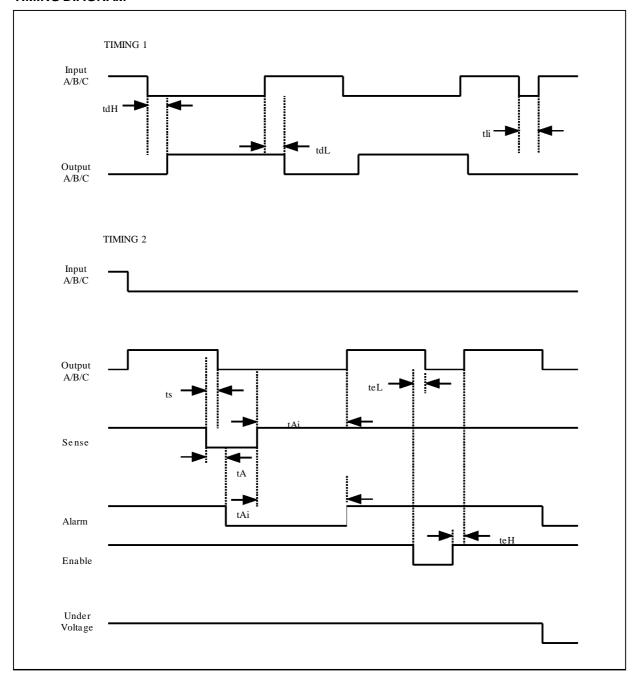
Configuration 1: UVLO/stdby = H

The TD310 is in a normal consumption state (1.5mA), the operational amplifier is normally functionning and the buffer outputs are determined by the sense comparator inputs, the enable inputs and the buffer inputs.

Configuration 2: UVLO/stdby = L

The TD310 is in a low consumption state (standby mode 30µA), the buffer outputs are set to low state and the operational amplifier is in high impedance state.

Configuration 3: UVLO/stdby = M


The V_{CC} supply voltage is between V_{UVLO} and V_{stdby} (**). The TD310 remains in a normal consumption state and the operational amplifier is normally functionning but the buffer outputs and the alarm pin are set to low state.

If the UVLO level remains unadjusted, it is recommended to bypass the UVLO/stdby pin with a 1nF capacitor.

(*) If the UVLO level remains unadjusted, it is recommended to bypass and \$1.25.12., p. (**) If the supply voltage falls below V_{stdby}, the TD310 is set in standby mode (configuration 2).

TIMING DIAGRAM

TYPICAL APPLICATIONS

Figure 1 : THREE PHASE MOTOR DRIVE

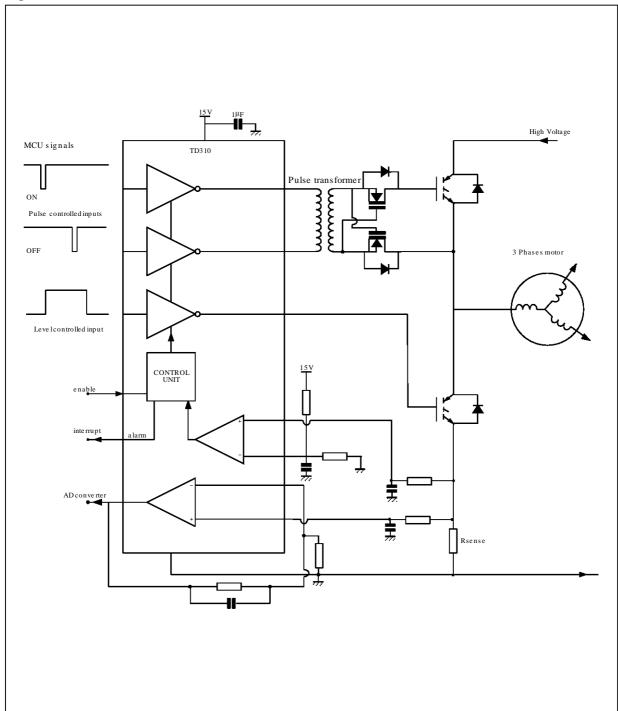


Figure 2: THREE PHASE MOTOR LOW SIDE DRIVE

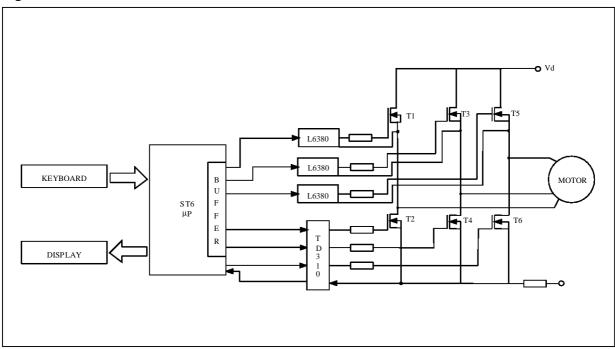
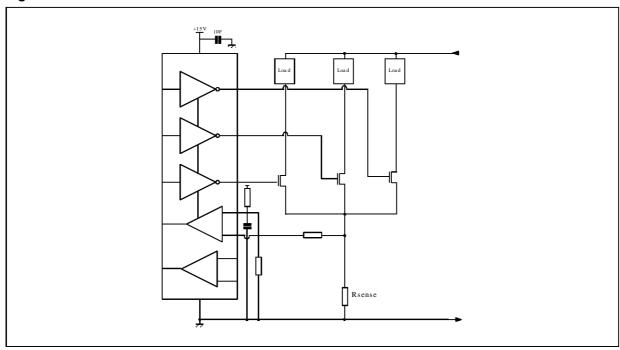
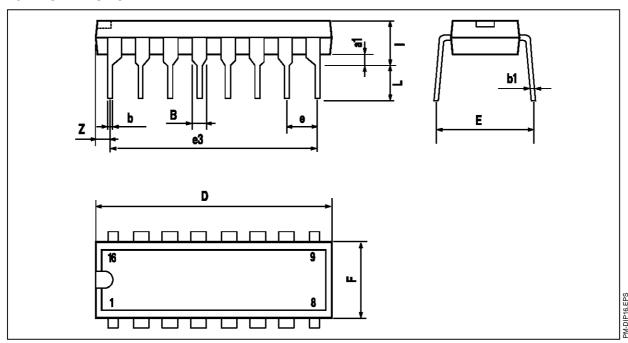
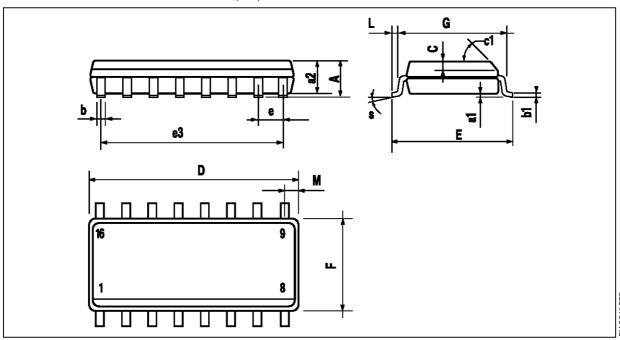




Figure 3: LOW SIDE DRIVE

PACKAGE MECHANICAL DATA


16 PINS - PLASTIC DIP

Dimensions		Millimeters			Inches			
Difficitsions	Min.	Тур.	Max.	Min.	Тур.	Max.		
a1	0.51			0.020				
В	0.77		1.65	0.030		0.065		
b		0.5			0.020			
b1		0.25			0.010			
D			20			0.787		
Е		8.5			0.335			
е		2.54			0.100			
e3		17.78			0.700			
F			7.1			0.280		
i			5.1			0.201		
L		3.3			0.130			
Z			1.27			0.050		

PACKAGE MECHANICAL DATA

16 PINS - PLASTIC MICROPACKAGE (SO)

Dimensions		Millimeters		Inches				
	Min.	Тур.	Max.	Min.	Тур.	Max.		
Α			1.75			0.069		
a1	0.1		0.2	0.004		0.008		
a2			1.6			0.063		
b	0.35		0.46	0.014		0.018		
b1	0.19		0.25	0.007		0.010		
С		0.5			0.020			
c1			45°	(typ.)				
D	9.8		10	0.386		0.394		
E	5.8		6.2	0.228		0.244		
е		1.27			0.050			
e3		8.89			0.350			
F	3.8		4.0	0.150		0.157		
G	4.6		5.3	0.181		0.209		
L	0.5		1.27	0.020		0.050		
М			0.62			0.024		

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1997 SGS-THOMSON Microelectronics - Printed in Italy - All Rights Reserved

SGS-THOM SON Microelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

