
1/205
The information in this datasheet is subject to change



42 1674 04

FEATURES
■ Enhanced 32-bit VL-RISC CPU

 0 to 50 MHz processor clock
 fast integer/bit operations
 very high code density

■ 8 Kbytes on-chip SRAM
 200 Mbytes/s maximum bandwidth

■ Programmable memory interface
 4 separately configurable regions
 8/16/32-bits wide
 support for mixed memory
 2 cycle external access
 support for page mode DRAM
 support for MPEG decoders
 support for PCMCIA CA module

■ Serial communications
 OS-Link
 2 Programmable UARTs (ASC)
 2 Synchronous serial interfaces (I2C)

■ Vectored interrupt subsystem
 Prioritized interrupts
 8 levels of preemption
 500 ns response time

■ DMA engines/interfaces
 2 MPEG decoder DMAs
 2 SmartCard interfaces
 Link IC DMA interface
 Section filter engine
 DVB descrambler DMA
 Block move DMA
 Teletext interface (I/O)
 IEEE 1284/ Transport out DMA

■ PWM/counter module
 Two 8-bit PWM
 Two 32-bit counters and capture registers

■ Low power controller
 Real time clock
 Watchdog timer

■ Programmable IO module
■ Professional toolset support

 ANSI C compiler and libraries
 INQUEST advanced debugging tools

■ Technology
 208 pin PQFP package
 0.5 micron process technology

■ JTAG Test Access Port
APPLICATIONS
■ Set top terminals

Parallel
input/output

Interrupt
controller

1 OS-Link
2 UART
(ASC)
2 I2C

Link IC
interface

ST20
CPU

2 PWM/
counter

8 Kbytes
SRAM

DVB
de-

scrambler

EMI

Block
move
DMA

Section
filter

engine

2 MPEG
decode
DMAs

IEEE 1284
interface

2
SmartCard
interface
(ASC)

Low power
controller

Teletext
interface

PROGRAMMABLE TRANSPORT IC FOR DVB APPLICATIONS

August 1997

ST20-TP2

Contents

2/205



ST20-TP2

1 Introduction . 6

2 ST20-TP2 architecture overview . 8

2.1 Transport demultiplexing .. 8

2.2 ST20-TP2 functional modules .. 10

3 Central processing unit . 14

3.1 Registers ... 14

3.2 Processes and concurrency ... 15

3.3 Priority ... 17

3.4 Process communications .. 18

3.5 Timers ... 18

3.6 Traps and exceptions ... 19

4 Interrupt controller . 25

4.1 Interrupt vector table ... 26

4.2 Interrupt handlers .. 26

4.3 Interrupt latency .. 27

4.4 Preemption and interrupt priority .. 27

4.5 Restrictions on interrupt handlers ... 27

4.6 Interrupt configuration registers .. 28

5 Interrupt level controller . 33

5.1 Interrupt level controller registers ... 33

6 Instruction set . 35

6.1 Instruction cycles .. 35

6.2 Instruction characteristics ... 36

6.3 Instruction set tables ... 37

7 Memory map . 46

7.1 System memory use ... 46

7.2 Boot ROM ... 47

7.3 Internal peripheral space .. 47

8 Memory subsystem . 51

8.1 SRAM ... 51

9 External memory interface . 52

9.1 Pin functions ... 53

ST20-TP2

3/205



9.2 External bus cycles ... 57

9.3 EMI Configuration ... 63

9.4 EMI initialization .. 77

10 System services . 79

10.1 Reset and Analyse .. 79

10.2 Bootstrap .. 80

11 Test access port . 82

11.1 Boundary scan description ... 82

12 Clocks and low power controller . 83

12.1 Clocks ... 83

12.2 Low power control ... 83

12.3 Low power configuration registers .. 85

12.4 Clocking .. 88

13 Asynchronous serial controller . 89

13.1 Operation .. 93

13.2 Hardware error detection capabilities ... 96

13.3 Baud rate generation .. 96

13.4 Interrupt control ... 98

13.5 SmartCard mode specific operation ... 102

14 SmartCard interface . 103

14.1 External interface .. 103

14.2 SmartCard clock generator ... 104

15 I2C interfaces (SSC) . 106

15.1 High-speed synchronous serial controller ... 106

16 PWM and counter module . 116

16.1 External interface .. 116

16.2 PWM and counter control registers .. 116

17 Parallel input/output . 121

17.1 PIO Ports0-4 ... 121

18 Serial link interface (OS-Link) . 124

18.1 OS-Link protocol ... 124

18.2 OS-Link speed .. 124

18.3 OS-Link connections ... 125

ST20-TP2

4/205



19 Link IC interface . 126

19.1 External interface .. 126

19.2 Link IC interface operation .. 126

20 MPEG DMA controller s . 128

20.1 External interface .. 128

20.2 MPEG DMA transfers ... 128

20.3 MPEG control registers ... 130

21 DVB decryption controller . 132

21.1 Decrypting blocks of data ... 132

21.2 Control registers ... 133

22 Block move DMA . 134

22.1 Moving blocks of data ... 134

22.2 Configuration register ... 134

23 Teletext interface . 135

23.1 Teletext interface pins ... 135

23.2 Teletext data out ... 135

23.3 Teletext data in ... 137

23.4 Teletext interrupt control ... 137

23.5 Control registers ... 137

24 Section filter . 141

24.1 Section filter configuration registers .. 141

24.2 DMA registers ... 143

24.3 Section filtering operation ... 147

25 IEEE 1284 port (PC parallel port) . 149

25.1 1284 port pins ... 150

25.2 1284 Port modes of operation .. 151

25.3 1284 port control registers .. 156

25.4 Signal Filtering .. 165

26 Configuration register addresses . 167

27 Device configuration . 176

27.1 PIO pins and alternate functions ... 176

27.2 Interrupt assignments ... 178

28 Pin list . 179

ST20-TP2

5/205



29 Package specifications . 183

29.1 ST20-TP2 package pinout .. 183

29.2 208 pin PQFP package dimensions ... 189

30 Electrical specifications . 191

30.1 Absolute maximum ratings ... 191

30.2 Operating conditions ... 191

30.3 DC specifications .. 192

31 Timing specifications . 193

31.1 EMI timings ... 193

31.2 PIO timings ... 196

31.3 Link timings ... 197

31.4 Reset and Analyse timings ... 198

31.5 Clock timings .. 199

31.6 TAP timings .. 200

31.7 Link IC timings .. 201

31.8 Teletext timings ... 202

32 Device ID . 203

33 Ordering information . 203

Appendix AChannel model . 204

ST20-TP2

6/205



1 Introduction
The ST20-TP2 is a programmable transport IC designed to meet the transport layer specification
for DVB set top box systems.

The ST20-TP2 combines the functionality of the set top box transport IC and system microcontrol-
ler in to a single device. The performance offered by the ST20 32-bit micro-core allows the follow-
ing operations to be performed in software:

1 Transport layer demultiplexing,

2 Device drivers and synchronization,

3 Electronic program guide,

4 System management functions,

5 Conditional access module.

Note: Source code software licences are available from SGS-THOMSON for modules 1 and 2
above.

The advantages of using software versus dedicated hardware for these functions are two-fold:

• Flexibility - it is quick and simple to modify software to adapt to a new system requirement
or to a change in a standard.

• Upgradability - the use of a 32-bit CPU enables the use of advanced graphics routines for
on-screen display functions and enables fast turn-around of system upgrades.

The ST20 micro-core family has been developed by SGS-THOMSON Microelectronics to provide
the tools and building blocks to enable the development of highly integrated application specific 32-
bit devices at the lowest cost and fastest time to market. The ST20 macrocell library includes the
ST20Cx family of 32-bit VL-RISC (variable length reduced instruction set computer) micro-cores,
embedded memories, standard peripherals, I/O, controllers and ASICs.

The ST20-TP2 uses the ST20 macrocell library to provide all of the dedicated hardware modules
required in a DVB set top box programmable transport-IC. These include:

• Link-IC interface to MPEG transport stream,

• I2C interface to other devices in the set top box,

• UART serial I/O interface to modem and auxiliary ports,

• Interrupt controller for internal and external interrupts,

• 8 Kbytes of internal SRAM,

• DMA module to MPEG audio and video device(s),

• Section filter module ,

• External memory interface supporting DRAM, EPROM and peripherals,

• PWM/timer module for control of system clock VCXOs,

• Programmable I/O pins,

• DVB descrambler,

ST20-TP2

7/205



• Smart card interface,

• IEEE 1284 port.

The ST20-TP2 has been designed to minimize system costs. The memory interface module con-
tains a zero glue logic DRAM controller, a low cost 8-bit EPROM interface and a port for connecting
directly to the MPEG audio and video devices. Furthermore the ST20 VL-RISC micro-core has the
highest code density of any 32-bit CPU, leading to the lowest cost program ROM.

The ST20-TP2 is supported by a range of software and hardware development tools for PC and
UNIX hosts including an ANSI-C ST20 software toolset incorporating the ST20 INQUEST window
based debugger.

ST20-TP2

8/205



2 ST20-TP2 architecture overview
A block diagram of a digital set top receiver is shown in Figure 2.1.

The ST20-TP2 performs the system microcontroller and transport demultiplexer functions. It has
been designed to directly interface to external memory and peripherals with no extra glue logic,
keeping the system cost to a minimum. The ST20-TP2 architectural block diagram is shown in
Figure 2.2.

2.1 Transport demultiplexing

The transport demultiplexing function is performed in a mixture of hardware and software. Typical
operation is as described below.

Data packets from the Link-IC are input into memory by the Link-IC interface using DMA. The
packet is parsed in software to determine its type and to extract data from it. If the packet is
encrypted using the DVB Standard, a memory to memory DMA operation through the DVB decryp-
tion controller (DVBC) is performed before the packet can be parsed.

After parsing the packet, the data is either transferred to buffers in external memory or passed to
other software tasks as a message. The transfer from internal to external memory can also be per-
formed as a memory to memory DMA operation using the block move module.

Audio or Video MPEG compressed data extracted from the input data packets is transferred to the
decoders using two independent DMA controllers. These read data from memory and then write it
to a decoder in response to a DMA request from the decoder.

The unique architecture of the ST20 family, in particular the scheduler implemented in microcode,
allows the transport demultiplex functions to typically occupy less than half the available CPU
cycles.

ST20-TP2

9/205



Figure 2.1 Digital set top box block diagram

S
T

20-T
P

2

D
A

C

A
udio

Link-IC
P

ort

E
M

I
M

odulator

T
uner

I2C
bus

S
m

artC
ard

A
udio

U
A

R
T

U
A

R
T

I2C
(S

S
C

)

I2C

I2C

P
A

L/
N

T
S

C
E

ncoder

V
ideo

A
m

plifier
U

A
R

T
H

S
D

P
IO

A
/D

A
ntenna/C

able

H
igh

speed
(IE

E
E

1284)
and

low
speed

data
ports

S
m

artC
ard

F
lash

256K
x

16
16

to
32

M
bit

D
R

A
M

R
O

M
D

R
A

M

(x2)

T
eletext

M
odem

pow
er

control P
IO

Link-IC

I2C
B

uffers
P

IO

P
C

M
C

IA
C

A
M

odule

P
olarity

M
P

E
G

V
ideo/

A
udio

decoder

ST20-TP2

10/205



2.2 ST20-TP2 functional modules

Figure 2.2 shows the subsystem modules that comprise the ST20-TP2. These modules are out-
lined below and more detailed information is given in the following chapters of this datasheet.

CPU

The Central Processing Unit (CPU) on the ST20-TP2 is the ST20 32-bit processor core. It contains
instruction processing logic, instruction and data pointers, and an operand register. It directly
accesses the high speed on-chip memory, which can store data or programs. Where larger
amounts of memory are required, the processor can access memory via the External Memory
Interface (EMI).

Memory subsystem

The ST20-TP2 on-chip memory system provides 200 Mbytes/s internal data bandwidth, supporting
pipelined 2-cycle internal memory access at 20 ns cycle times. The ST20-TP2 memory system
consists of SRAM and an external memory interface (EMI).

The ST20-TP2 product has 8 Kbytes of on-chip SRAM. The advantage of this is the ability to store
time critical code on chip, for instance interrupt routines, software kernels or device drivers, and
even frequently used data. Furthermore small systems could place all code and data on-chip,
increasing performance and reducing system cost. For the transport layer demultiplexing functions
calculations have shown that the code can fit in internal memory together with its stack and packet
buffers. This gives the required performance for these functions.

The ST20-TP2 EMI controls access to the external memory and peripherals including the MPEG
decoder registers and DMA data ports. Special strobes have been added to one of the banks of the
EMI to allow a direct interface to the SGS-THOMSON Microelectronics range of MPEG2 audio and
video decoders.

The ST20-TP2 EMI can access a 16 Mbyte (or greater if DRAM is used) physical address space in
each of the three general purpose memory banks, and, for 50 MHz operation, provides sustained
transfer rates of up to 100 Mbytes/s for SRAM, and up to 50 Mbytes/s using page-mode DRAM.
The EMI includes programmablestrobes to support direct interfacing to MPEG decoder devices.

System services module

The ST20-TP2 system services module includes:

• reset, initialization and error port,

• phase locked loop (PLL) - accepts 27 MHz input and generates all the internal high fre-
quency clocks needed for the CPU and the OS-Link,

• test access port - JTAG compatible,

• low power modes.

ST20-TP2

11/205



Figure 2.2 ST20-TP2 architectural block diagram

ST20
CPU

2 PWM/
Counter

Parallel
External
interrupts

Interrupt
controller

OS-Link
Serial

communication
1 OS-Link

2 UART (ASC)
2 I2C

8 Kbyte
SRAM

EMI
External
memory

bus

Link IC
interface

DVB
descrambler

Block
move DMA

2 MPEG
decoder
DMAs

Section
filter

engine

IEEE 1284
interface

Reset
Analyse

Error
Test access port

Clock

System
services

Teletext
interface

2 SmartCard
interface
(ASC)

input/output

ST20-TP2

12/205



Serial communications

To facilitate the connection of this system to a modem for a pay-per-view type system and other
peripherals, two UARTs (ASCs) are included in the device. The UARTs provide an asynchronous
serial interface. The UART can be programmed to support a range of baud rates and data formats,
for example, data size, stop bits and parity.

Two synchronous serial communications (SSC) interfaces are provided on the device. These can
be used to control the Link-IC, PAL/NTSC encoder, and the remote control devices in the applica-
tion via an I2C bus.

The ST20-TP2 has an OS-Link based serial communications subsystem. OS-Links use an asyn-
chronous bit-serial (byte-stream) protocol, each bit received is sampled five times, hence the term
oversampled links (OS-Links). Each OS-Link provides a pair of channels, one input and one output
channel.

There is one OS-Link on the ST20-TP2 which acts as a DMA engine independent of the CPU. The
link is used for:

• bootstrapping during development

• debugging.

Interrupt subsystem

The ST20-TP2 interrupt subsystem supports eight prioritized interrupt levels. Four external inter-
rupt pins are provided. Level assignment logic allows any of the internal or external interrupts to be
assigned, and if necessary share, any interrupt level.

Link IC interface

The Link-IC interface provides a byte wide data input from the Link-IC. The interface between the
CPU and this module is provided using a channel interface allowing data transfer from the link IC to
memory independently of the CPU. Using a channel interface requires a low CPU overhead at the
start and end of each transfer.

DVB decryption

DVB standard decryption is supported by the DVBC module. This can be used to decrypt blocks of
data from one area of memory to another using DMA operations.

Block move engine

The transfer from internal to external memory can also be performed as a memory to memory
DMA operation using the block move module.

Section filter engine

Extraction of data contained in sections in the transport packet is supported by a section filter ing
engine. This contains a large bank of filters which are tested for a match against the table.id and
subsequent bytes of a section. The engine is used to test each section of the packet for a match in
sequence.

MPEG DMA

The two MPEG DMA controllers are used to transfer MPEG compressed data from the memory to
the decoder chip. DMA strobes are provided by the EMI to support the direct connection of decoder
ICs to the ST20-TP2.

ST20-TP2

13/205



IEEE 1284 interface

An 8-bit wide parallel interface (conforming to the IEEE 1284 standard) supports a high speed data
input/output port to/from the set top receiver. The interface has a dedicated DMA controller to
transfer data to or from memory to the port with little CPU overhead.

SmartCard interfaces

The SmartCard interfaces support SmartCards that are compliant with ISO7816-3 and use the
asynchronous protocol. The interfaces are each implemented with a UART (ASC), dedicated pro-
grammable clock generator, and eight bits of parallel IO port.

PWM and counter module

This unit includes two separate pulse width modulator (PWM) generators and two counters with
capture registers. The counters can be clocked from a pre-scaled internal clock or from a pre-
scaled external clock via the capture clock input and the event on which the timer value is captured
is also programmable.

The PWM counters are 8-bit with 8-bit registers to set the output high time. The capture counters
are 32-bit with 32-bit capture registers.

Parallel IO module

Forty bits of parallel IO are provided. Each bit is programmableas an output or an input. The output
can be configured as a totem pole or open drain driver. Input compare logic is provided which can
generate an interrupt on any change on any input bit.

Many pins of the ST20-TP2 device are multi-function and can either be configured as PIO or con-
nected to an internal peripheral signal.

Teletext

The teletext interface interfaces to a teletext peripheral. It translates teletext data to/from memory. It
has two modes of operation, teletext data in and teletext data out.

In teletext data out mode, the teletext interface uses DMA to retrieve teletext data from memory,
and serializes the data for transmission to a composite video encoder.

In teletext data in mode teletext data is extracted from the composite video signal and is fed into the
teletext interface as a serial stream. The teletext interface assembles the data and uses DMA to
pass this data to memory.

ST20-TP2

14/205



3 Central processing unit
The Central Processing Unit (CPU) is the ST20 32-bit processor core. It contains instruction pro-
cessing logic, instruction and data pointers, and an operand register. It can directly access the high
speed on-chip memory, which can store data or programs. Where larger amounts of memory are
required, the processor can access memory via the External Memory Interface (EMI).

The processor provides high performance:

• Fast integer multiply - 4 cycle multiply

• Fast bit shift - single cycle barrel shifter

• Byte and part-word handling

• Scheduling and interrupt support

• 64-bit integer arithmetic support.

The scheduler provides a single level of pre-emption. In addition, multi-level pre-emption is pro-
vided by the interrupt subsystem, see Chapter 4 for details. Additionally, there is a per-priority trap
handler to improve the support for arithmetic errors and illegal instructions, refer to section 3.6.

3.1 Registers

The CPU contains six registers which are used in the execution of a sequential integer process.
The six registers are:

• The workspace pointer (Wptr) which points to an area of store where local data is kept.

• The instruction pointer (Iptr) which points to the next instruction to be executed.

• The status register (Status).

• The Areg , Breg and Creg registers which form an evaluation stack.

The Areg , Breg and Creg registers are the sources and destinations for most arithmetic and logi-
cal operations. Loading a value into the stack pushes Breg into Creg , and Areg into Breg , before
loading Areg . Storing a value from Areg , pops Breg into Areg and Creg into Breg . Creg is left
undefined.

Figure 3.1 Registers used in sequential integer processes

Areg

Breg

Creg

Wptr

Iptr

Local data ProgramRegisters

ST20-TP2

15/205



Expressions are evaluated on the evaluation stack, and instructions refer to the stack implicitly. For
example, the add instruction adds the top two values in the stack and places the result on the top of
the stack. The use of a stack removes the need for instructions to explicitly specify the location of
their operands. No hardware mechanism is provided to detect that more than three values have
been loaded onto the stack; it is easy for the compiler to ensure that this never happens.

Note that a location in memory can be accessed relative to the workspace pointer, enabling the
workspace to be of any size.

The use of shadow registers provides fast, simple and clean context switching.

3.2 Processes and concurrency

The following section describes ‘default’ behavior of the CPU and it should be noted that the user
can alter this behavior, for example, by disabling timeslicing, installing a user scheduler, etc.

A process starts, performs a number of actions, and then either stops without completing or termi-
nates complete. Typically, a process is a sequence of instructions. The CPU can run several pro-
cesses in parallel (concurrently). Processes may be assigned either high or low priority, and there
may be any number of each.

The processor has a microcoded scheduler which enables any number of concurrent processes to
be executed together, sharing the processor time. This removes the need for a software kernel,
although kernels can still be written if desired.

At any time, a process may be

active - being executed,
- interrupted by a higher priority process,
- on a list waiting to be executed.

inactive - waiting to input,
- waiting to output,
- waiting until a specified time.

The scheduler operates in such a way that inactive processes do not consume any processor time.
Each active high priority process executes until it becomes inactive. The scheduler allocates a por-
tion of the processor’s time to each active low priority process in turn (see section 3.3). Active pro-
cesses waiting to be executed are held in two linked lists of process workspaces, one of high
priority processes and one of low priority processes. Each list is implemented using two registers,
one of which points to the first process in the list, the other to the last. In the linked process list
shown in Figure 3.2, process S is executing and P, Q and R are active, awaiting execution. Only the
low priority process queue registers are shown; the high priority process ones behave in a similar
manner.

ST20-TP2

16/205



Figure 3.2 Linked process list

Each process runs until it has completed its action or is descheduled. In order for several pro-
cesses to operate in parallel, a low priority process is only permitted to execute for a maximum of
two timeslice periods. After this, the machine deschedules the current process at the next timeslic-
ing point, adds it to the end of the low priority scheduling list and instead executes the next active
process. The timeslice period is 1ms.

There are only certain instructions at which a process may be descheduled. These are known as
descheduling points. A process may only be timesliced at certain descheduling points. These are
known as timeslicing points and are defined in such a way that the operand stack is always empty.
This removes the need for saving the operand stack when timeslicing. As a result, an expression
evaluation can be guaranteed to execute without the process being timesliced part way through.

Whenever a process is unable to proceed, its instruction pointer is saved in the process workspace
and the next process taken from the list.

The processor core provides a number of special instructions to support the process model, includ-
ing startp (start process) and endp (end process). When a main process executes a parallel con-
struct, startp is used to create the necessary additional concurrent processes. A startp instruction
creates a new process by adding a new workspace to the end of the scheduling list, enabling the
new concurrent process to be executed together with the ones already being executed. When a
process is made active it is always added to the end of the list, and thus cannot pre-empt pro-
cesses already on the same list.

The correct termination of a parallel construct is assured by use of the endp instruction. This uses
a data structure that includes a counter of the parallel construct components which have still to ter-

Function High priority Low priority

Pointer to front of active process list FptrReg0 FptrReg1

Pointer to back of active process list BptrReg0 BptrReg1

Table 3.1 Priority queue control registers

P

Q

R

S

Areg

Breg

Creg

Wptr

Iptr

FptrReg1

BptrReg1

Registers Local data

Iptr.s
Link.s

Iptr.s
Link.s

Iptr.s

Program

ST20-TP2

17/205



minate. The counter is initialized to the number of components before the processes are started.
Each component ends with an endp instruction which decrements and tests the counter. For all but
the last component, the counter is non zero and the component is descheduled. For the last com-
ponent, the counter is zero and the main process continues.

3.3 Priority

The following section describes ‘default’ behavior of the CPU and it should be noted that the user
can alter this behavior, for example, by disabling timeslicing and priority interrupts.

The processor can execute processes at one of two priority levels, one level for urgent (high prior-
ity) processes, one for less urgent (low priority) processes. A high priority process will always exe-
cute in preference to a low priority process if both are able to do so.

High priority processes are expected to execute for a short time. If one or more high priority pro-
cesses are active, then the first on the queue is selected and executes until it has to wait for a com-
munication, a timer input, or until it completes processing.

If no process at high priority is active, but one or more processes at low priority are active, then one
is selected. Low priority processes are periodically timesliced to provide an even distribution of pro-
cessor time between computationally intensive tasks.

If there are n low priority processes, then the maximum latency from the time at which a low priority
process becomes active to the time when it starts processing is the order of 2n timeslice periods. It
is then able to execute for between one and two timeslice periods, less any time taken by high pri-
ority processes. This assumes that no process monopolizes the CPU’s time; i.e. it has frequent
timeslicing points.

The specific condition for a high priority process to start execution is that the CPU is idle or running
at low priority and the high priority queue is non-empty.

If a high priority process becomes able to run whilst a low priority process is executing, the low pri-
ority process is temporarily stopped and the high priority process is executed. The state of the low
priority process is saved into ‘shadow’ registers and the high priority process is executed. When no
further high priority processes are able to run, the state of the interrupted low priority process is re-
loaded from the shadow registers and the interrupted low priority process continues executing.
Instructions are provided on the processor core to allow a high priority process to store the shadow
registers to memory and to load them from memory. Instructions are also provided to allow a pro-
cess to exchange an alternative process queue for either priority process queue (see Table 6.21 on
page 44). These instructions allow extensions to be made to the scheduler for custom runtime ker-
nels.

A low priority process may be interrupted after it has completed execution of any instruction. In
addition, to minimize the time taken for an interrupting high priority process to start executing, the
potentially time consuming instructions are interruptible. Also some instructions are abortable and
are restarted when the process next becomes active (refer to the Instruction Set chapter).

ST20-TP2

18/205



3.4 Process communications

Communication between processes takes place over channels, and is implemented in hardware.
Communication is point-to-point, synchronized and unbuffered. As a result, a channel needs no
process queue, no message queue and no message buffer.

A channel between two processes executing on the same CPU is implemented by a single word in
memory; a channel between processes executing on different processors is implemented by point-
to-point links. The processor provides a number of operations to support message passing, the
most important being in (input message) and out (output message).

The in and out instructions use the address of the channel to determine whether the channel is
internal or external. This means that the same instruction sequence can be used for both hard and
soft channels, allowing a process to be written and compiled without knowledge of where its chan-
nels are implemented.

Communication takes place when both the inputting and outputting processes are ready. Conse-
quently, the process which first becomes ready must wait until the second one is also ready. The
inputting and outputting processes only become active when the communication has completed.

A process performs an input or output by loading the evaluation stack with, a pointer to a message,
the address of a channel, and a count of the number of bytes to be transferred, and then executing
an in or out instruction.

3.5 Timers

There are two 32-bit hardware timer clocks which ‘tick’ periodically. These are independent of any
on-chip peripheral real time clock. The timers provide accurate process timing, allowing processes
to deschedule themselves until a specific time.

One timer is accessible only to high priority processes and is incremented approximately every
microsecond, cycling completely in approximately 4295 seconds. The other is accessible only to
low priority processes and is incremented approximately every 64 microseconds, giving 15625
ticks in one second. It has a full period of approximately 76 hours. Timer frequencies are approxi-
mate and depend on the processor speed selection (see section 12.1 on page 83).

The current value of the processor clock can be read by executing a ldtimer (load timer) instruction.
A process can arrange to perform a tin (timer input), in which case it will become ready to execute
after a specified time has been reached. The tin instruction requires a time to be specified. If this
time is in the ‘past’ then the instruction has no effect. If the time is in the ‘future’ then the process is

Register Function

ClockReg0 Current value of high priority (level 0) process clock.

ClockReg1 Current value of low priority (level 1) process clock.

TnextReg0 Indicates time of earliest event on high priority (level 0) timer queue.

TnextReg1 Indicates time of earliest event on low priority (level 1) timer queue.

TptrReg0 High priority timer queue.

TptrReg1 Low priority timer queue.

Table 3.2 Timer registers

ST20-TP2

19/205



descheduled. When the specified time is reached the process becomes active. In addition, the
ldclock (load clock), stclock (store clock) instructions allow total control over the clock value and the
clockenb (clock enable), clockdis (clock disable) instructions allow each clock to be individually
stopped and re-started.

Figure 3.3 shows two processes waiting on the timer queue, one waiting for time 21, the other for
time 31.

Figure 3.3 Timer registers

3.6 Traps and exceptions

A software error, such as arithmetic overflow or array bounds violation, can cause an error flag to
be set in the CPU. The flag is directly connected to the ErrorOut pin. Both the flag and the pin can
be ignored, or the CPU stopped. Stopping the CPU on an error means that the error cannot cause
further corruption. As well as containing the error in this way it is possible to determine the state of
the CPU and its memory at the time the error occurred. This is particularly useful for postmortem
debugging where the debugger can be used to examine the state and history of the processor
leading up to and causing the error condition.

In addition, if a trap handler process is installed, a variety of traps/exceptions can be trapped and
handled by software. A user supplied trap handler routine can be provided for each high/low pro-
cess priority level. The handler is started when a trap occurs and is given the reason for the trap.
The trap handler is not re-entrant and must not cause a trap itself within the same group. All traps
are individually maskable.

ClockReg0

TnextReg0

TptrReg0

Workspaces
Program

5

21

31

Empty

comparator

Alarm 21

ST20-TP2

20/205



3.6.1 Trap groups

The trap mechanism is arranged on a per priority basis. For each priority there is a handler for each
group of traps, as shown in Figure 3.4.

Figure 3.4 Trap arrangement

There are four groups of traps, as detailed below.

• Breakpoint

This group consists of the Breakpoint trap. The breakpoint instruction (j0) calls the break-
point routine via the trap mechanism.

• Errors

The traps in this group are IntegerError and Overflow. Overflow represents arithmetic over-
flow, such as arithmetic results which do not fit in the result word. IntegerError represents
errors caused when data is erroneous, for example when a range checking instruction finds
that data is out of range.

• System operations

This group consists of the LoadTrap, StoreTrap and IllegalOpcode traps. The IllegalOpcode
trap is signalled when an attempt is made to execute an illegal instruction. The LoadTrap
and StoreTrap traps allow a kernel to intercept attempts by a monitored process to change
or examine trap handlers or trapped process information. It enables a user program to sig-
nal to a kernel that it wishes to install a new trap handler.

• Scheduler

The scheduler trap group consists of the ExternalChannel, InternalChannel, Timer,
TimeSlice, Run, Signal, ProcessInterrupt and QueueEmpty traps. The ProcessInterrupt
trap signals that the machine has performed a priority interrupt from low to high. The
QueueEmpty trap indicates that there is no further executable work to perform. The other
traps in this group indicate that the hardware scheduler wants to schedule a process on a
process queue, with the different traps enabling the different sources of this to be moni-
tored.

The scheduler traps enable a software scheduler kernel to use the hardware scheduler to
implement a multi-priority software scheduler.

Low priority traps High priority traps

CPU Error
trap handler

System operations
trap handler

Scheduler
trap handler

Breakpoint
trap handler

CPU Error
trap handler

System operations
trap handler

Scheduler
trap handler

Breakpoint
trap handler

ST20-TP2

21/205



Note that scheduler traps are different from other traps as they are caused by the micro-
scheduler rather than by an executing process.

Trap groups encoding is shown in Table 3.3 below. These codes are used to identify trap groups to
various instructions.

In addition to the trap groups mentioned above, the CauseError flag in the Status register is used
to signal when a trap condition has been activated by the causeerror instruction. It can be used to
indicate when trap conditions have occurred due to the user setting them, rather than by the sys-
tem.

3.6.2 Events that can cause traps

Table 3.4 summarizes the events that can cause traps and gives the encoding of bits in the trap
Status and Enable words.

Trap group Code

Breakpoint 0

CPU Errors 1

System operations 2

Scheduler 3

Table 3.3 Trap group codes

ST20-TP2

22/205



3.6.3 Trap handlers

For each trap handler there is a trap handler structure and a trapped process structure. Both the
trap handler structure and the trapped process structure are in memory and can be accessed via
instructions, see section 3.6.4.

The trap handler structure specifies what should happen when a trap condition is present, see
Table 3.5.

The trapped process structure saves some of the state of the process that was running when the
trap was taken, see Table 3.6.

In addition, for each priority, there is an Enables register and a Status register. The Enables regis-
ter contains flags to enab le each cause of trap. The Status register contains flags to indicate which
trap conditions have been detected. The Enables and Status register bit encodings are given in
Table 3.4.

Trap cause
Status/Enable

codes
Trap

group Comments

Breakpoint 0 0 When a process executes the breakpoint instruction (j0) then it traps
to its trap handler.

IntegerError 1 1 Integer error other than integer overflow - e.g. explicitly checked or
explicitly set error.

Overflow 2 1 Integer overflow or integer division by zero.

IllegalOpcode 3 2 Attempt to execute an illegal instruction. This is signalled when opr
is executed with an invalid operand.

LoadTrap 4 2 When the trap descriptor is read with the ldtraph instruction or when
the trapped process status is read with the ldtrapped instruction.

StoreTrap 5 2 When the trap descriptor is written with the sttraph instruction or
when the trapped process status is written with the sttrapped
instruction.

InternalChannel 6 3 Scheduler trap from internal channel.

ExternalChannel 7 3 Scheduler trap from external channel.

Timer 8 3 Scheduler trap from timer alarm.

Timeslice 9 3 Scheduler trap from timeslice.

Run 10 3 Scheduler trap from runp (run process) or startp (start process).

Signal 11 3 Scheduler trap from signal.

ProcessInterrupt 12 3 Start executing a process at a new priority level.

QueueEmpty 13 3 Caused by no process active at a priority level.

CauseError 15 (Status only) Any,
encoded

0-3
Signals that the causeerror instruction set the trap flag.

Table 3.4 Trap causes and Status /Enable codes

ST20-TP2

23/205



A trap will be taken at an interruptible point if a trap is set and the corresponding trap enable bit is
set in the Enables register. If the trap is not enabled then nothing is done with the trap condition. If
the trap is enabled then the corresponding bit is set in the Status register to indicate the trap con-
dition has occurred.

When a process takes a trap the processor saves the existing Iptr , Wptr , Status and Enables in
the trapped process structure. It then loads Iptr , Wptr and Status from the equivalent trap handler
structure and ANDs the value in Enables with the value in the structure. This allows the user to dis-
able various events while in the handler, in particular a trap handler must disable all the traps of its
trap group to avoid the possibility of a handler trapping to itself.

The trap handler then executes. The values in the trapped process structure can be examined
using the ldtrapped instruction (see section 3.6.4). When the trap handler has completed its opera-
tion it returns to the trapped process via the tret (trap return) instruction. This reloads the values
saved in the trapped process structure and clears the trap flag in Status .

Note that when a trap handler is started, Areg , Breg and Creg are not saved. The trap handler
must save the Areg , Breg , Creg registers using stl (store local).

3.6.4 Trap instructions

Trap handlers and trapped processes can be set up and examined via the ldtraph, sttraph,
ldtrapped and sttrapped instructions. Table 3.7 describes the instructions that may be used when
dealing with traps.

Comments

Iptr Iptr of trap handler process. Base + 3

Wptr
Wptr of trap handler process. A null Wptr indicates that a trap handler has not been
installed. Base + 2

Status Contains the Status register that the trap handler starts with. Base + 1

Enables
Contains a word which encodes the trap enable and global interrupt masks which will be
ANDed with the existing masks to allow the trap handler to disable various events while it
runs.

Base + 0

Table 3.5 Trap handler structure

Comments

Iptr Points to the instruction after the one that caused the trap condition. Base + 3

Wptr Wptr of the process that was running when the trap was taken. Base + 2

Status The relevant trap bit is set, see Table 3.3 for trap codes. Base + 1

Enables Interrupt enables. Base + 0

Table 3.6 Trapped process structure

ST20-TP2

24/205



The first four instructions transfer data to/from the trap handler structures or trapped process struc-
tures from/to an area in memory. In these instructions Areg contains the trap group code (see
Table 3.3) and Breg points to the 4 word area of memory used as the source or destination of the
transfer. In addition Creg contains the priority of the handler to be installed/examined in the case of
ldtraph or sttraph. ldtrapped and sttrapped apply only to the current priority.

If the LoadTrap trap is enabled then ldtraph and ldtrapped do not perform the transfer but set the
LoadTrap trap flag. If the StoreTrap trap is enabled then sttraph and sttrapped do not perform the
transfer but set the StoreTrap trap flag.

The trap enable masks are encoded by an array of bits (see Table 3.4) which are set to indicate
which traps are enabled. This array of bits is stored in the lower half-word of the Enables register.
There is an Enables register for each priority. Traps are enabled or disabled by loading a mask into
Areg with bits set to indicate which traps are to be affected and the priority to affect in Breg . Exe-
cuting trapenb ORs the mask supplied in Areg with the trap enables mask in the Enables register
for the priority in Breg . Executing trapdis negates the mask supplied in Areg and ANDs it with the
trap enables mask in the Enables register for the priority in Breg . Both instructions return the pre-
vious value of the trap enables mask in Areg .

3.6.5 Restrictions on trap handlers

There are various restrictions that must be placed on trap handlers to ensure that they work cor-
rectly.

1 Trap handlers must not deschedule or timeslice. Trap handlers alter the Enables masks,
therefore they must not allow other processes to execute until they have completed.

2 Trap handlers must have their Enable masks set to mask all traps in their trap group to
avoid the possibility of a trap handler trapping to itself.

3 Trap handlers must terminate via the tret (trap return) instruction. The only exception to this
is that a scheduler kernel may use restart to return to a previously shadowed process.

Instruction Meaning Use

ldtraph load trap handler Load the trap handler from memory to the trap handler descriptor.

sttraph store trap handler Store an existing trap handler descriptor to memory.

ldtrapped load trapped Load replacement trapped process status from memory.

sttrapped store trapped Store trapped process status to memory.

trapenb trap enable Enable traps.

trapdis trap disable Disable traps.

tret trap return Used to return from a trap handler.

causeerror cause error Program can simulate the occurrence of an error.

Table 3.7 Instructions which may be used when dealing with traps

ST20-TP2

25/205



4 Interrupt controller
The ST20-TP2 supports external interrupts, enabling an on-chip subsystem or external interrupt
pin to interrupt the currently running process in order to run an interrupt handling process.

The ST20-TP2 interrupt subsystem supports eight prioritized interrupts. In addition, there is an
interrupt level controller (refer to Chapter 5) which multiplexes incoming interrupts onto the eight
programmable interrupt levels. This multiplexing is controllable by software.

Note: Interrupts (Interrupt0-7) which are specified as higher pr iority must be contiguous from the
highest numbered interrupt downwards, i.e. if 4 interrupts are programmed as higher priority and 4
as lower priority the higher priority interrupts must be Interrupt7:4 and the lower priority interrupts
Interrupt3:0 .

Figure 4.1 Interrupt priority

Interrupts on the ST20-TP2 are implemented via an on-chip interrupt controller peripheral. An inter-
rupt can be signalled to the controller by one of the following:

• a signal on an external Interrupt pin

• a signal from an internal peripheral or subsystem

• software asserting an interrupt in the Pending register

Interrupt 7

Interrupt 0

High priority

Low priority

Increasing
pre-emption

.

...

process

process

Interrupt 7

Interrupt 0

.

...

when Priority bit set to 1

when Priority bit set to 1

when Priority bit set to 0

when Priority bit set to 0

ST20-TP2

26/205



4.1 Interrupt vector table

The interrupt controller contains a table of pointers to interrupt handlers. Each interrupt handler is
represented by its workspace pointer (Wptr). The table contains a workspace pointer for each level
of interrupt.

The Wptr gives access to the code, data and interrupt save space of the interrupt handler. The
position of the Wptr in the interrupt table implies the priority of the interrupt.

Run-time library support is provided for setting and programming the vector table.

4.2 Interrupt handlers

At any interruptible point in its execution the CPU can receive an interrupt request from the inter-
rupt controller. The CPU immediately acknowledges the request.

In response to receiving an interrupt the CPU performs a procedure call to the process in the vec-
tor table. The state of the interrupted process is stored in the workspace of the interrupt handler as
shown in Figure 4.2. Each interrupt level has its own workspace.

Figure 4.2 State of interrupted process

The interrupt routine is initialized with space below Wptr . The Iptr and Status word for the routine
are stored there permanently.This should be programmed before the Wptr is written into the vector
table. The behavior of the interrupt differs depending on the priority of the CPU when the interrupt
occurs.

When an interrupt occurs when the CPU was running at high priority, and the interrupt is set at a
higher priority than the high priority process queue, the CPU saves the current process state
(Areg , Breg , Creg , Wptr , Iptr and Status) into the workspace of the interrupt handler. The value

Before interrupt

Wptr

Areg

Breg

Creg

Interrupting high priority

Wptr

Wptr

Iptr

Status

Wptr

Null Status

process
Interrupting low priority

process or CPU idle

Handler Iptr

Handler Status

Handler Iptr

Handler Status

Handler Iptr

Handler Status

ST20-TP2

27/205



HandlerWptr , which is stored in the interrupt controller, points to the top of this workspace. The
values of Iptr and Status to be used by the interrupt handler are loaded from this workspace and
starts executing the handler. The value of Wptr is then set to the bottom of this save area.

When an interrupt occurs when the CPU was running at high priority, and the interrupt is set at a
lower priority than the high priority process queue, no action is taken and the interrupt waits in a
queue until all higher priority interrupts have been serviced (see section 4.4).

Interrupts always take priority over low priority processes. When an interrupt occurs when the CPU
was idle or running at low priority, the Status is saved. This indicates that no valid process is run-
ning (Null Status). The interrupted processes (low priority process) state is stored in shadow regis-
ters. This state can be accessed via the ldshadow (load shadow registers) and stshadow (store
shadow registers) instructions. The interrupt handler is then run at high priority.

When the interrupt routine has completed it must adjust Wptr to the value at the start of the han-
dler code and then execute the iret (interrupt return) instruction. This restores the interrupted state
from the interrupt handler structure and signals to the interrupt controller that the interrupt has
completed. The processor will then continue from where it was before being interrupted.

4.3 Interrupt latency

The interrupt latency is dependent on the data being accessed and the position of the interrupt
handler and the interrupted process. This allows systems to be designed with the best trade-off use
of fast internal memory and interrupt latency.

4.4 Preemption and interrupt priority

Each interrupt channel has an implied priority fixed by its place in the interrupt vector table. All
interrupts will cause scheduled processes of any priority to be suspended and the interrupt handler
started. Once an interrupt has been sent from the controller to the CPU the controller keeps a
record of the current executing interrupt priority. This is only cleared when the interrupt handler
executes a return from interrupt (iret) instruction. Interrupts of a lower priority arriving will be
blocked by the interrupt controller until the interrupt priority has descended to such a level that the
routine will execute. An interrupt of a higher priority than the currently executing handler will be
passed to the CPU and cause the current handler to be suspended until the higher priority interrupt
is serviced.

In this way interrupts can be nested and a higher priority interrupt will always pre-empt a lower pri-
ority one. Deep nesting and placing frequent interrupts at high priority can result in a system where
low priority interrupts are never serviced or the controller and CPU time are consumed in nesting
interrupt priorities and not executing the interrupt handlers.

4.5 Restrictions on interrupt handlers

There are various restrictions that must be placed on interrupt handlers to ensure that they interact
correctly with the rest of the process model implemented in the CPU.

1 Interrupt handlers must not deschedule.

2 Interrupt handlers must not execute communication instructions. However they may com-

ST20-TP2

28/205



municate with other processes through shared variables using the semaphore signal to
synchronize.

3 Interrupt handlers must not perform block move instructions.

4 Interrupt handlers must not cause program traps. However they may be trapped by a
scheduler trap.

4.6 Interrupt configuration register s

The interrupt controller is allocated a 4k block of memory in the internal peripheral address space.
Information on interrupts is stored in registers as detailed in the following section. The registers can
be examined and set by the devlw (device load word) and devsw (device store word) instructions.
Note, they can not be accessed using memory instructions.

HandlerWptr register

The HandlerWptr registers (1 per interrupt) contain a pointer to the workspace of the interrupt han-
dler. It also contains the Priority bit which determines whether the interrupt is at a higher or lower
priority than the high priority process queue.

Note, before the interrupt is enabled, by writing a 1 in the Mask register, the user (or toolset) must
ensure that there is a valid Wptr in the register.

HandlerWptr Interrupt controller base address + #00 to #1C Read/Write

Bit Bit field Function

0 Priority Sets the priority of the interrupt. If this bit is set to 0, the interrupt is a higher priority
than the high priority process queue, if this bit is 1, the interrupt is a lower priority
than the high priority process queue.

0 high priority
1 low priority

31:2 HandlerWptr Pointer to the workspace of the interrupt handler.

1 Reserved, write 0.

Table 4.1 HandlerWptr register format - one register per interrupt

ST20-TP2

29/205



TriggerMode register

Each interrupt channel can be programmed to trigger on rising/falling edges or high/low levels on
the external Interrupt .

Note, level triggering is different to edge triggering in that if the input is held at the triggering level, a
continuous stream of interrupts is generated.

Mask register

An interrupt mask register is provided in the interrupt controller to selectively enable or disable
external interrupts. This mask register also includes a global interrupt disable bit to disable all
external interrupts whatever the state of the individual interrupt mask bits.

To complement this the interrupt controller also includes an interrupt pending register which con-
tains a pending flag for each interrupt channel. The Mask register performs a masking function on
the Pending register to give control over what is allowed to interrupt the CPU while retaining the
ability to continually monitor external interrupts.

On start-up, the Mask register is initialized to zeros, thus all interrupts are disabled, both globally
and individually. When a 1 is written to the GlobalEnable bit, the individual interrupt bits are still

TriggerMode Interrupt controller base address + #40 to #5C Read/Write

Bit Bit field Function

2:0 Trigger Control the triggering condition of the Interrupt , as follows:
Trigger2:0 Interrupt triggers on

000 No trigger mode
001 High level - triggered while input high
010 Low level - triggered while input low
011 Rising edge - low to high transition
100 Falling edge - high to low transition
101 Any edge - triggered on rising and falling edges
110 No trigger mode
111 No trigger mode

Table 4.2 TriggerMode register format - one register per interrupt

ST20-TP2

30/205



disabled and must also have a 1 individually written to the InterruptEnable bit to enable the
respective interrupt.

The Mask register is mapped onto two additional addresses so that bits can be set or cleared indi-
vidually.

Set_Mask (address ‘interrupt base address + #C4’) allows bits to be set individually. Writing a ‘1’ in
this register sets the corresponding bit in the Mask register, a ‘0’ leaves the bit unchanged.

Clear_Mask (address ‘interrupt base address + #C8’) allows bits to be cleared individually. Writing
a ‘1’ in this register resets the corresponding bit in the Mask register, a ‘0’ leaves the bit
unchanged.

Pending register

The Pending register contains a bit per interrupt with each bit controlled by the corresponding
interrupt. A read can be used to examine the state of the interrupt controller while a write can be
used to explicitly trigger an interrupt.

A bit is set when the triggering condition for an interrupt is met. All bits are independent so that sev-
eral bits can be set in the same cycle. Once a bit is set, a further triggering condition will have no
effect. The triggering condition is independent of the Mask register.

The highest priority interrupt bit is reset once the interrupt controller has made an interrupt request
to the CPU.

Mask Interrupt controller base address + #C0 Read/Write

Bit Bit field Function

0 Interrupt0Enable When set to 1, interrupt 0 is enabled. When 0, interrupt 0 is disabled.

1 Interrupt1Enable When set to 1, interrupt 1 is enabled. When 0, interrupt 1 is disabled.

2 Interrupt2Enable When set to 1, interrupt 2 is enabled. When 0, interrupt 2 is disabled.

3 Interrupt3Enable When set to 1, interrupt 3 is enabled. When 0, interrupt 3 is disabled.

4 Interrupt4Enable When set to 1, interrupt 4 is enabled. When 0, interrupt 4 is disabled.

5 Interrupt5Enable When set to 1, interrupt 5 is enabled. When 0, interrupt 5 is disabled.

6 Interrupt6Enable When set to 1, interrupt 6 is enabled. When 0, interrupt 6 is disabled.

7 Interrupt7Enable When set to 1, interrupt 7 is enabled. When 0, interrupt 7 is disabled.

16 GlobalEnable When set to 1, the setting of the interrupt is determined by the specific
InterruptEn able bit. When 0, all interrupts are disabled.

15:8 Reserved, write 0.

Table 4.3 Mask register format

ST20-TP2

31/205



The interrupt controller receives external interrupt requests and makes an interrupt request to the
CPU when it has a pending interrupt request of higher priority than the currently executing interrupt
handler.

The Pending register is mapped onto two additional addresses so that bits can be set or cleared
individually.

Set_Pending (address ‘interrupt base address + #84’) allows bits to be set individually. Writing a
‘1’ in this register sets the corresponding bit in the Pending register, a ‘0’ leaves the bit unchanged.

Clear_Pending (address ‘interrupt base address + #88’) allows bits to be cleared individually. Writ-
ing a ‘1’ in this register resets the corresponding bit in the Pending register, a ‘0’ leaves the bit
unchanged.

Note, if the CPU wants to write or clear some bits of the Pending register, the interrupts should be
masked (by writing or clearing the Mask register) before writing or clearing the Pending register.
The interrupts can then be unmasked.

Pending Interrupt controller base address + #80 Read/Write

Bit Bit field Function

0 PendingInt0 Interrupt 0 pending bit.

1 PendingInt1 Interrupt 1 pending bit.

2 PendingInt2 Interrupt 2 pending bit.

3 PendingInt3 Interrupt 3 pending bit.

4 PendingInt4 Interrupt 4 pending bit.

5 PendingInt5 Interrupt 5 pending bit.

6 PendingInt6 Interrupt 6 pending bit.

7 PendingInt7 Interrupt 7 pending bit.

Table 4.4 Bit fields in the Pending register

ST20-TP2

32/205



Exec register

The Exec register keeps track of the currently executing and pre-empted interrupts. A bit is set
when the CPU starts running code for that interrupt. The highest priority interrupt bit is reset once
the interrupt handler executes a return from interrupt (iret).

The Exec register is mapped onto two additional addresses so that bits can be set or cleared indi-
vidually.

Set_Exec (address ‘interrupt base address + #104’) allows bits to be set individually. Writing a ‘1’
in this register sets the corresponding bit in the Exec register, a ‘0’ leaves the bit unchanged.

Clear_Exec (address ‘interrupt base address + #108’) allows bits to be cleared individually. Writing
a ‘1’ in this register resets the corresponding bit in the Exec register, a ‘0’ leaves the bit unchanged.

Exec Interrupt controller base address + #100 Read/Write

Bit Bit field Function

0 Interrupt0Exec Set to 1 when the CPU starts running code for interrupt 0.

1 Interrupt1Exec Set to 1 when the CPU starts running code for interrupt 1.

2 Interrupt2Exec Set to 1 when the CPU starts running code for interrupt 2.

3 Interrupt3Exec Set to 1 when the CPU starts running code for interrupt 3.

4 Interrupt4Exec Set to 1 when the CPU starts running code for interrupt 4.

5 Interrupt5Exec Set to 1 when the CPU starts running code for interrupt 5.

6 Interrupt6Exec Set to 1 when the CPU starts running code for interrupt 6.

7 Interrupt7Exec Set to 1 when the CPU starts running code for interrupt 7.

Table 4.5 Bit fields in the Exec register

ST20-TP2

33/205



5 Interrupt level controller
The interrupt level controller extends the number of possible interrupts to eighteen.

There are 18 interrupts (of which 4 are external) generated in the ST20-TP2 system and each of
these is assigned to one of the interrupt controller’s 8 inputs. Thus each of the interrupt controller’s
inputs responds to zero or more of the 18 system interrupts.

An interrupt handler routine is able to ascertain the source of an interrupt where two or more sys-
tem interrupts are assigned to one handler by doing a device read from the InputInterrupts regis-
ter (see Table 5.2) and examining the bits that correspond to the system interrupts assigned to that
handler.

The assignment of interrupts to peripherals and external pins is given in the Device Configuration
chapter.

The interrupt level controller has additional functionality to support the low power controller. The
external interrupts are monitored and a signal is generated for the low power controller which tells it
when any of them goes to a pre-determined level. This level is programmable for each external
interrupt, and in addition each interrupt can be selectively masked.

5.1 Interrupt level controller registers

The interrupt level controller is programmable via configuration registers. These registers can be
examined and set by the devlw (device load word) and devsw (device store word) instructions.

IntPriority registers

The priority assigned to each of the input interrupts is programmablevia the IntPriority registers.

The interrupt level controller asserts interrupt output N when one or more of the input interrupts
with programmed priority equal to N are high. It is level sensitive and re-timed at the input, thus
incurring one cycle of latency.

IntPriority Interrupt level controller base address + #00 to #44 Read/Write

Bit Bit field Function

2:0 IntPriority Determines the priority of each interrupt input.

IntPriority2:0 Asserts output interrupt
000 0 (lowest priority)
001 1
010 2
011 3
100 4
101 5
110 6
111 7 (highest priority)

Table 5.1 IntPriority register format - 1 register per interrupt

ST20-TP2

34/205



InputInterrupts register

The InputInterrupts register is a read only register. It contains a vector which shows all of the input
interrupts, so bit 0 of the read data corresponds to InterruptIn0 , bit 1 corresponds to InterruptIn1 ,
etc.

SelectnotInv

Each of the four external interrupts can be programmed to be not inverting or inverting, depending
on whether the interrupt is active high or active low.

ExtIntEnable

The ExtIntEnable register enables each of the four external interrupts to be selectively enabled or
disabled.

Inputinterrupts Interrupt level controller base address + #44 + #04 Read only

Bit Bit field Function

17:0 InterruptIn17-0 Input interrupt levels.

Table 5.2 InputInterrupts register format

SelectnotInv Interrupt level controller base address + #44 + #08 Read/Write

Bit Bit field Function

3:0 SelectnotInv External interrupt sense for low power controller.

Table 5.3 SelectnotInv register format

ExtIntEnable Interrupt level controller base address + #44 + #0C Read/Write

Bit Bit field Function

3:0 ExtIntEnable Enable external interrupt for low power controller.

Table 5.4 ExtIntEnable register format

ST20-TP2

35/205



6 Instruction set
This chapter provides information on the instruction set. It contains tables listing all the instructions,
and where applicable provides details of the number of processor cycles taken by an instruction.

The instruction set has been designed for simple and efficient compilation of high-level languages.
All instructions have the same format, designed to give a compact representation of the operations
occurring most frequently in programs.

Each instruction consists of a single byte divided into two 4-bit parts. The four most significant bits
(MSB) of the byte are a function code and the four least significant bits (LSB) are a data value, as
shown in Figure 6.1.

Figure 6.1 Instruction format

For further information on the instruction set refer to the ST20C2/C4 Core Instruction Set Manual
(document number 72-TRN-273).

6.1 Instruction cycles

Timing information is available for some instructions. However, it should be noted that many
instructions have ranges of timings which are data dependent.

Where included, timing information is based on the number of clock cycles assuming any memory
accesses are to 2 cycle internal memory and no other subsystem is using memory. Actual time will
be dependent on the speed of external memory and memory bus availability.

Note that the actual time can be increased by:

1 the instruction requiring a value on the register stack from the final memor y read in the pre-
vious instruction – the current instruction will stall until the value becomes available.

2 the first memor y operation in the current instruction can be delayed while a preceding
memory operation completes - any two memory operations can be in progress at any time,
any further operation will stall until the first completes .

3 memory operations in current instructions can be delayed by access by instruction fetch or
subsystems to the memory interface.

4 there can be a delay between instructions while the instruction fetch unit fetches and par-
tially decodes the next instruction – this will be the case wheneveran instruction causes the
instruction flow to jump.

Note that the instruction timings given refer to ‘standard’ behavior and may be different if, for exam-
ple, traps are set by the instruction.

Function Data

7 4 3 0

ST20-TP2

36/205



6.2 Instruction characteristics

The Primary Instructions Table 6.3 gives the basic function code. Where the operand is less than
16, a single byte encodes the complete instruction. If the operand is greater than 15, one prefix
instruction (pfix) is required for each additional four bits of the operand. If the operand is negative
the first prefix instr uction will be nfix. Examples of pfix and nfix coding are given in Table 6.1.

Any instruction which is not in the instruction set tables is an invalid instruction and is flagged ille-
gal, returning an error code to the trap handler, if loaded and enabled.

The Notes column of the tables indicates the descheduling and error features of an instruction as
described in Table 6.2.

Mnemonic Function code Memory code

ldc #3 #4 #43

ldc #35

is coded as

pfix #3 #2 #23

ldc #5 #4 #45

ldc #987

is coded as

pfix #9 #2 #29

pfix #8 #2 #28

ldc #7 #4 #47

ldc -31 (ldc #FFFFFFE1)

is coded as

nfix #1 #6 #61

ldc #1 #4 #41

Table 6.1 Prefix coding

Ident Feature

E Instruction can set an IntegerError trap

L Instruction can cause a LoadTrap trap

S Instruction can cause a StoreTrap trap

O Instruction can cause an Overflow trap

I Interruptible instruction

A Instruction can be aborted and later restarted.

D Instruction can deschedule

T Instruction can timeslice

Table 6.2 Instruction features

ST20-TP2

37/205



6.3 Instruction set tables

Function
code

Memory
code

Mnemonic
Processor

cycles
Name Notes

0 0X j 7 jump D, T

1 1X ldlp 1 load local pointer

2 2X pfix 0 to 3 prefix

3 3X ldnl 1 load non-local

4 4X ldc 1 load constant

5 5X ldnlp 1 load non-local pointer

6 6X nfix 0 to 3 negative prefix

7 7X ldl 1 load local

8 8X adc 2 to 3 add constant O

9 9X call 8 call

A AX cj 1 or 7 conditional jump

B BX ajw 2 adjust workspace

C CX eqc 1 equals constant

D DX stl 1 store local

E EX stnl 2 store non-local

F FX opr 0 operate

Table 6.3 Primary functions

Memory
code Mnemonic

Processor
cycles Name Notes

22FA testpranal 1 test processor analyzing

23FE saveh 3 save high priority queue registers

23FD savel 3 save low priority queue registers

21F8 sthf 1 store high priority front pointer

25F0 sthb 1 store high priority back pointer

21FC stlf 1 store low priority front pointer

21F7 stlb 1 store low priority back pointer

25F4 sttimer 2 store timer

68FC ldprodid 1 load device identity

27FE ldmemstartval 1 load value of MemStart address

Table 6.4 Processor initialization operation codes

ST20-TP2

38/205



Memory
code

Mnemonic Processor
cycles

Name Notes

24F6 and 1 and

24FB or 1 or

23F3 xor 1 exclusive or

23F2 not 1 bitwise not

24F1 shl 1 shift left

24F0 shr 1 shift right

F5 add 2 add A, O

FC sub 2 subtract A, O

25F3 mul 3 multiply A, O

27F2 fmul 5 fractional multiply A, O

22FC div 4 to 35 divide A, O

21FF rem 3 to 35 remainder A, O

F9 gt 2 greater than A

25FF gtu 2 greater than unsigned A

F4 diff 1 difference

25F2 sum 1 sum

F8 prod 3 product A

26F8 satadd 2 to 3 saturating add A

26F9 satsub 2 to 3 saturating subtract A

26FA satmul 4 saturating multiply A

Table 6.5 Arithmetic/logical operation codes

ST20-TP2

39/205



Memory
code

Mnemonic Processor
cycles

Name Notes

21F6 ladd 2 long add A, O

23F8 lsub 2 long subtract A, O

23F7 lsum 1 long sum

24FF ldiff 1 long diff

23F1 lmul 4 long multiply A

21FA ldiv 3 to 35 long divide A, O

23F6 lshl 2 long shift left A

23F5 lshr 2 long shift right A

21F9 norm 3 normalize A

26F4 slmul 4 signed long multiply A, O

26F5 sulmul 4 signed times unsigned long multiply A, O

Table 6.6 Long arithmetic operation codes

Memory
code

Mnemonic
Processor

cycles
Name Notes

F0 rev 1 reverse

23FA xword 3 extend to word A

25F6 cword 2 to 3 check word A, E

21FD xdble 1 extend to double

24FC csngl 2 check single A, E

24F2 mint 1 minimum integer

25FA dup 1 duplicate top of stack

27F9 pop 1 pop processor stack

68FD reboot 2 reboot

Table 6.7 General operation codes

ST20-TP2

40/205



Memory
code

Mnemonic Processor
cycles

Name Notes

F2 bsub 1 byte subscript

FA wsub 1 word subscript

28F1 wsubdb 1 form double word subscript

23F4 bcnt 1 byte count

23FF wcnt 1 word count

F1 lb 1 load byte

23FB sb 2 store byte

24FA move move message I

Table 6.8 Indexing/array operation codes

Memory
code

Mnemonic Processor
cycles

Name Notes

22F2 ldtimer 1 load timer

22FB tin timer input I

24FE talt 3 timer alt start

25F1 taltwt timer alt wait D, I

24F7 enbt 1 to 7 enable timer

22FE dist disable timer I

Table 6.9 Timer handling operation codes

ST20-TP2

41/205



Memory
code

Mnemonic Processor
cycles

Name Notes

F7 in input message D

FB out output message D

FF outword output word D

FE outbyte output byte D

24F3 alt 2 alt start

24F4 altwt 3 to 6 alt wait D

24F5 altend 8 alt end

24F9 enbs 1 to 2 enable skip

23F0 diss 1 disable skip

21F2 resetch 3 reset channel

24F8 enbc 1 to 4 enable channel

22FF disc 1 to 6 disable channel

Table 6.10 Input and output operation codes

Memory
code Mnemonic

Processor
cycles Name Notes

22F0 ret 2 return

21FB ldpi 1 load pointer to instruction

23FC gajw 2 to 3 general adjust workspace

F6 gcall 6 general call

22F1 lend 4 to 5 loop end T

Table 6.11 Control operation codes

Memory
code

Mnemonic Processor
cycles

Name Notes

FD startp 5 to 6 start process

F3 endp 4 to 6 end process D

23F9 runp 3 run process

21F5 stopp 2 stop process

21FE ldpri 1 load current priority

Table 6.12 Scheduling operation codes

ST20-TP2

42/205



Memory
code

Mnemonic Processor
cycles

Name Notes

21F3 csub0 2 check subscript from 0 A, E

24FD ccnt1 2 check count from 1 A, E

22F9 testerr 1 test error false and clear

21F0 seterr 1 set error

25F5 stoperr 1 to 3 stop on error (no error) D

25F7 clrhalterr 2 clear halt-on-error

25F8 sethalterr 1 set halt-on-error

25F9 testhalterr 1 test halt-on-error

Table 6.13 Error handling operation codes

Memory
code

Mnemonic
Processor

cycles
Name Notes

25FB move2dinit 1 initialize data for 2D block move

25FC move2dall 2D block copy I

25FD move2dnonzero 2D block copy non-zero bytes I

25FE move2dzero 2D block copy zero bytes I

Table 6.14 2D block move operation codes

Memory
code

Mnemonic Processor
cycles

Name Notes

27F4 crcword 34 calculate crc on word A

27F5 crcbyte 10 calculate crc on byte A

27F6 bitcnt 3 count bits set in word A

27F7 bitrevword 1 reverse bits in word

27F8 bitrevnbits 2 reverse bottom n bits in word A

Table 6.15 CRC and bit operation codes

ST20-TP2

43/205



Memory
code

Mnemonic Processor
cycles

Name Notes

27F3 cflerr 2 check floating point error E

29FC fptesterr 1 load value true (FPU not present)

26F3 unpacksn 4 unpack single length floating point number A

26FD roundsn 7 round single length floating point number A

26FC postnormsn 7 to 8 post-normalize correction of single length
floating point number

A

27F1 ldinf load single length infinity

Table 6.16 Floating point support operation codes

Memory
code

Mnemonic Processor
cycles

Name Notes

2CF7 cir 2 to 4 check in range A, E

2CFC ciru 2 to 4 check in range unsigned A, E

2BFA cb 2 to 3 check byte A, E

2BFB cbu 2 to 3 check byte unsigned A, E

2FFA cs 2 to 3 check sixteen A, E

2FFB csu 2 to 3 check sixteen unsigned A, E

2FF8 xsword 2 sign extend sixteen to word A

2BF8 xbword 3 sign extend byte to word A

Table 6.17 Range checking and conversion instructions

Memory
code

Mnemonic Processor
cycles

Name Notes

2CF1 ssub 1 sixteen subscript

2CFA ls 1 load sixteen

2CF8 ss 2 store sixteen

2BF9 lbx 1 load byte and sign extend

2FF9 lsx 1 load sixteen and sign extend

Table 6.18 Indexing/array instructions

ST20-TP2

44/205



Memory
code

Mnemonic Processor
cycles

Name Notes

2FF0 devlb 3 device load byte A

2FF2 devls 3 device load sixteen A

2FF4 devlw 3 device load word A

62F4 devmove device move I

2FF1 devsb 3 device store byte A

2FF3 devss 3 device store sixteen A

2FF5 devsw 3 device store word A

Table 6.19 Device access instructions

Memory
code Mnemonic

Processor
cycles Name Notes

60F5 wait 4 to 10 wait D

60F4 signal 6 to 10 signal

Table 6.20 Semaphore instructions

Memory
code

Mnemonic Processor
cycles

Name Notes

60F0 swapqueue 3 swap scheduler queue

60F1 swaptimer 5 swap timer queue

60F2 insertqueue 1 to 2 insert at front of scheduler queue

60F3 timeslice 3 to 4 timeslice

60FC ldshadow 6 to 23 load shadow registers A

60FD stshadow 5 to 17 store shadow registers A

62FE restart 19 restart

62FF causeerror 2 cause error

61FF iret 3 to 9 interrupt return

2BF0 settimeslice 1 set timeslicing status

2CF4 intdis 1 interrupt disable

2CF5 intenb 2 interrupt enable

2CFD gintdis 2 global interrupt disable

2CFE gintenb 2 global interrupt enable

Table 6.21 Scheduling support instructions

ST20-TP2

45/205



Memory
code

Mnemonic Processor
cycles

Name Notes

26FE ldtraph 11 load trap handler L

2CF6 ldtrapped 11 load trapped process status L

2CFB sttrapped 11 store trapped process status S

26FF sttraph 11 store trap handler S

60F7 trapenb 2 trap enable

60F6 trapdis 2 trap disable

60FB tret 9 trap return

Table 6.22 Trap handler instructions

Memory
code Mnemonic

Processor
cycles Name Notes

63F0 nop 1 no operation

Table 6.23 No operation instruction

Memory
code

Mnemonic
Processor

cycles
Name Notes

64FF clockenb 2 clock enable

64FE clockdis 2 clock disable

64FD ldclock 1 load clock

64FC stclock 2 store clock

Table 6.24 Clock instructions

ST20-TP2

46/205



7 Memory map
The ST20-TP2 processor memory has a 32-bit signed address range. Words are addressed by 30-
bit word addresses and a 2-bit byte-selector identifies the bytes in the word. Memory is divided into
4 banks which can each have different memory characteristics and can be used for different pur-
poses. In addition, on-chip peripherals can be accessed via the device access instructions.

Various memory locations at the bottom and top of memory are reserved for special system pur-
poses. There is also a default allocation of memory banks to different uses.

7.1 System memory use

The ST20-TP2 has a signed address space where the address ranges from MinInt (#80000000) at
the bottom to MaxInt (#7FFFFFFF) at the top. The ST20-TP2 has an area of 8 Kbytes of RAM at
the bottom of the address space provided by on chip memory. The bottom of this area is used to
store various items of system state. These addresses should not be accessed directly but via the
appropriate instructions.

Near the bottom of the address space there is a special address MemStart . Memory above this
address is for use by user programs while addresses below it are for private use by the processor
and used for subsystem channels and trap handlers. The address of MemStart can be obtained
via the ldmemstartval instruction.

7.1.1 Subsystem channels memory

Each DMA channel between the processor and a subsystem is allocated a word of storage below
MemStart . This is used by the processor to store information about the state of the channel. This
information should not normally be examined directly, although debugging kernels may need to do
so.

Boot channel

The subsystem channel which is a link input channel is identified as a ‘boot channel’. When the
processor is reset, and is set to boot from link, it waits for boot commands on this channel.

7.1.2 Trap handlers memory

The area of memory reserved for trap handlers is broken down hierarchically. Full details on trap
handlers is given in section 3.6.

• Each high/low process priority has a set of trap handlers.

• Each set of trap handlers has a handler for each of the four trap groups (refer to section
3.6.1).

• Each trap group handler has a trap handler structure and a trapped process structure.

• Each of the structures contains four words, as detailed in section 3.6.3.

The contents of these addresses can be accessed via ldtraph, sttraph, ldtrapped and sttrapped
instructions.

ST20-TP2

47/205



7.2 Boot ROM

When the processor boots from ROM, it jumps to a boot program held in ROM with an entry point 2
bytes from the top of memory at #7FFFFFFE. These 2 bytes are used to encode a negative jump
of up to 256 bytes down in the ROM program. For large ROM programs it may then be necessary
to encode a longer negative jump to reach the start of the routine.

7.3 Internal peripheral space

On-chip peripherals are mapped to addresses in the top half of memory bank 2 (address range
#20000000 to #3FFFFFFF). They can only be accessed by the device access instructions (see
Table 6.19). When used with addresses in this range, the device instructions access the on-chip
peripherals rather than external memory. For all other addresses the device instructions access
memory. Standard load/store instructions to these addresses will access external memory.

This area of memory is allocated to peripherals in 4K blocks, see the following memory map.

Address Use

MaxInt #7FFFFFFF

BootEntry #7FFFFFFE Boot entry point

#7FFFFFFD

User code/Data/Stack and Boot ROM↑

#40000000

#3FFFFFFF

RESERVED↑

#20028000

#20027FFF
Section filter DMA controller per ipheral

(registers accessed via CPU device accesses)
↑

#20027000

#20026FFF
Block move DMA controller peripheral

(registers accessed via CPU device accesses)
↑

#20026000

#20025FFF
P1284 DMA controller peripheral

(registers accessed via CPU device accesses)
↑

#20025000

#20024FFF
Teletext DMA controller peripheral

(registers accessed via CPU device accesses)
↑

#20024000

#20023FFF

RESERVED↑

#20023000

Figure 7.1 ST20-TP2 memory map

ST20-TP2

48/205



#20022FFF
DVB descrambler controller peripheral

(registers accessed via CPU device accesses)
↑

#20022000

#20021FFF
MPEG1 DMA controller peripheral

(registers accessed via CPU device accesses)
↑

#20021000

#20020FFF
MPEG0 DMA controller peripheral

(registers accessed via CPU device accesses)
↑

#20020000

#2001FFFF

RESERVED↑

#20012000

#20011FFF
Interrupt level controller peripheral

(registers accessed via CPU device accesses)
↑

#20011000

#20010FFF
PIO4 controller peripheral

(registers accessed via CPU device accesses)
↑

#20010000

#2000FFFF
PIO3 controller peripheral

(registers accessed via CPU device accesses)
↑

#2000F000

#2000EFFF
PIO2 controller peripheral

(registers accessed via CPU device accesses)
↑

#2000E000

#2000DFFF
PIO1 controller peripheral

(registers accessed via CPU device accesses)
↑

#2000D000

#2000CFFF
PIO0 controller peripheral

(registers accessed via CPU device accesses)
↑

#2000C000

#2000BFFF
PWM and counter controller peripheral

(registers accessed via CPU device accesses)
↑

#2000B000

#2000AFFF
SSC1 controller peripheral

(registers accessed via CPU device accesses)
↑

#2000A000

Address Use

Figure 7.1 ST20-TP2 memory map

ST20-TP2

49/205



#20009FFF
SSC0 controller peripheral

(registers accessed via CPU device accesses)
↑

#20009000

#20008FFF
SmartCard1 clock generator peripheral

(registers accessed via CPU device accesses)
↑

#20008000

#20007FFF
SmartCard0 clock generator peripheral

(registers accessed via CPU device accesses)
↑

#20007000

#20006FFF
ASC3 (SmartCard1) controller peripheral

(registers accessed via CPU device accesses)
↑

#20006000

#20005FFF
ASC2 (SmartCard0) controller peripheral

(registers accessed via CPU device accesses)
↑

#20005000

#20004FFF
ASC1 controller peripheral

(registers accessed via CPU device accesses)
↑

#20004000

#20003FFF
ASC0 controller peripheral

(registers accessed via CPU device accesses)
↑

#20003000

#20002FFF
EMI controller peripheral

(registers accessed via CPU device accesses)
↑

#20002000

#20001FFF

RESERVED↑

#20001000

#20000FFF
Interrupt and low power controller peripheral

(registers accessed via CPU device accesses)
↑

#20000000

#1FFFFFFF

External peripherals or memory↑

#00000000

Address Use

Figure 7.1 ST20-TP2 memory map

ST20-TP2

50/205



#FFFFFFFF

User code/Data/Stack

↑

Start of external memory #80002000

↑
MemStart #80000140

#80000130 Low priority Scheduler trapped process

#80000120 Low priority Scheduler trap handler

#80000110 Low priority SystemOperations trapped process

#80000100 Low priority SystemOperations trap handler

#800000F0 Low priority Error trapped process

#800000E0 Low priority Error trap handler

#800000D0 Low priority Breakpoint trapped process

#800000C0 Low priority Breakpoint trap handler

#800000B0 High priority Scheduler trapped process

#800000A0 High priority Scheduler trap handler

#80000090 High priority SystemOperations trapped process

#80000080 High priority SystemOperations trap handler

#80000070 High priority Error trapped process

#80000060 High priority Error trap handler

#80000050 High priority Breakpoint trapped process

TrapBase #80000040 High priority Breakpoint trap handler

#8000003C
RESERVED

#80000038

#80000034 Block move DMA controller channel out

#80000030 RESERVED

#8000002C Link-IC input channel

#80000028 DVBC DMA channel

#80000024 MPEG1 DMA channel

#80000020 MPEG0 DMA channel

#8000001C

RESERVED↑

#80000014

#80000010 Link0 (boot) input channel

#8000000C

RESERVED↑

#80000004

MinInt #80000000 Link0 output channel

Address Use

Figure 7.1 ST20-TP2 memory map

ST20-TP2

51/205



8 Memory subsystem
The memory system consists of SRAM and an external memory interface (EMI). The specific
details on the operation of the EMI are described separately in Chapter 9.

8.1 SRAM

There is an internal memory module of 8 Kbytes of SRAM. The internal SRAM is mapped into the
base of the memory space from MinInt (#80000000) extending upwards, as shown in Figure 8.1.

This memory can be used to store on-chip data, stack or code for time critical routines.

Figure 8.1 SRAM mapping

Where internal memory overlays external memory, internal memory is accessed in preference.

SRAM

External
memory

#80002000

MinInt #80000000

ST20-TP2

52/205



9 External memory interface
The External Memory Interface (EMI) controls the movement of data between the ST20-TP2 and
off-chip memory.

The EMI can access a 16 Mbyte (or greater if DRAM is used) physical address space in three gen-
eral purpose memory banks, and, for 50Mhz operation, provides sustained transfer rates of up to
100 Mbytes/s for SRAM, and up to 50 Mbytes/s using page-mode DRAM. The EMI includes pro-
grammable strobes to support direct interfacing to MPEG decoder devices, and is designed to sup-
port the memory subsystems required in most set top receiver applications with zero external
support logic including 16 and 32-bit DRAM devices.

The interface can be configured for a wide variety of timing and decode functions through configu-
ration registers.

The external address space is partitioned into four banks, with each bank occupying one quarter of
the address space (see Figure 9.1). This allows the implementation of mixed memory systems,
with support for DRAM, SRAM, EPROM, VRAM and I/O. The timing of each of the four memory
banks can be selected separately, with a different device type being placed in each bank with no
external hardware support.

Figure 9.1 Memory allocation

80001FFF

00000000

7FFFFFFF

FFFFFFFF

80000000 Internal SRAM

BFFFFFFF
C0000000

3FFFFFFF
40000000

On-chip peripheral registers (including the EMI
configuration registers) are mapped into the upper

half of this bank.

B
an

k
0

On-chip peripheral

20000000
1FFFFFFF

B
an

k
1

B
an

k
2

B
an

k
3

registers

80000000

MemStart

Internal
SRAM

Traps and
exceptions

Subsystem
channels

Addresses shown are physical addresses

ST20-TP2

53/205



On-chip internal SRAM is located at the bottom of memory. Internal SRAM is internally divided into
three regions. The first at the bottom is used for channel storage space, the second region is
reserved for traps and exceptions, the third region is free for program use. The boundary between
the second and third region is called MemStart and is the lowest location in memory available for
general use.

Support is provided for MPEG application devices. Bank 2 of the EMI is nominally allocated as the
peripheral bank. It is in this address range that the on-chip peripheral registers appear when using
device accesses. Strobes in this bank are provided to support access to the external MPEG audio
and MPEG video application devices. The programmability of the EMI and the format of these
strobes make the ST20-TP2 suitable for use with a range of MPEG application ICs available today
and in the future.

Word addressing is used. Support for byte and part-word addressing is provided.

In this chapter a cycle is one processor clock cycle and a phase is one half of the duration of one
processor clock cycle.

9.1 Pin functions

The following section describes the functions of the external memory interface pins. Note that a
signal name prefixed by not indicates active low.

MemData0-31

The data bus transfers 32, 16 or 8-bit data items depending on the bus width configuration. The
least significant bit of the data bus is always MemData0 . The most significant bit varies with bus
width, MemData31 for 32-bit data items, MemData15 for 16-bit data items, and MemData7 for
8-bit data items.

MemAddr2-23

The address bus may be operated in both multiplexed and non-multiplexed modes. When a bank is
configured to contain DRAM, or other multiplexed memory, then the internally generated 32-bit
address is multiplexed as row and column addresses through the external address bus.

notMemBE0-3

The ST20-TP2 uses word addressing and four byte-enable strobes are provided. Use of the byte
enable pins depends on the bus width.

• 32-bit wide memory is defined as an array of 4 byte words with 30 address bits selecting a
4 byte word. Each byte of this array is addressablewith the byte enable pins notMemBE0-3
selecting a byte within a word.

• 16-bit wide memory is defined as an array of 2 byte words with 31 address bits selecting a
2 byte word and notMemBE0-1 selecting a byte within the word.

• 8-bit wide memory is defined as an array of 1 byte words with 32 address bits selecting a
word.

For 16-bit and 8-bit wide memory, the lower order address bits (A1 and A0) are multiplexed onto
the unused byte-enable pins to give an address bus 31 or 32-bits wide respectively.

ST20-TP2

54/205



notMemBE0 addresses the least significant byte of a word. Both strobes have the same timing and
may be configured to be active on read and or write cycles.

The function of the byte enables notMemBE0-3 for different bank size configurations is given in
Table 9.1 below. Note that other bus masters must not drive the same data pins during a write.

notMemRAS0/1/3

One programmable RAS strobe is allocated to each of banks 0, 1 and 3 which are decoded on
chip. If a bank is programmed to contain DRAM, or other multiplexed memory, then the associated
notMemRAS pin acts as its RAS strobe by default. For banks which do not contain DRAM the not-
MemRAS pin is available as a general purpose programmable strobe.

notMemCAS0-3

The programmableCAS strobes can be individually programmed to be in one of two modes.

• Bank mode in which each strobe is used as the CAS strobe for a single bank.

• Byte mode in which the CAS strobe is used as a byte decoded CAS strobe and can be
used across multiple banks.

Byte mode is used to support 16 or 32-bit wide DRAMs or DRAM modules that provide multiple
CAS strobes, one for each byte, and a single write signal to allow byte write operations. The alter-
native type DRAMs that have multiple write signals, one for each byte, and a single CAS to allow
byte write operations or banks that are constructed from 1, 4, or 8-bit wide DRAMs can be inter-
faced using bank mode.

Byte mode and bank mode can be mixed in an application if the DRAM bank or banks that use byte
mode are 16 bits wide. In this case only notMemCAS0 and notMemCAS1 need to be in byte
mode and the other two CAS strobes can be used either as a bank mode CAS strobe or as a gen-
eral purpose strobe.

Note, the only useful combinations of byte mode CAS strobes are all four programmed to byte
mode to support 32-bit DRAM banks, and notMemCAS0 and notMemCAS1 programmed to byte
mode to support 16-bit DRAM banks.

For banks which do not contain DRAM the notMemCAS pin is available as a general purpose pro-
grammable strobe.

Pin
External port size

32-bit 16-bit 8-bit

notMemBE3 enables MemData24-31 becomes A1 becomes A1

notMemBE2 enables MemData16-23 undefined becomes A0

notMemBE1 enables MemData8-15 enables MemData8-15 undefined

notMemBE0 enables MemData0-7 enables MemData0-7 enables MemData0-7

Table 9.1 notMemBE0-3 pins

ST20-TP2

55/205



CAS strobes in bank mode

One programmable CAS strobe is allocated to each of banks 0, 1, 2 and 3 which are decoded on
chip. If a bank is programmed to contain DRAM, or other multiplexed memory, then the associated
notMemCAS pin acts as its CAS strobe by default.

CAS strobes in byte mode

For banks containing DRAM, which require byte decoded CAS strobes, one programmable CAS
strobe is allocated to each byte. Each of the CAS strobes in this mode will have the timing pro-
grammed into the CAS timing configuration registers, of the bank being accessed, if they are active
during that cycle. Byte mode CAS strobes are active during an access if the byte corresponding to
the strobe is being accessed.

During refresh cycles all of the CAS strobes in this mode will go low at the start of the cycle and
remain low until the end of the cycle.

The table below shows the correspondence between widest byte decoded DRAM bank size and
use of byte mode strobes, and data bytes and the byte mode CAS strobes. Only the CAS strobes
that enable bytes that are being accessed will be active during an access cycle.

notMemPS0/1/3

These additional general purpose programmable strobes (one for each of banks 0, 1 and 3) may
be programmed in the same way as the notMemCAS0/1/3 strobes.

notCS0-1 and notCDSTRB0-1

Four strobes are provided in bank 2 to support access to the external MPEG audio and MPEG
video decoder devices. There are two decoder IC chip selects (notCS0-1) and two compressed
data strobes (notCDSTRB0-1).

MemWait

Wait states can be generated by taking MemWait high. MemWait is sampled during RASTime and
CASTime . MemWait retains the state of any strobe during the cycle in which MemWait was
asserted. MemWait suspends the cycle counter and the strobe generation logic until deasserted.
When MemWait is de-asserted cycles continue as programmed by the configuration interface.

CAS strobe
Widest byte mode DRAM bank

32-bit 16-bit

notMemCAS3 enables MemData24-31 bank 3 CAS strobe in byte mode

or programmable strobe

notMemCAS2 enables MemData16-23 bank 2 CAS strobe in byte mode

or programmable strobe

notMemCAS1 enables MemData8-15 enables MemData8-15

notMemCAS0 enables MemData0-7 enables MemData0-7

Table 9.2 Byte mode notMemCAS0-3 strobe pins

ST20-TP2

56/205



MemReq, MemGranted

Direct memory access (DMA) can be requested at any time by driving the synchronous MemReq
signal high. The address and data buses are tristated after the current memory access or refresh
cycle terminates.

Strobes are left inactive during the DMA transfer. If a DMA is active for longer than one pro-
grammed refresh interval then external logic is responsible for providing refresh.

The MemGranted signal follows the timing of the bus being tristated and can be used to signal to
the device requesting the DMA that it has control of the bus.

Table 9.3 below lists the processor pin state while MemGranted is asserted.

notMemRd

The notMemRd signal indicates that the current cycle is a read cycle. It is asserted low at the
beginning of the read cycle and deasserted high at the end of the read cycle.

notMemRf

The notMemRf signal indicates that the current cycle is a refresh cycle. It is asserted low at the
beginning of the refresh cycle and deasserted high at the end of the refresh cycle.

ProcClockOut

Reference signal for external bus cycles. ProcClockOut oscillates at the processor clock fre-
quency.

BootSource0-1

The BootSource0-1 pins determine whether the ST20-TP2 will boot from link or from ROM. When
the BootSource0-1 pins are both held low the ST20-TP2 will boot from its link. If either or both pins
are high the ST20-TP2 will boot from ROM, as shown in Table 9.4. Boot code is run from a slow

MemGranted asserted

Pin name Pin state

MemAddr2-23 floating

MemData0-31 floating

notMemBE0-3 inactive

notMemRAS0/1/3 inactive

notMemCAS0-3 inactive

notMemPS0/1/3 inactive

notMemRf inactive

notMemRd inactive

notCS0-1 inactive

notCDSTRB0-1 inactive

Table 9.3 Pin states while MemGranted is asserted

ST20-TP2

57/205



external ROM placed in bank 3 (at the top of memory). The BootSource0-1 pins also encode the
size of bank 3. This overrides the value in the configuration registers for the PortSize for bank 3.

When booting from the link, the port size of bank 3 must be configured as with any other EMI
parameter, otherwise the PortSize field in the ConfigDataField1 register for bank 3 (see section
9.3) will be overridden by the value on the BootSource0-1 pins.

If the ST20-TP2 is set to boot from link, the bootstrap must execute from internal memory until the
EMI has been configured. If this is not possib le then the EMI must be completely configured using
poke commands down a link before loading the bootstrap into external memory and executing it.

9.2 External bus cycles

The external memory interface is designed to provide efficient suppor t for dynamic memory without
compromising support for other devices, such as static memory and IO devices. This flexibility is
provided by allowing the required waveforms to be programmed via configuration registers (see
section 9.3).

Memory is byte addressed, with words aligned on four-byte boundaries for 32-bit devices and on
two-byte boundaries for 16-bit devices.

During read cycles byte level addressing is performed internally by the ST20-TP2. The EMI can
read bytes, half-words or words. It always reads the size of the bank.

During read or write cycles the ST20-TP2 uses the notMemBE0-3 strobes to perform addressing
of bytes. If a particular byte is not to be written then the corresponding data outputs are tristated.
Writes can be less than the size of the bank.

The internally generated address is indicated on pins MemAddr2-23 , however the low order
address bits A0 and A1 have different functions depending on the size of the external data bus,
see Table 9.1. The least significant bit of the data bus is always MemData0 . The most significant
bit can be adjusted dynamically to suit the required external bus size.

Note that data pins which are not used during a write access are tristated, for example, for an 8-bit
bus pins MemData8-31 are tristated.

A generic memory interface cycle consists of a number of defined per iods, or times, as shown in
Figure 9.2. This generic memory cycle uses DRAM terminology to clarify the use of the interface in
the most complex situations, but can be programmed to provide waveforms for a wide range of
other device types. The timing of each of the four memory banks can be programmed separately,
with a different device type being placed in each bank with no external hardware support.

The RASTime and CASTime are consecutive. The CASTime can be followed by concurrent Pre-
charge and BusRelease times. Thus, for DRAM, the times are used for RAS, CAS, and precharge

BootSource1:0 Function

0:0 Boot from link. The ST20-TP2 loads bootstrap down the link and executes from MemStart .

0:1 Boot from ROM. Port size of bank 3 hardwired to 32-bits.

1:0 Boot from ROM. Port size of bank 3 hardwired to 16-bits.

1:1 Boot from ROM. Port size of bank 3 hardwired to 8-bits.

Table 9.4 BootSource0-1 pin settings

ST20-TP2

58/205



respectively. For non-multiplexed addressed memory the RASTime can be programmed to be
zero.

If the RASTime is programmed to be non-zero, and page-mode memory is programmed in a bank,
the RASTime will only occur if consecutive accesses are not in the same page. The RASTime will
not commence until the PrechargeTime for a previous access to the same bank has completed.
During the RASTime a transition can only be programmed on the RAS strobes, but not on the
CAS, byte enable or general purpose strobes.

Figure 9.2 Generic memory cycle

During the CASTime the programmable strobes and byte-enable strobes are active. The address
is output on the address bus without being shifted. Write data is valid during CASTime . Read data
is latched into the interface on the rising edge of the internal processor clock which coincides or
proceeds the programmed notMemCAS e2 time.

Note that the e1 and e2 times for the notMemBE and the notMemCAS strobes when in byte mode
must be ≥ 2 phases.

The PrechargeTime and BusReleaseTime commence concurrently at the end of the CASTime .
A PrechargeTime will occur to the current bank if:

• the next access is to the same bank but to a different row address.

Start of cycle

RASTime CASTime Precharge Time

Address bus

notMemCAS0/1/3 (bank mode)
not MemCAS0-3 (byte mode)

or notMemBE0-3
or notMemPS0-3/1/3

Data bus (write)

row column

E1Time
E2Time

E2Time

E1Time

RASedgeTime

BusRelease
Time

Data in

Data out

Internal data
latch

DataDriveDelay

Data bus (read)

notMemRAS0/1/3

ST20-TP2

59/205



• the next cycle is to a different bank.

The BusReleaseTime runs concurrently with the PrechargeTime and will occur if:

• the current cycle is a read and the next cycle is a write.

• the current cycle is a read and the next cycle is a read to a different bank.

The BusReleaseTime is provided to allow slow devices to float to a high impedance state.

Figure 9.3 Data latching

9.2.1 Refresh

Configuration fields are provided which specify the banks which require refreshing and the interval
between successive refreshes.

The EMI ensures that notMemCAS and notMemRAS are both high for the required time before
every refresh cycle by inserting a PrechargeTime in the last bank being accessed and ensuring all
PrechargeTimes are complete.

The behavior of the notMemCAS strobes during a refresh cycle is dependent on the programming
of the byte mode configuration field.

In bank mode the notMemCAS strobe is taken low at the beginning of the refresh time. The posi-
tion of the RAS falling edge (RASedge) and the time before notMemRAS and notMemCAS can
be taken high again (RefreshTime) are programmable. Each of these actions occurs in sequence
for each bank. A cycle is inserted between each bank in order to spread current peaks. If no DRAM
has been programmed for a bank then no transitions occur on the RAS or CAS strobes.

In byte mode all of the notMemCAS strobes in byte mode are taken low at the beginning of the
refresh time for bank0. The position of the RAS falling edge (RASedge) and the time before not-
MemRAS strobe can be taken high again (RefreshTime) are programmable. The notMemRAS
strobes for each of the banks is taken low in sequence. A cycle is inserted between each bank in

Reference clock

notMemCAS

notMemCAS

notMemCAS

CASTime

internal data
latch

internal data
latch

ST20-TP2

60/205



order to spread current peaks. If no DRAM has been programmed for a bank then no transitions
occur on the RAS or CAS strobes.

Note, no refreshes take place unless a DRAMinitialize command in the ConfigCommand register
(see section 9.3.1 on page 64) is performed.

Figure 9.4 Refresh

9.2.2 Wait

MemWait is provided so that external cycles can be extended to enable variable access times (for
example, shared memory access). MemWait is sampled on a rising clock edge before being
passed into the EMI. It is only effective when the EMI is in the RAS or CAS times and has the effect
of holding the RAS and CAS counter values for the duration of the cycles in which it was sampled
high. Any strobe transitions occurring on the sampling edge or the falling edge immediately after
will not be inhibited, but transitions on the rising and falling edges of the cycle after will not occur.
Figure 9.5 and Figure 9.6 show the extension of the external memory cycle and the delaying of
strobe transitions.

notMemCAS0

notMemRAS0

notMemCAS1

notMemRAS1

notMemCAS3

notMemRAS3

notMemCAS0-3

in bank mode

in bank mode

in bank mode

in byte mode

Start of
PrechargeTime0

Start of
PrechargeTime3

or
PrechargeTime0-3

in byte modeRefreshTime

RefreshRASedge

ST20-TP2

61/205



Figure 9.5 Strobe activity without MemWait

Figure 9.6 Strobe activity with MemWait

9.2.3 Support for MPEG application devices

Bank 2 of the EMI is nominally allocated as the peripheral bank. It is in this address range that the
on-chip peripheral registers appear when using device accesses to memory. Strobes in this bank
are provided to support access to the external MPEG audio and MPEG video application devices.

Four strobes are provided in bank 2. There are two MPEG decoder IC chip selects (notCS0-1) and
two decoder compressed data strobes (notCDSTRB0-1).

Note, the notMemRAS and notMemPS strobes are not provided in bank 2. The notMemCAS2
strobe is provided to support 32-bit wide DRAM banks in byte mode.

ProcClockOut

MemWait

Strobe1

Strobe2

Strobe3

ProcClockOut

MemWait
asserted

wait
cycle

MemWait

Strobe1

Strobe2

Strobe3

ST20-TP2

62/205



A single set of programmable timing and configuration parameters are provided for bank 2. The
timings are different however for the notCS0-1 strobes as one to four wait states are inserted after
the first clock cycle by an internal wait state generator. The number of wait states is programmed
by the values of the MemAddr14-15 bits during the access according to Table 9.5. The wait signal
from the internal wait state generator is ORed with the external MemWait pin so additional wait
states may be added to any external access in the bank2 address range. The wait states for the
notCS0-1 strobes may be removed by disabling the MemWait pin in the configuration register for
bank2.

The notCS0-1 and notCDSTRB0-1 strobes are active for different parts of the bank address range
as detailed in Table 9.6 below.

MemAddr15 MemAddr14 Wait states

0 0 1

0 1 2

1 0 3

1 1 4

Table 9.5 Wait states for notCS0-1 accesses

Address range Active strobe

#00000000 - #00000FFF - 1 wait state,

#00004000 - #00004FFF - 2 wait states,

#00008000 - #00008FFF - 3 wait states,

#0000C000 - #0000CFFF - 4 wait states

notCS0

#00001000 - #00001FFF - 1 wait state,

#00005000 - #00005FFF - 2 wait states,

#00009000 - #00009FFF - 3 wait states,

#0000D000 - #0000DFFF - 4 wait states

notCS1

#00002000 - #00002FFF - no wait states notCDSTRB0

#00003000 - #00003FFF - no wait states notCDSTRB1

Table 9.6 Strobe activity in bank 2

ST20-TP2

63/205



Figure 9.7 Compressed data write cycle - bank 2

Figure 9.8 Register read/write cycle - bank 2

9.3 EMI Configuration

The EMI configuration is held in memory-mapped registers. The function of the registers is to elim-
inate external decode and timing logic. Each EMI bank has several parameters which can be con-
figured. The parameters define the structure of the external address space and how it is allocated
to the four banks and the timing of the strobe edges for the four banks.

The EMI has four banks of four 32-bit configuration registers to set up the four EMI banks. In addi-
tion there is another register to set the pad drive strength. For safe configuration each of the four
banks must be configured in a single operation in cooperation with the EMI control logic. To enable
this, there is a bank of four temporary registers (ConfigDataField0-3) inside the EMI configuration
logic which can be filled with an entire bank before being transferred in a single operation to the
EMI. The data is only transferred when the EMI is able to receive it. This single operation is the
WriteConfig command in the ConfigCommand register. A typical configuration sequence is to

MemData0-7

E2Time
E1Time

notCDSTRB0-1

notCS0-1

ProcClockOut

MemAddr2-23

notMemRd

notCS0-1

notCDSTRB0-1

E1Time

CASTime + nWait

n = 1 to 4

E2Time + nWait

ST20-TP2

64/205



program each individual temporary register (ConfigDataField0-3) followed by a write to the Write-
Config address to transfer the data to the EMI.

The configuration logic contains six registers which are used to transfer data to and from the EMI
configuration registers, as listed in Table 9.7. The registers can be examined and set by the devlw
(device load word) and devsw (device store word) instructions. Note, they can not be accessed
using memory instructions. These registers may be accessed independently of EMI activity, unless
the configuration controller is processing a previous command, for example a WriteConfig .

The base address for the EMI configuration registers is given in the ST20-TP2 Memory Map and
Configuration Register chapters.

Note : The EMI configuration registers can not be accessed directly, they can only be accessed via
the temporary registers in the configuration logic.

9.3.1 ConfigCommand register

The ConfigCommand register is a write only register. When a write is performed to this register,
plus the associated data byte, various operations are performed as detailed in Table 9.8.

To avoid further EMI activity occurring between successive update requests, all parameters for a
bank must be changed in a single operation by performing a WriteConfig command.

The timing information for DRAM refresh is distributed amongst access timing information in the
ConfigDataField0-3 registers. DRAM is initialized by performing a DRAMinitialize command. The

Register Address Data byte Read/Write Command

ConfigCommand EMI base address + #10 #00 Write ReadConfig bank 0

#04 Write ReadConfig bank 1

#08 Write ReadConfig bank 2

#0C Write ReadConfig bank 3

#10 Write ReadConfig PadDriveReg

#20 Write DRAMinitialize

#40 Write WriteConfig bank 0

#44 Write WriteConfig bank 1

#48 Write WriteConfig bank 2

#4C Write WriteConfig bank 3

#50 Write WriteConfig PadDriveReg

#60 Write LockConfig

ConfigDataField0 EMI base address + #00 - Read/Write

ConfigDataField1 EMI base address + #04 - Read/Write

ConfigDataField2 EMI base address + #08 - Read/Write

ConfigDataField3 EMI base address + #0C - Read/Write

ConfigStatus EMI base address + #20 - Read

Table 9.7 EMI configuration register addresses

ST20-TP2

65/205



DRAMinitialize command also enables refreshes to take place. If no DRAMinitialize command is
performed no refreshes will take place.

Note, the DRAMinitialize command should only be written when there is DRAM in the system.

9.3.2 ConfigStatus register

The ConfigStatus register is a read only register and contains information on whether the
ConfigDataField0-3 registers have been write locked and shows which EMI banks have been writ-
ten.

9.3.3 ConfigDataField0-3 register s

The bit format and functionality of the ConfigDataField0-3 registers for transfers to/from each of
the register banks are described in the following sections.

The ConfigDataField0-3 registers are grouped, with one group of four registers containing all the
information necessary to program an external bank. The format of bits in the registers depends on
which EMI bank is being configured, see Figure 9.9.

ConfigCommand EMI base address + #10 Write only

Data byte Bit field Function

01000000 for bank 0
01000100 for bank 1
01001000 for bank 2
01001100 for bank 3
01010000 for PadDrive

WriteConfig Transfers the contents of the ConfigDataField0-3 into the specified
bank in the EMI configuration registers. All parameters for a specified
bank are changed in one atomic action, to avoid further EMI activity
occurring between successive update requests.

00000000 for bank 0
00000100 for bank 1
00001000 for bank 2
00001100 for bank 3
00010000 for PadDrive

ReadConfig Copies the contents of the specified bank in the EMI configur ation
registers into ConfigDataField0-3 .

00100000 DRAMinitialize Initialize any DRAM in the system.

01100000 LockConfig Disables the WriteConfig and DRAMinitialize commands and locks the
ConfigDataField0-3 to prevent further writes.

Table 9.8 ConfigCommand register

ConfigStatus EMI base address + #20 Read only

Bit Bit field Function

0 WrittenBank0 Bank 0 has been configured by the WriteConfig command.

1 WrittenBank1 Bank 1 has been configured by the WriteConfig command.

2 WrittenBank2 Bank 2 has been configured by the WriteConfig command.

3 WrittenBank3 Bank 3 has been configured by the WriteConfig command.

4 WrittenPadDriveReg The PadDrive register has been written by the WriteConfig command.

5 WriteLock ConfigDataField0-3 registers are write locked.

31:5 Reserved

Table 9.9 ConfigStatus register

ST20-TP2

66/205



Figure 9.9 ConfigDataField0-3 registers

w
rit

e

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31C
on

fig
D

at
aF

ie
ld

0
-

ba
nk

0,
1

an
d

3
(t

hi
s

re
gi

st
er

is
R

E
S

E
R

V
E

D
fo

rt
ra

ns
fe

r
to

/fr
om

ba
nk

2)

B
E

e1
B

E
e1

LS
B

D
D 0

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31C
on

fig
D

at
aF

ie
ld

2

B
E

e2
B

E
e2

LS
B

D
D 1

P
S

e1
P

S
e1

LS
B

P
S

e2
P

S
e2

LS
B

R
A

S
ed

ge
T

im
e

R
A

S
e

1L
S

B
R

A
S

e1
R

A
S

e
2L

S
B

R
A

S
e2

R
A

S
ed

ge
C

A
S

e1
C

A
S

e
1L

S
B

C
A

S
e

2L
S

B
C

A
S

e2

P
ag

e
R

A
S

bi
ts

31
:2

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31C
on

fig
D

at
aF

ie
ld

3

B
E

e1
tim

eM
S

B
B

E
e2

tim
eM

S
B

P
S

e1
tim

eM
S

B
P

S
e2

tim
eM

S
B

R
A

S
e1

tim
eM

S
B

R
A

S
e2

tim
eM

S
B

C
A

S
e1

tim
eM

S
B

C
A

S
e2

tim
eM

S
B

C
on

fig
D

at
aF

ie
ld

1

P
or

t0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31

S
hi

ftA
m

ou
nt

R
A

S
t=

0
P

re
ch

ar
ge

T
im

e
D

R
A

M
3:

0
R

A
S

tim
e

B
us

R
el

ea
se

T
im

e
C

A
S

tim
e

S
iz

e
P

T =
0

W
ai

t
en

R
ef

r
T

0

P
or

t
S

hi
ftA

m
ou

nt
P

re
ch

ar
ge

T
im

e
R

ef
re

sh
R

A
S

ed
ge

T
im

e
R

A
S

tim
e

B
us

R
el

ea
se

T
im

e
C

A
S

tim
e

S
iz

e
R

ef
r

T
1

P
or

t
P

re
ch

ar
ge

T
im

e
R

ef
re

sh
In

te
rv

al
5:

0
B

us
R

el
ea

se
T

im
e

C
A

S
tim

e
S

iz
e

R
ef

r
T

2

P
or

t
S

hi
ftA

m
ou

nt
P

re
ch

ar
ge

T
im

e
R

ef
re

sh
In

te
rv

al
11

:6
R

A
S

tim
e

B
us

R
el

ea
se

T
im

e
C

A
S

tim
e

S
iz

e
R

ef
r

T
3

B
R

M
ax

0

ba
nk

0

ba
nk

1

ba
nk

2

ba
nk

3

M
od

e

ac
tiv

e
ac

tiv
e

ac
tiv

e
ac

tiv
e

ac
tiv

e
ac

tiv
e

ac
tiv

e
ac

tiv
e

R
A

S
t=

0
P

T =
0

W
ai

t
en W
ai

t
en

B
R

M
ax

1
R

A
S

t=
0

P
T =
0

W
ai

t
en

ac
tiv

e

B
E

e1
tim

eM
S

B
B

E
e2

tim
eM

S
B

P
S

e1
tim

eM
S

B
P

S
e2

tim
eM

S
B

R
A

S
e1

tim
eM

S
B

R
A

S
e2

tim
eM

S
B

C
A

S
e1

tim
eM

S
B

C
A

S
e2

tim
eM

S
B

ba
nk

0,
1

an
d

3

ba
nk

2

B
E

e1
B

E
e1

LS
B

D
D 0

B
E

e2
B

E
e2

LS
B

D
D 1

P
S

e1
P

S
e1

LS
B

P
S

e2
P

S
e2

LS
B

R
A

S
ed

ge
T

im
e

R
A

S
e

1L
S

B
R

A
S

e1
R

A
S

e
2L

S
B

R
A

S
e2

R
A

S
ed

ge
C

A
S

e1
C

A
S

e
1L

S
B

C
A

S
e

2L
S

B
C

A
S

e2
ac

tiv
e

ac
tiv

e
ac

tiv
e

ac
tiv

e
ac

tiv
e

ac
tiv

e
ac

tiv
e

ac
tiv

e
ac

tiv
e

ba
nk

0,
1

an
d

3

ba
nk

2

B
yt

e
M

od
e

B
yt

e
M

od
e

1

ST20-TP2

67/205



9.3.4 Format of the data registers for transfers to/from register bank 0

This section gives the format of the ConfigDataField0-3 registers for transfers to/from register
bank 0.

ConfigDataField0 format for transfers to/from register bank 0

The ConfigDataField0 register is a 32 bit register which can be set to read only via the Config-
Command register.

The RASbits31:2 field is a 30 bit address mask which defines which address bits are compared to
determine whether a page hit has occurred. Generally it will be loaded with a field of 1’s padded out
by 0’s.

For example, if bank 0 contained 4 Mbyte DRAM, organized as four 4 Mbit x 8 devices for a 32-bit
wide interface, there would be 1 MWords of DRAM, with 1024 pages each containing 1024 words.
It is necessary for RASbits31:30 to be set to ‘11’ to enable bank switches to be detected. The
RASbits field for bank 0 would be:

RASbits31:2 111111111111111111110000000000

For example, for a 16-bit wide interface, the RASbits field for bank 0 would be:

RASbits31:2 111111111111111111111000000000

ConfigDataField1 format for transfers to/from register bank 0

The ConfigDataField1 register is a 32-bit register which can be set to read only via the Config-
Command register.

ConfigDataField0 EMI base address + #00 Read/Write

Bit Bit field Function

1 PageMode Page mode valid

31:2 RASbits31:2 Defines the RAS bits in the address which should be compared to the last access to
the same bank to determine whether a page hit has occurred.

0 Reserved

Table 9.10 ConfigDataField0 format for transfers to/from register bank 0

ST20-TP2

68/205



ConfigDataField2 format for transfers to/from register bank 0

The ConfigDataField2 register is a 32-bit register which can be set to read only via the Config-
Command register.

Each of the strobes (notMemRAS , notMemCAS , notMemPS , notMemBE) edges may be config-
ured to be active during reads and/or writes, or to be inactive, using the coding in Table 9.12.

ConfigDataField1 EMI base address + #04 Read/Write

Bit Bit field Function Units

1:0 PortSize Bit width of the bank (8,16, or 32-bits).

PortSize1:0 Bank width
00 Invalid
01 32-bits
10 16-bits
11 8-bits

6:2 ShiftAmount Defines how many bits to shift the bank address in order to convert it
to a row address for multiplexed-addressed memory during
RAStime. It is irrelevant at all other times.

8 MemWaitEnable Enables the MemWait pin.

9 RAStimeEqZero No RAS cycle will occur. The bank is considered to be an SRAM
bank.

10 PrechargeTimeEqZero No Precharge Time will occur.

11 RefreshTime0 Refresh time 0. The refresh time is a 4-bit value. RefreshTime bits
1, 2 and 3 are specified in ConfigDataField1 for transfers to/from
register banks 1, 2 and 3 respectively.

Cycles

15:12 PrechargeTime Duration of precharge time. Cycles

16 TP2Enable MUST WRITE 1.

21:18 DRAM3:0 Defines which banks require refresh.

23:22 RAStime Duration of RAS sub-cycle. Cycles

27:24 BusReleaseTime Duration of bus release time. Cycles

31:28 CAStime Duration of CAS sub-cycle. Cycles

17, 7 Reserved

Table 9.11 ConfigDataField1 format for transfers to/from register bank 0

Active bit settings Strobe activity

00 Inactive

01 Active during read only

10 Active during write only

11 Active during read and write

Table 9.12 Active bit settings

ST20-TP2

69/205



Note that the e1 and e2 times for the notMemBE and the notMemCAS strobes when in byte mode
must be not less than 2 phases.

ConfigDataField2 EMI base address + #08 Read/Write

Bit Bit field Function Units

1:0 BEe1active Cycle type in which falling (E1) edge of notMemBE is active.

2 BEe1LSB Specifies the phase when the f alling (E1) edge of notMemBE will occur.

3 DataDriveDelay0 This is a 2-bit value (DataDriveDelay1 is in bit 7). It is the drive delay of
the data bus, as follows:

DataDriveDelay1:0 Drive delay of data bus
00 0 phases
01 1 phase
10 2 phases
11 3 phases

Phases

5:4 BEe2active Cycle type in which notMemBE rising (E2) edge is active.

6 BEe2LSB Specifies the phase when the r ising (E2) edge of notMemBE will occur.

7 DataDriveDelay1 This is a 2-bit value (DataDriveDelay0 is in bit 3). It is the drive delay of
the data bus.

Phases

9:8 PSe1active Cycle type in which falling (E1) edge of notMemPS is active.

10 PSe1LSB Specifies the phase when the f alling (E1) edge of notMemPS will occur.

11 ByteModeEnable Set to 1 to enable byte mode on notMemCAS

13:12 PSe2active Cycle type in which rising (E2) edge of notMemPS is active.

14 PSe2LSB Specifies the phase when the r ising (E2) edge of notMemPS will occur.

17:15 RASedgeTime Delay from start of RAS sub-cycle to falling edge of RAS strobe. Phases

18 RASe1LSB Specifies the phase when the falling (E1) edge of notMemRAS will
occur.

20:19 RASe1active Cycle type in which falling (E1) edge of notMemRAS is active.

21 RASe2LSB Specifies the phase when the r ising (E2) edge of notMemRAS will
occur.

23:22 RASe2active Cycle type in which rising (E2) edge of notMemRAS is active.

25:24 RASedgeActive Cycle type in which an edge of notMemRAS is active.

27:26 CASe1active Cycle type in which falling (E1) edge of notMemCAS is active.

28 CASe1LSB Specifies the phase when the falling (E1) edge of notMemCAS will
occur.

29 CASe2LSB Specifies the phase when the r ising (E2) edge of notMemCAS will
occur.

31:30 CASe2active Cycle type in which rising (E2) edge of notMemCAS is active.

Table 9.13 ConfigDataField2 format for transfers to/from register bank 0

ST20-TP2

70/205



ConfigDataField3 format for transfers to/from register bank 0

The ConfigDataField3 register is a 32-bit register which can be set to read only via the Config-
Command register.

Note that the e1 and e2 times for the notMemBE and the notMemCAS strobes when in byte mode
must be not less than 2 phases.

ConfigDataField3 EMI base address + #0C Read/Write

Bit Bit field Function Units

3:0 BEe1timeMSB The number of complete cycles from CASTime start to notMemBE falling
(E1) edge.

Cycles

7:4 BEe2timeMSB The number of complete cycles from CASTime start to notMemBE rising
(E2) edge.

Cycles

11:8 PSe1timeMSB The number of complete cycles from CASTime start to notMemPS falling
(E1) edge.

Cycles

15:12 PSe2timeMSB The number of complete cycles from CASTime start to notMemPS rising
(E2) edge.

Cycles

19:16 RASe1timeMSB The number of complete cycles from CASTime start to notMemRAS
falling (E1) edge.

Cycles

23:20 RASe2timeMSB The number of complete cycles from CASTime start to notMemRAS
rising (E2) edge.

Cycles

27:24 CASe1timeMSB The number of complete cycles from CASTime start to notMemCAS
falling (E1) edge.

Cycles

31:28 CASe2timeMSB The number of complete cycles from CASTime start to notMemCAS
rising (E2) edge.

Cycles

Table 9.14 ConfigDataField3 format for transfers to/from register bank 0

ST20-TP2

71/205



9.3.5 Format of the data registers for transfers to/from register bank 1

This section gives the format of the ConfigDataField0-3 registers for transfers to/from register
bank 1.

ConfigDataField0/2/3 format for transfers to/from register bank 1

The ConfigDataField0 , ConfigDataField2 and ConfigDataField3 registers have the same format
for transfers to/from register bank 1 as those given for transfers to/from register bank 0, see
Table 9.10, Table 9.13 and Table 9.14 in section 9.3.4.

ConfigDataField1 format for transfers to/from register bank 1

This register contains refresh information.

9.3.6 Format of the data registers for transfers to/from register bank 2

This section gives the format of the ConfigDataField0-3 registers for transfers to/from register
bank 2.

The ConfigDataField0 register is RESERVED for transfers to/from register bank 2.

ConfigDataField1 EMI base address + #04 Read/Write

Bit Bit field Function Units

1:0 PortSize Bit width of the bank (8, 16, or 32 bits).

PortSize1:0 Bank width
00 Invalid
01 32 bits
10 16 bits
11 8 bits

6:2 ShiftAmount Defines how many bits to shift the bank address in order to convert
it to a row address for multiplexed-addressed memory during
RAStime. It is irrelevant at all other times.

8 MemWaitEnable Enables the MemWait pin.

9 RAStimeEqZero No RAS cycle will occur. The bank is considered to be an SRAM
bank.

10 PrechargeTimeEqZero No Precharge Time will occur.

11 RefreshTime1 Refresh time 1. The refresh time is a 4-bit value. RefreshTime bits
0, 2 and 3 are specified in ConfigDataField1 for transfers to/from
register banks 0, 2 and 3 respectively.

Cycles

15:12 PrechargeTime Duration of precharge time. Cycles

21:17 RefreshRASedgeTime Refresh RAS falling edge. Phases

23:22 RAStime Duration of RAS sub-cycle. Cycles

27:24 BusReleaseTime Duration of bus release time. Cycles

31:28 CAStime Duration of CAS sub-cycle. Cycles

16, 7 Reserved

Table 9.15 ConfigDataField1 format for transfers to/from register bank 1

ST20-TP2

72/205



ConfigDataField1 format for transfers to/from register bank 2

This register contains refresh information.

The 12-bit refresh interval is spread across two register fields, see Table 9.19.

ConfigDataField1 EMI base address + #04 Read/Write

Bit Bit field Function Units

1:0 PortSize Bit width of the bank (8, 16 or 32 bits).

PortSize1:0 Bank width
00 Invalid
01 32 bits
10 16 bits
11 8 bits

7 BusRelMax0 This is a 2-bit value (BusRelMax1 is bit 7 of ConfigDataField1 for
bank 3, refer to Table 9.19) which encodes a pointer to the EMI
bank with the greatest BusRelease time. This BusRelease time will
be inserted when the EMI is coming out of a DMA transaction. The
encodings are as follows:

BusRelMax1:0 Greatest BusRelease time
00 Bank 0
01 Bank 1
10 Bank 2
11 Bank 3

8 MemWaitEnable Enables the MemWait pin.

11 RefreshTime2 Refresh time 2. The refresh time is a 4-bit value. RefreshTime bits
0, 1 and 3 are specified in ConfigDataField1 for transfers to/from
register banks 0, 1 and 3 respectively.

Cycles

21:16 RefreshInterval5:0 This is a 12-bit value (RefreshInterval11:6 is bits 21:16 of
ConfigDataField1 for bank 3, refer to Table 9.19) which defines the
DRAM refresh interval between successive refreshes.

Cycles

27:24 BusReleaseTime Duration of bus release time. Cycles

31:28 CAStime Duration of CAS sub-cycle. Cycles

6:2,
10:9,
15:12,
23:22

Reserved

Table 9.16 ConfigDataField1 format for transfers to/from register bank 2

ST20-TP2

73/205



ConfigDataField2 format for transfers to/from register bank 2

Note that the e1 and e2 times for the notMemBE and the notMemCAS strobes when in byte mode
must be not less than 2 phases.

ConfigDataField2 EMI base address + #08 Read/Write

Bit Bit field Function Units

1:0 BEe1active Cycle type in which falling (E1) edge of notMemBE is active.

2 BEe1LSB Specifies the phase when the falling (E1) edge of notMemBE will occur.

3 DataDriveDelay0 This is a 2-bit value (DataDriveDelay1 is in bit 7). It is the drive delay of
the data bus, as follows:

DataDriveDelay1:0 Drive delay of data bus
00 0 phases
01 1 phase
10 2 phases
11 3 phases

Phases

5:4 BEe2active Cycle type in which notMemBE rising (E2) edge is active.

6 BEe2LSB Specifies the phase when the r ising (E2) edge of notMemBE will occur.

7 DataDriveDelay1 This is a 2-bit value (DataDriveDelay0 is in bit 3). It is the drive delay of
the data bus.

Phases

11 ByteModeEnable Set to 1 to enable byte mode on notMemCAS

27:26 CASe1active Cycle type in which falling (E1) edge of notMemCAS is active.

28 CASe1LSB Specifies the phase when the falling (E1) edge of notMemCAS will occur.

29 CASe2LSB Specifies the phase when the r ising (E2) edge of notMemCAS will occur.

31:30 CASe2active Cycle type in which rising (E2) edge of notMemCAS is active.

10:8,
25:12

Reserved

Table 9.17 ConfigDataField2 format for transfers to/from register bank 2

ST20-TP2

74/205



ConfigDataField3 format for transfers to/from register bank 2

9.3.7 Format of the data registers for transfers to/from register bank 3

This section gives the format of the ConfigDataField0-3 registers for transfers to/from register
bank 3.

ConfigDataField0/2/3 format for transfers to/from register bank 3

The ConfigDataField0 , ConfigDataField2 and ConfigDataField3 registers have the same format
for transfers to and from register bank 3 as those given for transfers to and from register bank 0,
see Table 9.10, Table 9.13 and Table 9.14 in section 9.3.4.

ConfigDataField3 EMI base address + #0C Read/Write

Bit Bit field Function Units

3:0 BEe1timeMSB The number of complete cycles from CASTime start to notMemBE falling
(E1) edge.

Cycles

7:4 BEe2timeMSB The number of complete cycles from CASTime start to notMemBE rising
(E2) edge.

Cycles

27:24 CASe1timeMSB The number of complete cycles from CASTime start to notMemCAS
falling (E1) edge.

Cycles

31:28 CASe2timeMSB The number of complete cycles from CASTime start to notMemCAS
rising (E2) edge.

Cycles

23:8 Reserved

Table 9.18 ConfigDataField3 format for transfers to/from register bank 2

ST20-TP2

75/205



ConfigDataField1 format for transfers to/from register bank 3

This register contains refresh information. The 12-bit refresh interval value is spread across two
register fields.

ConfigDataField1 EMI base address + #04 Read/Write

Bit Bit field Function Units

1:0 PortSize Bit width of the bank (8,16, or 32-bits).

PortSize1:0 Bank width
00 Invalid
01 32-bits
10 16-bits
11 8-bits

6:2 ShiftAmount Defines how many bits to shift the bank address in order to convert
it to a row address for multiplexed-addressed memory during
RAStime. It is irrelevant at all other times.

7 BusRelMax1 This is a 2-bit value (BusRelMax0 is bit 7 of ConfigDataField1 for
bank 2, refer to Table 9.16) which encodes a pointer to the EMI
bank with the greatest BusRelease time. This BusRelease time will
be inserted when the EMI is coming out of a DMA transaction. The
encodings are as follows:

BusRelMax1:0 Greatest BusRelease time
00 Bank 0
01 Bank 1
10 Bank 2
11 Bank 3

8 MemWaitEnable Enables the MemWait pin.

9 RAStimeEqZero No RAS cycle will occur. The bank is considered to be an SRAM
bank.

10 PrechargeTimeEqZero No Precharge Time will occur.

11 RefreshTime3 Refresh time 3. The refresh time is a 4-bit value. RefreshTime bits
0, 1 and 2 are specified in ConfigDataField1 for transfers to/from
register banks 0, 1 and 2 respectively.

Cycles

15:12 PrechargeTime Duration of precharge time. Cycles

21:16 RefreshInterval11:6 This is a 12-bit value (RefreshInterval5:0 is bits 21:16 of
ConfigDataField1 for bank 2, refer to Table 9.16) which defines the
DRAM refresh interval between successive refreshes.

Cycles

23:22 RAStime Duration of RAS sub-cycle. Cycles

27:24 BusReleaseTime Duration of bus release time. Cycles

31:28 CAStime Duration of CAS sub-cycle. Cycles

Table 9.19 ConfigDataField1 format for transfers to/from register bank 3

ST20-TP2

76/205



9.3.8 Format of the data registers for transfers to/from PadDrive register

This final group of registers consists of just one register. The ConfigDataField0-2 registers are
reserved. The ConfigDataField3 register is used for the pad drive strength register.

This register sets the drive strength of the EMI pads. Once locked the strength is static. Each of the
address, data and strobe pads has four possible drive strengths which may be configured as given
in Table 9.20.

The PadDrive register has fields which apply to groups of pads so that the edge rates may be
tuned to reduce electrical noise or optimize speed. Also the ProcClockOut pin can be disabled in
order to reduce power, this is the default on reset.

Drive bit settings Drive strength level Drive strength

00 level 0 Weakest

01 level 1 ↓

10 level 2 ↓

11 level 3 Strongest

Table 9.20 Drive bit settings

ConfigDataField3 EMI base address + #0C Read/Write

Bit Bit field Function

1:0 RCP0 Drive strength of pads notMemRAS0 , notMemCAS0 , notMemPS0

3:2 RCP1 Drive strength of pads notMemRAS1 , notMemCAS1 , notMemPS1

5:4 RCP2 Drive strength of pads notMemCAS2 , notCS0 , notCS1 , notCDSTRB0 ,
notCDSTRB1

7:6 RCP3 Drive strength of pads notMemRAS3 , notMemCAS3 , notMemPS3

9:8 BE1 Drive strength of pads notMemBE1

11:10 BE2 Drive strength of pads notMemBE2

13:12 A2-8 Drive strength of pads MemAddr2-8 , notMemBE0 , notMemBE3

15:14 A9-12 Drive strength of pads MemAddr9-12

17:16 A13-16 Drive strength of pads MemAddr13-16

19:18 A17-20 Drive strength of pads MemAddr17-20

21:20 A21-23 Drive strength of pads MemAddr21-23

25:24 D0-7 Drive strength of pads MemData0-7

27:26 D8-15 Drive strength of pads MemData8-15

29:28 D16-31 Drive strength of pads MemData16-31

31 ProcClockEnable When 1, ProcClockOut pin enabled. When 0 (default state on reset), the
ProcClockOut pin is disabled, thus reducing power.

23:22,
30

Reserved

Table 9.21 ConfigDataField3 format for transfers to/from PadDrive register

ST20-TP2

77/205



9.4 EMI initialization

9.4.1 Reset

When the EMI is reset, the configuration register file loads a default set of parameters suitable for
running boot code from a slow external ROM placed in bank 3 (at the top of memory). The refresh
interval is reset to zero and no refresh requests are generated until this parameter is changed and
the DRAMinitialize command is issued to the configuration logic.

The WriteLock bit in the ConfigStatus register is cleared to enable new parameters to be config-
ured by software.

9.4.2 Bootstrap

When external reset is removed, the ST20-TP2 will start to execute bootstrap code from the area of
memory determined by the setting of the BootSource0-1 pins (see Table 9.4 on page 57).

If the ST20-TP2 is set to boot from a link, the bootstrap must execute from internal memory until
the EMI has been configured. If this is not possib le, the EMI must be completely configured using
poke operations (see section 10.2.3 on page 80) down the link before loading the bootstrap into
external memory and executing it.

9.4.3 Initializing DRAM banks

The timing information for DRAM refresh is spread over the configuration registers
(ConfigDataField0-3). DRAM initialization is performed by an explicit command (DRAMinitialize
command in the ConfigCommand register) once the configuration is loaded. This command
causes 8 consecutive refresh transactions to occur.

Default configuration

The default configuration is loaded into all four banks on reset. The parameters shown in
Table 9.23 are also set in the configuration registers.

Table 9.22 Timing of default access

MemAddr2-23

notMemCAS3

MemData

12 cycles

1 cycle 11 cycles

ST20-TP2

78/205



Parameter Default value

RASbits31:2 #0 (all banks)

PageMode Cleared (all banks)

PortSize Value on BootSource0-1 pin

ShiftAmount 0 (all banks)

BusReleaseMax1:0 3

MemWaitEnable Set (all banks)

RAStimeEqZero Set (all banks)

PrechargeTimeEqZero Set (all banks)

RefreshTime0,1,2,3 Cleared

PrechargeTime 0 (all banks)

DRAM3:0 All cleared

RefreshRASedgeTime 0

RefreshInterval 0

RAStime 0 (all banks)

BusReleaseTime 3 cycles (all banks)

CAStime 12 cycles (all banks)

RAS, BE strobes Inactive (all banks)

CAS, PS e1 and e2 active Only on reads (all banks)

CASe1 time 2 phases

CASe2 time 24 phases

PSe1 time 0 phases

PSe2 time 24 phases

DataDriveDelay1:0 2 phases (all banks)

PadDriveStrength All 0, weakest drive strength

ProcClockEnable ProcClockOut pin enabled

ByteModeEnable Byte mode disabled

Table 9.23 Default parameters

ST20-TP2

79/205



10 System services
The system services module includes all the necessary logic to initialize and sustain operation of
the device and also includes error handling and analysis facilities.

10.1 Reset and Analyse

The ST20-TP2 has 3 pins to support reset and analyse: notRST, CPUReset and CPUAnalyse .

10.1.1 Power-on-Reset

notRST provides a “hard” reset function and must be asserted (low) before the clocks and power
are stable, but should only be de-asserted (high) after the clocks and power are stable to guaran-
tee well-defined behavior.

When notRST is asserted (regardless of any other inputs), all modules are asynchronously forced
into their power-on reset state.

When notRST is de-asserted the CPU enters its boot sequence which can either be in off-chip
ROM or can be received down a link (see section 10.2 on bootstrap). The rising edge of notRST is
internally synchronized and delayed until the clocks are stable before this sequence starts.

Note : notTRST (TAP Reset) must have been asserted before notRST is de-asserted.

10.1.2 Soft Reset

During the power-on reset, the entire chip is affected, including the Clock Control Logic, which
takes a long time to reset. An alternative, “soft” reset is provided which does not affect the clocks,
and takes a lot less time. This form of reset must only be used when the system is up and running,
i.e. not on power-up.

Soft reset is invoked by taking CPUReset high when CPUAnalyse is low, provided notRST is de-
asserted.

10.1.3 Analyse

If CPUAnalyse is taken high when the ST20-TP2 is running, the ST20-TP2 will halt at the next
descheduling point. CPUReset may then be asserted. When CPUReset comes low again the
ST20-TP2 will be in its reset state, but the previous memory configuration and several status flags
and register values will be maintained, permitting analysis of the halted machine.

An input OS-link will continue with outstanding transfers. An output OS-link will not make another
access to memory for data but will transmit only those bytes already in the link buffer. Providing
there is no delay in link acknowledgement, the link will be inactive within a few microseconds of the
ST20-TP2 halting.

If CPUAnalyse is taken low without CPUReset going high the processor state and operation are
undefined.

10.1.4 Errors

Software errors, such as arithmetic overflow or array bounds violation, can cause an error flag to be
set. This flag is directly connected to the ErrorOut pin. The ST20-TP2 can be set to ignore the
error flag in order to optimize the performance of a proven program. If error checks are removed

ST20-TP2

80/205



any unexpected error then occurring will have an arbitrary undefined effect. The ST20-TP2 can
alternatively be set to halt-on-error to prevent further corruption and allow postmortem debugging.
The ST20-TP2 also supports user defined trap handlers, see Section 3.6 on page 19 for details.

If a high priority process preempts a low priority one, status of the Error and HaltOnError flags is
saved for the duration of the high priority process and restored at the conclusion of it. Status of both
flags is transmitted to the high priority process. Either flag can be altered in the process without
upsetting the error status of any complex operation being carried out by the preempted low priority
process.

In the event of a processor halting because of HaltOnError , the links will finish outstanding trans-
fers before shutting down. If CPUAnalyse is asserted then all inputs continue but outputs will not
make another access to memory for data. Memory refresh will continue to take place.

10.2 Bootstrap

The ST20-TP2 can be bootstrapped from external ROM, internal ROM or from a link. This is deter-
mined by the setting of the BootSource0-1 pins, see Table 9.4 on page 57. If both BootSource0-1
pins are held low it will boot from a link. If either or both pins are held high, it will boot from ROM.
This is sampled once only by the ST20-TP2, before the first instruction is executed after reset.

10.2.1 Booting from ROM

When booting from ROM, the ST20-TP2 starts to execute code from the top two bytes in external
memory, at address #7FFFFFFE which should contain a backward jump to a program in ROM.

10.2.2 Booting from link

When booting from a link, the ST20-TP2 will wait for the first bootstrap message to arrive on the
link. The first byte received down the link is the control byte. If the control byte is greater than 1 (i.e.
2 to 255), it is taken as the length in bytes of the boot code to be loaded down the link. The bytes
following the control byte are then placed in internal memory starting at location MemStart . Follow-
ing reception of the last byte the ST20-TP2 will start executing code at MemStart . The memory
space immediately above the loaded code is used as work space. A byte arriving on the bootstrap-
ping link after the last bootstrap byte, is retained and no acknowledge is sent until a process inputs
from the link.

10.2.3 Peek and poke

Any location in internal or external memory can be interrogated and altered when the ST20-TP2 is
waiting for a bootstrap from link.

When booting from link, if the first byte (the control byte) received down the link is greater than 1, it
is taken as the length in bytes of the boot code to be loaded down the link.

If the control byte is 0 then eight more bytes are expected on the link. The first four byte word is
taken as an internal or external memory address at which to poke (write) the second four byte
word.

If the control byte is 1 the next four bytes are used as the address from which to peek (read) a word
of data; the word is sent down the output channel of the link.

ST20-TP2

81/205



Figure 10.1 Peek, poke and bootstrap

Note, peeks and pokes in the address range #20000000 to #3FFFFFFF access the internal periph-
eral device registers. Therefore they can be used to configure the EMI before booting. Note that
addresses that overlap the internal peripheral addresses (#20000000 to 3FFFFFFF) can not be
accessed via the link.

Following a peek or poke, the ST20-TP2 returns to its previously held state. Any number of
accesses may be made in this way until the control byte is greater than 1, when the ST20-TP2 will
commence reading its bootstrap program.

1 n

where n is 2 to 255

Control byte

Poke 0 address data

Peek 1 address

reply data

Bootstrap n bootstrap

ST20-TP2

82/205



11 Test access port
The ST20-TP2 Test Access Port (TAP) conforms to IEEE standard 1149.1.

The TAP consists of five pins: TMS, TCK, TDI, TDO and notTRST. TDO can be overdriven to the
power rails, and TCK can be stopped in either logic state.

The instruction register is 5 bits long, with no parity, and the pattern “00001” is loaded into the reg-
ister during the Capture-IR state.

There are four defined pub lic instructions, see Table 11.1. All other instruction codes are reserved.

There are three test data registers; Bypass , Boundary-Scan and Identification . These registers
operate according to 1149.1. The Boundary-Scan register is not supported on the ST20-TP2.The
operation of the Boundary-Scan register is defined in the BSDL descr iption.

11.1 Boundary scan description

This is defined for the device in a standard BSDL file. This file can be obtained through your local
SGS-THOMSON distributor or sales office.

a. MSB ... LSB; LSB closest to TDO.

Instruction code a Instruction Selected register

0 0 0 0 0 EXTEST Boundary-Scan

0 0 0 1 0 IDCODE Identification

0 0 0 1 1 SAMPLE/PRELOAD Boundary-Scan

1 1 1 1 1 BYPASS Bypass

Table 11.1 Instruction codes

ST20-TP2

83/205



12 Clocks and low power controller

12.1 Clocks

An on-chip phase locked loop (PLL) generates all the internal high frequency clocks. The PLL is
used to generate the internal clock frequencies needed for the CPU and the Link. Alternatively a
direct clock input can provide the system clocks.

The internal clock may be turned off (including the PLL) enabling power down mode.

The single clock input (ClockIn) must be 27 MHz for PLL operation.

The ST20-TP2 can be set to operate in TimesOneMode , which is when the PLL is bypassed. Dur-
ing TimesOneMode the input clock must be in the range 0 to 40 MHz and should be nominally 50/
50 mark space ratio.

12.1.1 Processor speed select

The speed of the internal processor clock is variable in discrete steps. The clock rate at which the
ST20-TP2 runs is determined by the logic levels applied on the two speed select lines
SpeedSelect0-1 as detailed in Table 12.1. The frequency of ClockIn (fclk) for the speeds given in
the table is 27 MHz.

Note: Inclusion of a speed selection in this table does not imply availability.

†Clock duty cycle is 40:60.

12.2 Low power control

The ST20-TP2 is designed for 0.5 micron, 3.3V CMOS technology and runs at speeds of up to 40
MHz. 3.3V operation provides reduced power consumption internally and allows the use of low
power peripherals. In addition, to further enhance the potential for battery operation, a low power
power-down mode is available.

The different power levels of the ST20-TP2 are listed below.

• Operating power - power consumed during functional operation.

• Standby power - power consumed during little or no activity. The CPU is idle but ready to
immediately respond to an interrupt/reschedule.

• Power-down - internal clocks are stopped and power consumption is significantly reduced.

Speed
Select1:0

Processor
clock speed

MHz

Processor
cycle time ns

Phase lock loop
factor (PLLx)

High
priority
timer
MHz

Low priority
timer

MHz

Link speed
Mbits/s

00 TimesOneMode

01 33.3 30.03 1.23 1.040 0.01625 19.98

10 39.96† 25.02 1.48 0.999 0.01561 19.98

11 49.95 20.02 1.85 1.040 0.01625 19.98

Table 12.1 Processor speed selection

ST20-TP2

84/205



Functional operation is stalled. Normal functional operation can be resumed from previous
state as soon as the clocks are stable. All internal logic is static so no information is lost
during power down.

• Power to most of the chip removed - only the real time clock supply (RTCVDD) power on.

12.2.1 Power-down mode

The ST20-TP2 enters power-down when:

• the low power alarm is programmed and started providing there are no pending interrupts,
or no active links with LPDisableLink register set to 0 (see Table 12.9).

The ST20-TP2 exits power-down when:

• an unmasked interrupt becomes pending

• the low power alarm counter reaches zero.

In power-down mode the processor and all peripherals are stopped, including the external memory
controller and optionally the PLL. Effectively the internal clock is stopped and functional operation
is stalled. On reset the clock is restarted and the chip resumes normal functional operation.

12.2.2 Low power mode

Low power mode can be achieved in one of two ways, as listed below.

• Availability of direct clock input - this allows external control of clocking directly and thus
direct control of power consumption.

• Global system clock may be stopped - in this case the external clock remains running. This
mechanism allows the PLL to be kept running (if desired) so that wake up from low power
mode will be fast.

Wake-up from low power mode can be from: specific external pin activity (link input or Interrupt pin);
or the low power timer alarm.

The low power timer and alarm are provided to control the duration for which the global clock gen-
eration is stopped during low power mode. The timer and alarm registers can be set by the device
store instructions and read by the device load instructions.

Low power timer

The timer keeps track of real time, even when the internal clocks are stopped. The timer is a 64-bit
counter which runs off an external clock (LPClockIn). This clock rate must not be more than one
eighth of the system clock rate.

The real time clock is powered from a separate Vdd (RTCVDD) allowing it to be maintained at min-
imal power consumption.

Low power alarm

There is also a 40 bit counter which can be used as a low power alarm or as a watchdog timer, this
is determined by the setting of the WdEnable register, see Table 12.11.

Alarm

A write to the LPAlarmStart register starts the low power alarm counter and the ST20-TP2 enters
low power mode. When the counter has counted down to zero, assuming no other valid wake-up

ST20-TP2

85/205



sources occur first, the ST20-TP2 exits low power mode and the global clocks are turned back on.
Whilst the clocks are turned off the LowPowerStatus pin is high, otherwise it is low.

Watchdog timer

The low power alarm counter is set to operate as a watchdog timer by setting the WdEnable regis-
ter to 1. This disables entering low power mode when starting the timer.

The low power alarm is programmed and started as normal. When the low power alarm counts
down to the value #1, the notWdReset pin is asserted low for 1 low power clock cycle.

12.3 Low power configuration register s

The low power controller is allocated a 4k block of memory in the internal peripheral address
space, which is shared with the interrupt controller so that the low power controller and the interrupt
controller base address are the same. Information on low power mode is stored in registers as
detailed in the following section. The registers can be examined and set by the devlw (device load
word) and devsw (device store word) instructions, see Table 6.19 on page 44. Note, they can not
be accessed using memory instructions.

LPTimerLS and LPTimerMS

The LPTimerLS and LPTimerMS registers are the least significant word and most significant word
of the LPTimer register. This enables the least significant or most significant w ord to be written
independently without affecting the other word.

When this register is written, the low power timer is stopped and the new value is available to be
written to the low power timer.

LPTimerLS LPC base address + #400 Read/Write

Bit Bit field Function

31:0 LPTimerLS Least significant w ord of the low power timer.

Table 12.2 LPTimerLS register format

LPTimerMS LPC base address + #404 Read/Write

Bit Bit field Function

31:0 LPTimerMS Most significant word of the low power timer.

Table 12.3 LPTimerMS register format

ST20-TP2

86/205



LPTimerStart

A write of any value to the LPTimerStart register starts the low power timer counter. The counter is
stopped and the LPTimerStart register reset if either counter word (LPTimerLS and LPTimerMS)
is written.

Note, setting the LPTimerStart register to zero does not stop the timer.

LPAlarmLS and LPAlarmMS

The LPAlarmLS and LPAlarmMS registers are the least significant word and most significant word
of the LPAlarm register. This is used to program the alarm register.

LPAlarmStart

A write to the LPAlarmStart register starts the low power alarm counter. The counter is stopped
and the LPStart register reset if either counter word (LPTimerLS and LPTimerMS) is written.

LPTimerStart LPC base address + #408 Write

Bit Bit field Function

0 LPTimerStart A write to this bit starts the low power timer counter.

Table 12.4 LPTimerStart register format

LPAlarmLS LPC base address + #410 Read/Write

Bit Bit field Function

31:0 LPAlarmLS Least significant w ord of the low power alarm.

Table 12.5 LPAlarmLS register format

LPAlarmMS LPC base address + #414 Read/Write

Bit Bit field Function

7:0 LPAlarmMS Most significant word of the low power alarm.

Table 12.6 LPAlarmMS register format

LPAlarmStart LPC base address + #418 Write

Bit Bit field Function

0 LPAlarmStart A write to this bit starts the low power alarm counter.

Table 12.7 LPAlarmStart register format

ST20-TP2

87/205



LPSysPll

The LPSysPll register controls the System Clock PLL operation when low power mode is entered.

LPDisableLink

Disables the links as a wake up source from low power mode. The default (reset) state is that the
links are enabled to act as a wake up source from low power mode.

SysRatio

The SysRatio register is a read only register and gives the speed at which the system PLL is running.
It contains the relevant PLL multiply ratio when using a PLL, or contains the value ‘1’ when in
TimesOneMode for that PLL.

LPSysPll LPC base address + #420 Read/Write

Bit Bit field Function

1:0 LPSysPll Determines the system clock PLL when low power mode is entered, as follows:

LPSysPll1:0 System clock
00 PLL off
01 PLL reference on and power on
10 PLL reference on and power on
11 PLL on

Table 12.8 LPSysPll register format

LPDisableLink LPC base address + #428 Read/Write

Bit Bit field Function

0 LPDisableLink Determines whether the links can be used as a wake up source from low power
mode.

0 Links enabled to act as wake up source
1 Links disabled to act as wake up source

Table 12.9 LPDisableLink register format

SysRatio LPC base address + #500 Read

Bit Bit field Function

5:0 SysRatio PLL speed, as follows:

SysRatio PLL
1 x1 TimesOneMode
4 x1.23 33.3 MHz
5 x1.48 40 MHz
6 x1.85 50 MHz

Table 12.10 SysRatio register format

ST20-TP2

88/205



WdEnable

Setting the WdEnable register enables the low power alarm counter to be used as a watchdog
timer.

12.4 Clocking

The low power timer and alarm must be clocked at all times by the watch crystal, as in Figure 12.1.

Figure 12.1 Watch crystal clocking source

WdEnable LPC base address + #510 Read/Write

Bit Bit field Function

0 WdEnable Determines whether the low power alarm is set to operate as an alarm or as a
watchdog timer.

0 alarm
1 watchdog

Table 12.11 WdEnable register format

internal low power clock

watch crystal

LPClockOscLPClockIn

(32768 Hz)
GNDGND

22 pF10 pF

330 KΩ

AB

A - this node should have very low capacitance < 10 pF.
B - this node must have zero dc load.

ST20-TP2

89/205



13 Asynchronous serial controller
The Asynchronous Serial Controller (ASC) provides serial communication between the ST20-TP2
and other microcontrollers, microprocessors or external peripherals.

The ASC supports full-duplex asynchronous communication. Eight or nine bit data transfer, parity
generation, and the number of stop bits are programmable. Parity, framing, and overrun error
detection is provided to increase the reliability of data transfers. Transmission and reception of data
is double-buffered. For multiprocessor communication, a mechanism to distinguish address from
data bytes is included. Testing is supported by a loop-back option. A 16-bit baud rate generator
provides the ASC with a separate serial clock signal. The ASC can be set to operate in SmartCard
mode for use when interfacing to a SmartCard.

Figure 13.1 Registers associated with the ASC

The operating mode of the serial channel ASC is controlled by the control register (ASCControl).
This register contains control bits for mode and error check selection, and status flags for error
identification.

ASCBaudRate ASC Baud rate generator/reload register
ASCTxBuffer ASC Transmit buffer register (write only)
ASCRxBuffer ASC Receive buffer register (read only)
ASCControl ASC Control register
ASCIntEnable ASC Interrupt enable register
ASCStatus ASC Status register (read only)

Data
registers

Control
registers

Interrupt control
registers

ASCBaudRate ASCControl ASCIntEnable

ASCStatusASCTxBuffer

ASCRxBuffer

ST20-TP2

90/205



ASCControl register

A transmission is started by writing to the transmit buffer register (ASCTxBuffer), see Table 13.2.

Data transmission is double-buffered, therefore a new character may be written to the transmit
buffer register, before the transmission of the previous character is complete. This allows charac-
ters to be sent back-to-back without gaps.

ASCControl ASC base address + #0C Read/Write

Bit Bit field Function

2:0 Mode ASC mode control

Mode2:0 Mode
000 RESERVED
001 8-bit data
010 RESERVED
011 7-bit data + parity
100 9-bit data
101 8-bit data + wake up bit
110 RESERVED
111 8-bit data + parity

4:3 StopBits Number of stop bits selection

StopBits1:0 Number of stop bits
00 0.5 stop bits
01 1 stop bits
10 1.5 stop bits
11 2 stop bits

5 ParityOdd Parity selection

0 Even parity (parity bit set on odd number of ‘1’s in data)
1 Odd parity (parity bit set on even number of ‘1’s in data)

6 LoopBack Loopback mode enable bit

0 Standard transmit/receive mode
1 Loopback mode enabled

7 Run Baudrate generator run bit

0 Baudrate generator disabled (ASC inactive)
1 Baudrate generator enabled

8 RxEnable Receiver enable bit

0 Receiver disabled
1 Receiver enabled

9 SCEnable SmartCard enable bit

0 SmartCard mode disabled
1 SmartCard mode enabled

15:10 RESERVED. Write 0, will read back 0.

Table 13.1 ASCControl register format

ST20-TP2

91/205



Data reception is enabled by the receiver enable bit (RxEnable) in the ASCControl register. After
reception of a character has been completed, the received data and, if provided by the selected
operating mode, the received parity bit can be read from the receive buffer register (ASCRx-
Buffer), refer to Table 13.3.

Data reception is double-buffered, so that reception of a second character may begin before the
received character has been read out of the receive buffer register. The overrun error status flag
(OverrunError) in the status register (ASCStatus) (see Table 13.6) will be set when the receive
buffer register has not been read by the time reception of a second character is complete. The pre-
viously received character in the receive buffer is overwritten, and the ASCStatus register is
updated to reflect the reception of the new character.

The loop-back option (selected by the LoopBack bit) internally connects the output of the transmit-
ter shift register to the input of the receiver shift register. This may be used to test serial communi-
cation routines at an early stage without having to provide an external network.

Note: Serial data transmission or reception is only possible when the baud rate generator run bit
(Run) is set to 1. When the Run bit is set to 0, TXD will be 1. Setting the Run bit to 0 will immedi-
ately freeze the state of the transmitter and receiver. This should only be done when the ASC is
idle.

Note: Programming the mode control field Mode in the ASCControl register to one of the reserved
combinations may result in unpredictable behavior of the serial controller.

ST20-TP2

92/205



Transmit and receive buffer registers

ASCTxBuffer ASC base address + #04 Write only

Bit Bit field Function

0 TD0 Transmit buffer data D0

1 TD1 Transmit buffer data D1

2 TD2 Transmit buffer data D2

3 TD3 Transmit buffer data D3

4 TD4 Transmit buffer data D4

5 TD5 Transmit buffer data D5

6 TD6 Transmit buffer data D6

7 TD7/Parity Transmit buffer data D7, or parity bit - dependent on the operating mode (the setting of the
Mode field of the ASCControl register).

8 TD8/Parity

/Wake/0

Transmit buffer data D8, or parity bit, or wake-up bit or undefined - dependent on the
operating mode (the setting of the Mode field of the ASCControl register).

Note: If the Mode field selects an 8 bit fr ame then this bit should be written as 0.

15:9 RESERVED. Write 0.

Table 13.2 ASCTxBuffer register format

ASCRxBuffer ASC base address + #08 Read only

Bit Bit field Function

0 RD0 Receive buffer data D0

1 RD1 Receive buffer data D1

2 RD2 Receive buffer data D2

3 RD3 Receive buffer data D3

4 RD4 Receive buffer data D4

5 RD5 Receive buffer data D5

6 RD6 Receive buffer data D6

7 RD7/Parity Receive buffer data D7, or parity bit - dependent on the operating mode (the setting of the
Mode bit of the ASCControl register).

8 RD8/Parity/
Wake/X

Receive buffer data D8, or parity bit, or wake-up bit - dependent on the operating mode (the
setting of the Mode field of the ASCControl register)

Note: If the Mode field selects an 8 bit fr ame then this bit is undefined. Software should
ignore this bit when reading 8 bit frames

15:9 RESERVED. Will read back 0.

Table 13.3 ASCRxBuffer register format

ST20-TP2

93/205



13.1 Operation

The ASC supports full-duplex asynchronous communication, where both the transmitter and the
receiver use the same data frame format and the same baud rate. Data is transmitted on the TXD
pin and received on the RXD pin.

Figure 13.2 Block diagram of the ASC

0

1

LoopBack

Mode

StopBits

Run

RxEnable

ParityOdd

4 -input OR
gate ASC_interrupt

Reload registers

Baud rate timer
CPU
clock

Clock

Serial port control

Shift clock

Receive buffer
full interrupt

Transmitter
empty interrupt

Error
interrupt

MUX Sampling Receive shift
register

Transmit buffer
empty interrupt

Transmit shift
register

Receive buffer
register (RxBuffer)

Transmit buffer
register (TxBuffer)

Internal bus

RXD

TXD

ST20-TP2

94/205



Data frames

8-bit data frames either consist of:

• eight data bits D0-7 (by setting the Mode bit field to 001);

• seven data bits D0-6 plus an automatically generated parity bit (by setting the Mode bit field
to 011).

Parity may be odd or even, depending on the ParityOdd bit in the ASCControl register. An even
parity bit will be set, if the modulo-2-sum of the seven data bits is 1. An odd parity bit will be cleared
in this case. The parity error flag (ParityError) will be set if a wrong parity bit is received. The parity
bit itself will be stored in bit 7 of the ASCRxBuffer register.

Figure 13.3 8-bit data frames

9-bit data frames either consist of:

• nine data bits D0-8 (by setting the Mode bit field to 100);

• eight data bits D0-7 plus an automatically generated parity bit (by setting the Mode bit field
to 111);

• eight data bits D0-7 plus a wake-up bit (by setting the Mode bit field to 101).

Parity may be odd or even, depending on the ParityOdd bit in the ASCControl register. An even
parity bit will be set, if the modulo-2-sum of the eight data bits is 1. An odd parity bit will be cleared
in this case. The parity error flag (ParityError) will be set if a wrong parity bit is received. The parity
bit itself will be stored in bit 8 of the ASCRxBuffer register, see Table 13.3.

In wake-up mode, received frames are only transferred to the receive buffer register if the ninth bit
(the wake-up bit) is 1. If this bit is 0, no receive interrupt request will be activated and no data will
be transferred.

This feature may be used to control communication in multi-processor systems. When the master
processor wants to transmit a block of data to one of several slaves, it first sends out an address
byte which identifies the target slave. An address byte differs from a data byte in that the additional
ninth bit is a 1 for an address byte and a 0 for a data byte, so no slave will be interrupted by a data
byte. An address byte will interrupt all slaves (operating in 8-bit data + wake-up bit mode), so each
slave can examine the 8 least significant bits (LSBs) of the received character (the address). The
addressed slave will switch to 9-bit data mode, which enables it to receive the data bytes that will
be coming (with the wake-up bit cleared). The slaves that are not being addressed remain in 8-bit
data + wake-up bit mode, ignoring the following data bytes.

start
bit

D0 D1 D2 D3 D4 D5 D6 8th
bit(LSB)

1st
stop
bit

2nd
stop
bit

• Data bit (D7)
• Parity bit

ST20-TP2

95/205



Figure 13.4 9-bit data frames

Transmission

Transmission begins at the next overflow of the divide-by-16 counter (see Figure 13.4 above), pro-
vided that the Run bit is set and data has been loaded into the ASCTxBuffer . The transmitted data
frame consists of three basic elements:

• the start bit

• the data field (8 or 9 bits, least significant bit (LSB) first, including a par ity bit, if selected)

• the stop bits (0.5, 1, 1.5 or 2 stop bits).

Data transmission is double buffered. When the transmitter is idle, the transmit data written into the
transmit buffer is immediately moved to the transmit shift register, thus freeing the transmit buffer
for the next data to be sent. This is indicated by the transmit buffer empty flag (TxBufEmpty) being
set. The transmit buffer can be loaded with the next data, while transmission of the previous data is
still going on.

The transmitter empty flag (TxEmpty) will be set at the beginning of the last data frame bit that is
transmitted, i.e. during the first system clock cycle of the first stop bit shifted out of the transmit shift
register.

Reception

Reception is initiated by a falling edge on the data input pin (RXD), provided that the Run and
RxEnable bits are set. The RXD pin is sampled at 16 times the rate of the selected baud rate. A
majority decision of the first, second and third samples of the star t bit determines the effective bit
value. This avoids erroneous results that may be caused by noise.

If the detected value is not a 0 when the start bit is sampled, the receive circuit is reset and waits
for the next falling edge transition at the RXD pin. If the start bit is valid, the receive circuit contin-
ues sampling and shifts the incoming data frame into the receive shift register. For subsequent
data and parity bits, the majority decision of the seventh, eighth and ninth samples in each bit time
is used to determine the effective bit value.

For 0.5 stop bits, the majority decision of the third, fourth, and fifth samples dur ing the stop bit is
used to determine the effective stop bit value.

For 1 and 2 stop bits, the majority decision of the seventh, eighth, and ninth samples during the
stop bits is used to determine the effective stop bit values.

start
bit

D0 D1 D2 D3 D4 D5 D6
9th
bit(LSB)

1st
stop
bit

2nd
stop
bit

• Data bit (D8)
• Parity bit

D7

• Wake-up bit

ST20-TP2

96/205



For 1.5 stop bits, the majority decision of the fifteenth, sixteenth, and seventeenth samples during
the stop bits is used to determine the effective stop bit value.

When the last stop bit has been received (at the end of the last programmed stop bit period) the
content of the receive shift register is transferred to the receive data buffer register (ASCRxBuffer).
The receive buffer full flag (RxBufFull) is set, and the parity (ParityError) and framing error
(FrameError) flags are updated at the same time, after the last stop bit has been received (at the
end of the last stop bit programmed period), regardless of whether valid stop bits have been
received or not. The receive circuit then waits for the next start bit (falling edge transition) at the
RXD pin.

Reception is stopped by clearing the RxEnable bit. A currently received frame is completed includ-
ing the generation of the receive status flags. Start bits that follow this frame will not be recognized.

Note: In wake-upmode, received frames are only transferred to the receivebuffer register if the ninth
bit (the wake-up bit) is 1. If this bit is 0, the receive buffer full (RxBufFull) flag will not be set and no
data will be transferred.

13.2 Hardware error detection capabilities

To improve the safety of serial data exchange, the ASC provides three error status flags in the
ASCStatus register which indicate if an error has been detected during reception of the last data
frame and associated stop bits.

The parity error bit (ParityError) in the ASCStatus register is set when the parity check on the
received data is incorrect.

The framing error bit (FrameError) in the ASCStatus register is set when the RXD pin is not a 1
during the programmed number of stop bit times, sampled as described in the section above.

The overrun error bit (OverrunError) in the ASCStatus register is set when the last character
received in the ASCRxBuffer register has not been read out before reception of a new frame is
complete.

These flags are updated simultaneously with the transfer of data to the receive buffer.

13.3 Baud rate generation

The ASC has its own dedicated 16-bit baud rate generator with 16-bit reload capability.

The baud rate generator is clocked with the CPU clock. The timer counts downwards and can be
started or stopped by the Run bit in the ASCControl register. Each underflow of the timer provides
one clock pulse. The timer is reloaded with the value stored in its 16-bit reload register each time it
underflows. The ASCBaudRate register is the dual-function baud rate generator/reload register. A
read from this register returns the content of the timer; writing to it updates the reload register.

An auto-reload of the timer with the content of the reload register is performed each time the
ASCBaudRate register is written to. However, if the Run bit is 0 at the time the write operation to
the ASCBaudRate register is performed, the timer will not be reloaded until the first CPU clock
cycle after the Run bit is 1.

ST20-TP2

97/205



13.3.1 Baud rate generator register

Baud rates

The baud rate generator provides a clock at 16 times the baud rate. The baud rate and the required
reload value for a given baud rate can be determined by the following formulae:

where: <ASCBaudRate> represents the content of the ASCBaudRate register, taken as unsigned
16-bit integer,
fCPU is the frequency of the CPU.

Table 13.5 lists various commonly used baud rates together with the required reload values and the
deviation errors for an example baud rate with a CPU clock of 50 MHz. Note, this does not imply
availability of a 50 MHz device.

Note: The deviation errors given in the table above are rounded.

ASCBaudRate ASC base address + #00 Read/Write

Bit Bit field Write Function Read Function

15:0 ReloadVal 16 bit reload value 16 bit count value

Table 13.4 ASCBaudRate register format

Baud rate
Reload value

(exact)

Reload value

(integer)

Reload value

(hex)
Deviation error

625 K 5 5 0005 0%

38.4 K 81.380 81 0051 0.1%

19.2 K 162.760 163 00A3 0.1%

9600 325.521 325 0145 0.2%

4800 651.042 651 028B 0.01%

2400 1302.083 1302 0516 0.01%

1200 2604.167 2604 0A2C 0.01%

600 5208.33 5208 1458 0.01%

300 10416.667 10417 28B1 0.01%

75 41666.667 41667 A2C3 0.01%

Table 13.5 Baud rates

Baudrate =
16 (<ASCBaudRate>)

<ASCBaudRate> = (
16 x Baudrate

)

fCPU

fCPU

ST20-TP2

98/205



13.4 Interrupt control

The ASC contains two registers that are used to control interrupts, the status register (ASCStatus)
and the interrupt enable register (ASCIntEnable). The status bits in the ASCStatus register deter-
mine the cause of the interrupt. Interrupts will occur when a status bit is 1 (high) and the corre-
sponding bit in the ASCIntEnable register is 1.

The error interrupt signal (ErrorInterrupt) is generated by the ASC from the OR of the parity error,
framing error, and overrun error status bits after they have been ANDed with the corresponding
enable bits in the ASCIntEnable register.

An overall interrupt request signal (ASC_interrupt) is generated from the OR of the ErrorInterrupt
signal and the TxEmpty , TxBufEmpty and RxBufFull signals.

Note the status register cannot be written to directly by software. The reset mechanism for the sta-
tus register is described below.

The transmitter interrupt status bits (TxEmpty , TxBufEmpty) are reset when a character is written
to the transmitter buffer.

The receiver interrupt status bit (RxBufFull) is reset when a character is read from the receive
buffer.

The error status bits (ParityError , FrameError , OverrunError) are reset when a character is read
from the receive buffer.

ASCStatus ASC base address + #14 Read Only

Bit Bit field Function

0 RxBufFull Receiver buffer full flag

1 receiver buffer full

1 TxEmpty Transmitter empty flag

1 transmitter empty

2 TxBufEmpty Transmitter buffer empty flag

1 transmitter buffer empty

3 ParityError Parity error flag

1 Parity error

4 FrameError Framing error flag

1 Framing error

5 OverrunError Overrun error flag

1 Overrun error

7:6 RESERVED. Write 0, will read back 0.

Table 13.6 ASCStatus register format

ST20-TP2

99/205



ASCIntEnable ASC base address + #10 Read/Write

Bit Bit field Function

0 RxBufFullIE Receiver buffer full interrupt enable

1 receiver buffer full interrupt enable

1 TxEmptyIE Transmitter empty interrupt enable

1 transmitter empty interrupt enable

2 TxBufEmptyIE Transmitter buffer empty interrupt enable

1 transmitter buffer empty interrupt enable

3 ParityErrorIE Parity error interrupt enable

1 Parity error interrupt enable

4 FrameErrorIE Framing error interrupt enable

1 Framing error interrupt enable

5 OverrunErrorIE Overrun error interrupt enable

1 Overrun error interrupt enable

7:6 RESERVED. Write 0, will read back 0.

Table 13.7 ASCIntEnable register format

ST20-TP2

100/205



Figure 13.5 ASC status and interrupt registers

&

&

&

&

&

&

register register

RxBufFullIE

TxEmptyIE

TxBufEmptyIE

ParityErrorIE

FrameErrorIE

OverrunErrorIE

ASCIntEnableASCStatus

OR

Receive buffer
full interrupt

Transmitter
empty interrupt

Transmit buffer
empty interrupt

Error interrupt

RxBufFull

TxEmpty

TxBufEmpty

ParityError

FrameError

OverrunError

RESERVEDRESERVED
read0, write 0 read0, write 0

ST20-TP2

101/205



Using the ASC interrupts

For normal operation (i.e. besides the error interrupt) the ASC provides three interrupt requests to
control data exchange via the serial channel:

• TxBufEmpty is activated when data is moved from ASCTxBuffer to the transmit shift
register.

• TxEmpty is activated before the last bit of a frame is transmitted.

• RxBufFull is activated when the received frame is moved to ASCRxBuffer .

The transmitter generates two interrupts. This provides advantages for the servicing software.

For single transfers it is sufficient to use the transmitter interrupt (TxEmpty), which indicates that
the previously loaded data has been transmitted, except for the last bit of a frame.

For multiple back-to-back transfers it is necessary to load the next data before the last bit of the
previous frame has been transmitted. This leaves just one bit-time for the handler to respond to the
transmitter interrupt request.

Using the transmit buffer interrupt (TxBufEmpty) to reload transmit data allows the time to transmit
a complete frame for the service routine, as ASCTxBuffer may be reloaded while the previous
data is still being transmitted.

As shown in Figure 13.6 below, TxBufEmpty is an early trigger for the reload routine, while
TxEmpty indicates the completed transmission of the data field of the frame. Therefore, software
using handshake should rely on TxEmpty at the end of a data block to make sure that all data has
really been transmitted.

Figure 13.6 ASC interrupt generation

Idle IdleS
ta

rt

S
ta

rt

S
ta

rt

S
to

p

S
to

p

S
to

p

TxBufEmpty
TxEmpty

TxBufEmpty TxBufEmpty
TxEmpty TxEmpty

RxBufFull RxBufFull RxBufFull

ST20-TP2

102/205



13.5 SmartCard mode specific operation

The ASCGuardTime register enables the user to define a prog rammable number of baud clocks to
delay the assertion of TxEmpty .

To conform to the ISO Smart Card specification the following modes are supported in the ASC
SmartCard mode.

When the SmartCard mode bit is set to 1, the following operation occurs.

• Transmission of data from the transmit shift register is guaranteed to be delayed by a mini-
mum of 1/2 baud clock. In normal operation a full transmit shift register will start shifting on
the next baud clock edge. In SmartCard mode this transmission is further delayed by a
guaranteed 1/2 baud clock.

• If a parity error is detected during reception of a frame programmed with a 1/2 stop bit
period, the transmit line is pulled low for a baud clock period after the completion of the
receive frame, i.e. at the end of the 1/2 stop bit period. This is to indicate to the SmartCard
that the data transmitted to the UART has not been correctly received.

• The assertion of the TxEmpty flag can be delayed by programming the ASCGuardTime
register. In normal operation, TxEmpty is asserted when the transmit shift register is empty
and no further transmit requests are outstanding.

In SmartCard mode an empty transmit shift register triggers the guardtime counter to count
up to the programmed value in the ASCGuardTime register. TxEmpty is forced low during
this time. When the guardtime counter reaches the programmed value TxEmpty is
asserted high.

The de-assertion of TxEmpty is unaffected by SmartCard mode.

The receiver enable bit is reset after a character has been received. This avoids the receiver
detecting another start bit in the case of the smartcard driving the RXD line low until the UART
driver software has dealt with the previous character.

When the SmartCard mode bit is set to 0, normal UART operation occurs.

ASCGuardTime ASC base address + #18 Read/Write

Bit Bit field Function

7:0 GuardTime Number of baud clocks to delay assertion of TxEmpty .

15:8 RESERVED. Write 0, will read back 0.

Table 13.8 ASCGuardTime register format

ST20-TP2

103/205



14 SmartCard interface
The SmartCard interface is designed to support only asynchronous protocol SmartCards as
defined in the ISO7816-3 standard. Limited support for synchronous SmartCards can be provided
in software by using PIO bits to provide the Clock, Reset, and I/O functions on the interface to the
card. Two SmartCard interfaces are supported on the ST20-TP2.

A UART (ASC) configured as eight data bits plus par ity, 0.5 or 1.5 stop bits, with SmartCard mode
enabled provides the UART function of the SmartCard interface. A 16 bit counter, the SmartCard
clock generator, divides down either the CPU clock, or an external clock connected to a pin shared
with a PIO bit, to provide the clock to the SmartCard. PIO bits in conjunction with software are used
to provide the rest of the functions required to interface to the SmartCard. The inverse signalling
convention as defined in ISO7816-3, inverted data and MSB first, is handled in software.

Refer to Chapter 13 and Chapter 17 for details of the ASC and PIO ports respectively.

14.1 External interface

The signals required by the SmartCard are given in Table 14.1.

The signals provided on the ST20-TP2 are given in Table 14.2.

The ScRST, ScCmdVpp , ScCmdVcc , and ScDetect signals are provided by PIO bits of the PIO
ports. Programming the PIO bits of the port for alternate function modes connects the ASC TXD
data signal to the ScDataOut pin with the correct driver type and the clock generator to the ScClk
pin. Details of the PIO bit assignments can be found in Table Table 27.1 on page 177.

Pin Function

Clk Clock for SmartCard

I/O Input or output serial data. Open drain drive at both ends.

RST Reset to card

Vcc Supply voltage

Vpp Programming voltage

Table 14.1 SmartCard pins

Pin In/Out Function

ScClk out, open drain for 5 V cards Clock for SmartCard.

ScClkGenExtClk in External clock input to SmartCard clock divider.

ScDataOut out, open drain driver Serial data output. Open drain drive.

ScDataIn in Serial data input.

ScRST out, open drain Reset to card.

ScCmdVcc out Supply voltage enable/disable.

ScCmdVpp out Programming voltage enable/disable.

ScDetect in SmartCard detect.

Table 14.2 SmartCard interface pins

ST20-TP2

104/205



The ISO standard defines the bit times for the asynchronous protocol in terms of a time unit called
an ETU which is related to the clock frequency input to the card. One bit time is of length one ETU.

The ASC transmitter output and receiver input need to be connected together externally. For the
transmission of data from the ST20-TP2 to the SmartCard, the ASC will need to be set up in
SmartCard mode.

Figure 14.1 ISO 7816-3 asynchronous protocol

14.2 SmartCard clock generator

The SmartCard clock generator provides a clock signal to the connected SmartCard. The Smart-
Card uses this clock to derive the baud rate clock for the serial I/O between the SmartCard and
another UART. The clock is also used for the CPU in the card, if present. Operation of the Smart-
Card interface requires that the clock rate to the card is adjusted while the CPU in the card is run-
ning code so that the baud rate can be changed or the performance of the card can be increased.
The protocols that govern the negotiation of these clock rates and the altering of the clock rate are
detailed in ISO7816-3 standard. The clock is used as the CPU clock for the SmartCard therefore
updates to the clock rate must be synchronized to the clock (Clk) to the SmartCard, i.e. the clock
high or low pulse widths must not be shorter than either the old or new programmed value.

The clock generator clock source can be set to be either the system clock or an external pin. Two
registers control the period of the clock and the running of the clock.

Note : The clock generator is independent of the UART Baud rate.

14.2.1 SmartCard clock generator registers

The SmartCard can be programmed via registers which are mapped into the device address
space. They may be accessed using devsw and devlw instructions.

The base addresses for the SmartCard registers are given in the Memory Map chapter.

Note: During reset all of the registers are reset to ‘0’.

ScClkVal register

The ScClkVal register determines the SmartCard clock frequency. The value given in the register
is multiplied by 2 to give the division factor of the input clock frequency.

Line pulled low by
receiver during stop bits
if there is a parity error

S a b c d e f g h P

Start
bit 8 data bits

Parity
bit

11 ETU

ST20-TP2

105/205



The divider is updated with the new value for the divider ratio on the next rising or falling edge of
the output clock.

ScClkCon register

The ScClkCon register controls the source of the clock and determines whether the SmartCard
clock output is enabled. The programmable divider and the output are reset when the enable bit is
set to 0.

ScClkVal SmartCard clock generator base address + #00 Write only

Bit Bit field Function

4:0 ScClkVal These bits determine the source clock divider value.

This value multiplied by 2 gives the clock division factor, see examples which follow:

ScClkVal4:0 Division
00000 DO NOT PROGRAM THIS VALUE
00001 divides the source clock frequency by 2
00010 divides the source clock frequency by 4

7:5 RESERVED. Write 0.

Table 14.3 ScClkVal register format

ScClkCon SmartCard clock generator base address + #04 Write only

Bit Bit field Function

0 ScClkSource Selects source of SmartCard clock.

0 selects global clock
1 selects external pin

1 ScClkEnable SmartCard clock generator enable bit.

0 stop clock, set output low and reset divider
1 enable clock generator

7:2 RESERVED. Write 0.

Table 14.4 ScClkCon register format

ST20-TP2

106/205



15 I2C interfaces (SSC)
The High-Speed Synchronous Serial Controller (SSC) can be used to interface to a wide variety of
serial memories, remote control receivers, and other microcontrollers. Various interface standards
exist for these, the most important of which is the I2C bus in the set-top box application as this is
the interface used most often for the control of the Link-IC and the PAL/NTSC encoder. Figure 15.1
below shows how the SSC is interfaced to an I2C bus as the bus master. Software is required to
handle some of the I2C bus protocol such as byte acknowledgement.

Figure 15.1 Connection of ST24C02 and ST20-TP2 in I2C-bus

The SSC provides flexible high-speed serial communication between the ST20-TP2 and other
microcontrollers, microprocessors or external peripherals using the I2C bus protocol.

15.1 High-speed synchronous serial controller

The SSC supports full-duplex and half-duplex synchronous communication. The serial clock signal
can be generated by the SSC itself (master mode). Data width is programmable. Transmission and
reception of data is double-buffered. A 16-bit baud rate generator provides the SSC with a separate
serial clock signal.

The high-speed synchronous serial controller can be used to communicate with shift registers (IO
expansion), peripherals (e.g. EEPROMs) or other controllers (networking). The SSC supports half-
duplex and full-duplex communication.

MTSR

MRST

SClk

VDD

A0

VSS(GND)

A1

A2

SDA

SCL

VDD

GND

2.7k2.7k

10nF

ST24C02
Slave

ST20-TP2
Master

ST20-TP2

107/205



Figure 15.2 Registers associated with the SSC

SSCBaudRate SSC Baud rate generator/reload register

SSCTxBuffer SSC Transmit buffer register (write only)

SSCRxBuffer SSC Receive buffer register (read only)

SSCControl SSC Control register

SSCIntEnable SSC Interrupt enable register

SSCStatus SSC Status register

Data
registers

Control
registers

Interrupt control
registers

SSCControl SSCIntEnable

SSCStatus

SSCBaudRate

SSCTxBuffer

SSCRxBuffer

ST20-TP2

108/205



Control register

The operating mode of the serial channel SSC is controlled by the control register (SSCControl).

15.1.1 Synchronous serial channel operation

The shift register of the SSC is connected to both the transmit pin and the receive pin via the pin
control logic (see block diagram Figure 15.3). Transmission and reception of serial data is synchro-
nized and takes place at the same time, i.e. the same number of transmitted bits is also received.
Transmit data is written into the Transmit Buffer (SSCTxBuffer) register. It is moved to the shift reg-
ister as soon as this is empty. The SSC immediately begins transmitting. When the data has trans-
ferred to the shift register, the transmit buffer empty (TxBufEmpty) flag will be set to indicate that
the transmit buffer (SSCTxBuffer) may be reloaded again. When the programmed number of bits
(2 to 16) has been transferred, the contents of the shift register are moved to the Receive Buffer
(SSCRxBuffer) register and the receive buffer full (RxBufFull) flag will be set. If no fur ther transfer
is to take place, i.e. the transmit buffer is empty, the SSC will revert back to an idle state waiting for
a load of the transmit register.

SSCControl SSC base address +#0C Read/Write

Bit Bit field Function

3:0 DataWidth SSC Data width selection

DataWidth3:0 Data width
0000 Reserved. Do not use this combination.
0001 2 bits
0010 3 bits
... ...
1111 16 bits

4 HeadControl SSC Heading control bit

For I2C operation, software must write a 1; the effect of writing 0 is undefined.

The most significant bit (MSB) of the selected data width is shifted out first.

5 ClkPhase SSC Clock phase control bit

For I2C operation, software must write a 1; the effect of writing 0 is undefined

6 ClkPolarity SSC Clock polarity control bit

For I2C operation, software must write a 0; the effect of writing 1 is undefined

8 MasterSel SSC Master select bit

For I2C operation, software must write a 1; the effect of writing 0 is undefined

9 Enable SSC Enable bit

0 Transmission and reception disabled
1 Transmission and reception enabled

10 LoopBack SSC Loopback bit

0 transmitter is connected to shift register input
1 shift register output is connected to shift register input

7, 15:11 RESERVED. Write 0, read back 0.

Table 15.1 SSCControl register format

ST20-TP2

109/205



Figure 15.3 Synchronous serial channel SSC block diagram

Note that only one SSC can be master at a given time.

The transfer of serial data bits can be programmed as follows:

• the data width can be 2 to 16 bits

• the baud rate can be set over a wide range

The data width selection (DataWidth) bit allows data widths of 2 to 16 bits to be transferred.

The unused bits of SSCTxBuffer are ignored, the unused bits of SSCRxBuffer are not valid and
should be ignored by the receiver service routine.

Receiver buffer

Transmitter empty

Receive error

OR gate

full interrupt

interrupt

interrupt
Phase error

interrupt

CPU
clock

Baud rate
generator

Clock
control

Slave clock

Master clock
SClk

Shift clock

SSC control block

Status Control

SSC_interrupt

16-bit shift register

Pin
controls

MTSR

MRST

Transmit buffer
register (SSCTxBuffer)

Receive buffer
register (SSCRxBuffer)

Internal bus

ST20-TP2

110/205



Transmit and receive buffer registers

Clock control

If the ClkPhase and ClkPolarity bits in the SSCControl register are programmed, as defined by
Table 15.1 on page 108, then the clock and data relationship will be I2C compatible. The data is
stable during the high level of the clock and I2C setup and hold times are met.

Figure 15.4 Clock and data relationships

15.1.2 Half-duplex operation

In a half duplex configuration only one data line is necessary for both receiving and transmitting of
data. The data exchange line is connected to both pins MTSR and MRST of each device, the clock
line is connected to the SClk pin.

SSCTxBuffer SSC base address + #04 Write only

Bit Bit field Function

15:0 TD15:0 Transmit buffer data D15:0

Table 15.2 SSCTxBuffer register format

SSCRxBuffer SSC base address + #08 Read only

Bit Bit field Function

15:0 RD15:0 Receive buffer data D15:0

Table 15.3 SSCRxBuffer register format

ClkPolarity ClkPhase

0 1

Transmit data
Last
bit

Latch data

Shift data

First
bit

Serial clock SClk

Pins MTSR/MRST

ST20-TP2

111/205



Figure 15.5 Half-duplex configuration

The master device controls the data transfer by generating the shift clock, while the slave devices
receive it. Due to the fact that all transmit and receive pins are connected to the one data exchange
line, serial data may be moved between arbitrary stations.

Similar to full duplex mode there are two ways to avoid collisions on the data exchange line:

• only the transmitting device may enable its transmit pin driver

• the non-transmitting devices use open drain output and only send ones.

Since the data inputs and outputs are connected together, a transmitting device will clock its own
data at the input pin (MRST for a master device). This allows any corruptions on the common data
exchange line, where the received data is not equal to the transmitted data, to be detected.

Continuous transfers

When the TxBufEmpty bit is 1, it indicates that the transmit buffer SSCTxBuffer is empty and
ready to be loaded with the next transmit data. If SSCTxBuffer has been reloaded by the time the
current transmission is finished, the data is immediately transferred to the shift register and the next
transmission will start without any additional delay. On the data line there is no gap between the
two successive frames. For example, two byte transfers would look the same as one word transfer.
This feature can be used to interface with devices which can operate with or require more than 16

Master Device #1 SlaveDevice #2

SlaveDevice #3

Clock

MTSR

MRST

SClk Clock

Shift register

MTSR

MRST

SClk Clock

Shift register
Common
transmit /
receive

line
MTSR

MRST

SClk

Shift register

Clock

ST20-TP2

112/205



data bits per transfer. Software determines how long a total data frame length can be. This option
can also be used to interface to byte-wide and word-wide devices on the same serial bus.

Note: This can only happen in multiples of the selected basic data width, since it would require dis-
abling/enabling of the SSC to reprogram the basic data width on-the-fly.

15.1.3 Baud rate generation

The SSC has its own dedicated 16-bit baud rate generator with 16-bit reload capability. The result-
ant baud rate for transmission and reception is half the value in the SSCBaudRate register.

15.1.4 Baud rate generator register

Baud rates

The formulae below calculate either the resulting baud rate for a given reload value, or the required
reload value for a given baud rate:

Where, <SSCBaudRate> represents the content of the reload register, as an unsigned 16-bit inte-
ger and fCPU represents the CPU clock frequency.

The maximum baud rate that can be achieved when using a CPU clock of 40 MHz is 5 MBaud.
Table 15.5 below lists some possible baud rates together with the required reload values and the
resulting bit times, assuming a CPU clock of 40 MHz.

Note: The content of SSCBaudRate must be greater than 0.

SSCBaudRate ASC base address + #00 Read/Write

Bit Bit field Write Function Read Function

15:0 ReloadVal 16-bit reload value 16-bit count value

Table 15.4 SSCBaudRate register format

Baud rate Bit time Reload value

Reserved. Use a reload value > 0. - #0000

5 MBaud 200 ns #0004

3.3 MBaud 300 ns #0006

2.5 MBaud 400 ns #0008

2.0 MBaud 500 ns #000A

1.0 MBaud 1 µs #0014

100 KBaud 10 µs #00C8

10 KBaud 100 µs #07D0

1.0 KBaud 1 ms #4E20

Table 15.5 Baud rates and bit times for different SSCBaudRate reload values

Baudrate
2 x <SSCBaudRate>

<SSCBaudRate> = (
2 x Baudrate

)=
fCPU fCPU

ST20-TP2

113/205



15.1.5 Hardware error detection capabilities

The SSC is able to detect two different error conditions.

• Receive Error

• Phase Error

When an error is detected, the respective error flag is set in the SCCStatus register. The error
interrupt handler may then check the error flags to deter mine the cause of the error interrupt.

A Receive Error is detected, when a new data frame is completely received, but the previous data
was not read out of the receive buffer register SSCRxBuffer . This condition sets the error (RxEr-
ror) flag and, when enabled via RxErrorIE, the error interrupt request flag (ErrorInterrupt). The
old data in the receive buffer SSCRxBuffer will be overwritten with the new value and is irretriev-
ably lost.

A Phase Error is detected, when the incoming data on the MRST pin, sampled at the same fre-
quency as the CPU clock, changes between one sample before and two samples after the latching
edge of the clock signal (see “Clock control” on page 110). This condition sets the error flag Pha-
seError and, when enabled via PhaseErrorIE , the error interrupt request flag (ErrorInterrupt).

15.1.6 Interrupt control

The SSC contains two registers that are used to control interrupts, a status (SSCStatus) register
and an interrupt enable (SSCIntEnable) register. The status bits in the SSCStatus register deter-
mine the cause of the interrupt. Interrupts will occur when a status bit is 1 (high) and the corre-
sponding bit in the SSCIntEnable register is 1.

The error interrupt signal (ErrorInterrupt) is generated by the SSC from the OR of the receive
error and phase error status bits after they have been ANDed with the corresponding enablebits in
the SSCIntEnable register.

An overall interrupt request signal (SSC_interrupt) is generated from the OR of the receive inter-
rupt request (RxBufFull), transmit interrupt request (TxBufEmpty) and error interrupt request
(ErrorInterrupt) signals.

Note the status register cannot be written to directly by software. The set and reset mechanism for
the status register is described below.

The receiver interrupt status bit (RxBufFull) is set when a character is loaded from the shift regis-
ter into the receive buffer (SSCRxBuffer). The RxBufFull bit is reset when a character is read from
the receive buffer (SSCRxBuffer).

The transmitter interrupt status bit (TxBufEmpty) is set when a character is loaded from the trans-
mitter buffer (SSCTxBuffer) into the shift register. The TxBufEmpty bit is reset when a character
is written into the transmitter buffer (SSCTxBuffer).

The status bits (RxError, PhaseError) are reset when a character is read from the receive buffer
(SSCRxBuffer).

ST20-TP2

114/205



SSCStatus SSC base address + #14 Read Only

Bit Bit field Function

0 RxBufFull Receiver Buffer Full Flag

1 receiver buffer full

1 TxBufEmpty Transmitter Buffer Empty Flag

1 transmitter buffer empty

3 RxError Receive Error Flag

1 receive error set

4 PhaseError Phase Error Flag

1 phase error set

2, 7:5 RESERVED. Will read back 0.

Table 15.6 SSCStatus register format

SSCIntEnable SSC base address + #10 Read/Write

Bit Bit field Function

0 RxBufFullIE Receiver Buffer Full Interrupt Enable

1 receiver buffer full interrupt enable

1 TxBufEmptyIE Transmitter Buffer Empty Interrupt Enable

1 transmitter buffer empty interrupt enable

3 RxErrorIE Receive Error Interrupt Enable

1 receive error interrupt enable

4 PhaseErrorIE Phase Error Interrupt Enable

1 phase error interrupt enable

2, 7:5 RESERVED. Write 0, will read back 0.

Table 15.7 SSCIntEnable register format

ST20-TP2

115/205



Figure 15.6 SSC status and interrupt registers

Using the SSC interrupts

An interrupt handler for the SSC needs to read the SCCStatus register before writing the SCCTx-
Buffer or reading the SCCRxBuffer as there might have been an error. The error flags will be
cleared by these read or write operations, see sections above on error detection and interrupts.

&

&

&

&

SSCStatus
register register

SSCIntEnable

RxBufFullIE

TxBufEmptyIE

RxErrorIE

PhaseErrorIE

RxBufFull

TxBufEmpty

RxError

PhaseError

Receiver buffer
full interrupt

Transmitter buffer
empty interrupt

RESERVED
read 0, write 0

RESERVED
read 0, write 0

RESERVED
read 0, write 0

RESERVED
read 0, write 0

Receive error
interrupt

Phase error
interrupt

ST20-TP2

116/205



16 PWM and counter module
This module includes two separate 8-bit counters used for pulse width modulation (PWM) and two
32-bit counters with capture registers. The counters can be clocked from a pre-scaled internal
clock or from a pre-scaled external clock via the CaptureClk input and the event on which the timer
value is captured is also programmable.

The PWM and counter module generates a single interrupt signal, the exact event causing the
interrupt can be determined from the CaptureStatus register. The interrupts are cleared by writing
a 1 to the corresponding bits in the CaptureAck register.

16.1 External interface

16.2 PWM and counter control registers

The PWM and counter module is programmable via control registers.

The base address for the PWM control registers are given in the Memory map.

PWMVal0-1 registers

The PWMVal0-1 registers contain the counter value for each of the 8-bit PWM counters.

This value is used to determine the width of the pulse generated on the PWMOut pin, see
Figure 16.1.

PWMOut pulse width = (PWMVal + 1) × prescaled clock period

If PWMVal = 0, PWMOut pulse width = 1 prescaled clock cycle.

If PWMVal = 255, PWMOut pulse width = 256 prescaled clock cycles, i.e. PWMOut does not go
low.

Pin In/Out Function

PWMOut0-1

(PIO1[3-4])

out PWM outputs

CaptureIn0-1
(PIO3[3-4])

in Capture trigger inputs

CaptureClk0-1

(PIO3[5-6])

in External capture counter clocks

Table 16.1 PWM and counter pins

PWMVal0-1 PWM base address + #00 to #04 Read/Write

Bit Bit field Function

7:0 PWMVal 8-bit PWM counter value, see Figure 16.1.

Table 16.2 PWMVal0-1 registers format

ST20-TP2

117/205



Figure 16.1 PWM counter value

The clock used in this module, either ClockIn or CaptureClk , is selected by the PWMClkSource
bit of the CaptureControl register. This clock can be further prescaled by programming the PWM-
ClkVal bit field. The prescaler divides the selected clock by PWMClkVal +1.

The PWM counter is enabled by setting the PWMEnable bit of the CaptureControl register. When
it is disabled (PWMEnable is 0), PWMOut is forced low.

When the PWM counter overflows an interrupt is generated if the PWMInterrupt bit is set.

CaptureVal0-1 registers

The CaptureVal0-1 registers contain the captured value of each of the 32-bit capture counters.

The clock used in this module, either ClockIn or CaptureClk , is selected by the CaptureClk-
Source bit of the CaptureControl register. This clock can be further prescaled by programming
the CaptureClkVal bit field. The prescaler divides the selected clock by CaptureClkVal + 1.

The event which causes the capture of the counter value is selected by the CaptureEvent bit to be
either CaptureIn or LPacketClk . It can be set to capture on a rising or falling edge determined by
the setting of the CaptureEdge bit.

An interrupt is generated when a capture event occurs if the CaptureInterrupt bit is set.

The counter is enabled by setting the CaptureEnable bit. Any capture events which occur when
the counter is disabled will be ignored, with neither the counter value being captured nor an inter-
rupt being generated.

CaptureVal0-1 PWM base address + #08 to #0C Read only

Bit Bit field Function

31:0 CaptureVal 32-bit capture counter value

Table 16.3 CaptureVal0-1 registers format

PWMOut

(PWMVal + 1) × prescaled
clock period

256 × prescaled clock period

ST20-TP2

118/205



CaptureControl register

The CaptureControl register is used to set the pre-scalers and clock sources for the PWM and
capture counters, to control the interrupts, and to configure the capture signal source for the cap-
ture registers.

CaptureControl PWM base address + #10 Read/Write

Bit Bit field Function

0 PWM0Interrupt PWM0 interrupt enable

1 interrupt on 8-bit counter overflow

1 PWM1Interrupt PWM1 interrupt enable

1 interrupt on 8-bit counter overflow

2 Capture0Interrupt Capture0 interrupt enable

1 interrupt on capture event

3 Capture1Interrupt Capture1 interrupt enable

1 interrupt on capture event

4 PWM0ClkSource PWM0 clock source

0 ClockIn
1 CaptureClk0

8:5 PWM0ClkVal PWM0 clock prescale value. The selected clock (ClockIn or CaptureClk0) is
divided by PWM0ClkVal +1, for example:

PWM0ClkVal8:5 Prescale value
0000 divide selected clock by 1
0100 divide selected clock by 5

9 PWM1ClkSource PWM1 clock source

0 ClockIn
1 CaptureClk1

13:10 PWM1ClkVal PWM1 clock prescale value. The selected clock is divided by PWM1ClkVal +1.

14 Capture0ClkSource Capture0 clock source

0 ClockIn
1 CaptureClk0

18:15 Capture0ClkVal Capture0 clock prescale value. The selected clock is divided by
Capture0ClkVal +1.

19 Capture0Event Capture0 capture event source

0 CaptureIn0
1 LPacketClk

20 Capture0Edge Capture0 capture edge

0 rising edge
1 falling edge

21 Capture1ClkSource Capture1 clock source

0 ClockIn
1 CaptureClock1

Table 16.4 CaptureControl register format

ST20-TP2

119/205



CaptureStatus register

This register is read only and determines the event which caused the interrupt.

An overall interrupt signal is generated from the OR of these 4 interrupts.

25:22 Capture1ClkVal Capture1 clock prescale value. The selected clock is divided by
Capture1ClkVal +1.

26 Capture1Event Capture1 capture event source

0 CaptureIn1
1 LPacketClk

27 Capture1Edge Capture1 capture edge

0 rising edge
1 falling edge

28 PWM0Enable PWM0 enable

1 enables PWM0

29 PWM1Enable PWM1 enable

1 enables PWM1

30 Capture0Enable Capture0 enable

1 enables Capture0

31 Capture1Enable Capture1 enable

1 enables Capture1

CaptureStatus PWM base address + #14 Read only

Bit Bit field Function

0 PWM0Int PWM0 interrupt

1 interrupt

1 PWM1Int PWM1 interrupt

1 interrupt

2 Capture0Int Capture0 interrupt

1 interrupt

3 Capture1Int Capture1 interrupt

1 interrupt

7:4 RESERVED. Will read back 0.

Table 16.5 CaptureStatus register format

CaptureControl PWM base address + #10 Read/Write

Bit Bit field Function

Table 16.4 CaptureControl register format

ST20-TP2

120/205



CaptureAck register

This register is write only. When a bit is set to 1 it clears the associated interrupt.

CaptureAck PWM base address + #18 Write only

Bit Bit field Function

0 PWM0IntAck PWM0 interrupt acknowledge.

1 clears interrupt

1 PWM1IntAck PWM1 interrupt acknowledge.

1 clears interrupt

2 Capture0IntAck Capture0 interrupt acknowledge.

1 clears interrupt

3 Capture1IntAck Capture1 interrupt acknowledge.

1 clears interrupt

7:4 RESERVED. Write 0.

Table 16.6 CaptureAck register format

ST20-TP2

121/205



17 Parallel input/output
The ST20-TP2 device has 39 bits of Parallel Input/Output (PIO), configured in groups (ports) of
eight bits. Each bit is programmable as an output, an input, a bidirectional pin, or as an alternate
function output pin. The alternate function connects signals from device peripherals to the pins of
the device through the PIO. Details of the alternate function assignments can be found in the
Device Configuration chapter.

Each group of eight input bits can also be compared against a register and an interrupt generated
when the value is not equal.

Output drivers for the PIO pins, both in PIO mode and the alternate function mode, can be pro-
grammed to be push-pull, open drain, or weak pull-up. The weak pull-up configuration avoids the
need for pull-up resistors on unused pins while still allowing them to be driven for test purposes.

Each of the groups of eight bits operates as described in the following section.

17.1 PIO Ports0-4

Each of the eight bits of a PIO port has a corresponding bit in the PIO registers associated with
each port. These registers hold: output data for the port (POut); the input data read from the pin
(PIn); PIO bit configuration registers (PC0, PC1 and PC2); and the two input compare function reg-
isters (PComp and PMask).

All of the registers, except the PIn registers, are each mapped onto two additional addresses so
that bits can be set or cleared individually.

The Set_ register allows bits to be set individually. Writing a ‘1’ in this register sets the correspond-
ing bit in the associated register, a ‘0’ leaves the bit unchanged.

The Clear_ register allows bits to be cleared individually. Writing a ‘1’ in this register resets the cor-
responding bit in the associated register, a ‘0’ leaves the bit unchanged.

17.1.1 PIO Data registers

The base addresses for the PIOx registers are given in the memory map.

Note that during reset all the registers are reset to ’00000000’.

POut register

This register holds output data for the port.

POut PIO base address + #00 Read/Write

Bit Bit field Function

7:0 POut7:0 Bits 0 to 7 of output data for the port.

Table 17.1 POut register format - 1 register per port

ST20-TP2

122/205



PIn register

The data read from this register will give the logic level present on an input pin of the port at the
start of the read cycle to this register. The read data will be the last value written to the register
regardless of the pin configuration selected.

17.1.2 PIO Configuration registers

There are three configuration registers (PC0, PC1 and PC2) which are used to configure each of
the PIO port bits as an input, output, bidirectional, or alternate function pin (if any), with options for
the output driver configuration.

The selections made by the bits in these registers for each I/O bit are given in Table 17.4 below.

17.1.3 PIO Input compare and Compare mask registers

The Input compare register (PComp) holds the value to which the input data from the PIO ports
pins will be compared. If any of the input bits are different from the corresponding bits in the
PComp register and the corresponding bit position in the PIO Compare mask register (PMask) is
set to 1, then the internal interrupt signal for the port will be set to 1.

The compare function is sensitive to changes in levels on the pins and so the change in state on
the input pin must be greater in duration than the interrupt response time for the compare to be
seen as a valid interrupt by an interrupt service routine.

PIn PIO base address + #10 Read only

Bit Bit field Function

7:0 PIn7:0 Bits 0 to 7 of input data for the port.

Table 17.2 PIn register format - 1 register per port

PC0-2 PIO base address + #20 to #40 Read/Write

Bit Bit field Function

7:0 ConfigData7:0 PIO Configuration data bits 0 to 7.

Table 17.3 PC0-2 registers format - 3 registers per port

PIO bit configuration PIO bit output PC2 PC1 PC0

Bidirectional Weak pull-up 0 0 0

Bidirectional Open drain 0 0 1

Output Push-pull 0 1 0

Bidirectional Open drain 0 1 1

Input Hi-Z 1 0 0

Input Hi-Z 1 0 1

Alternate function output Push-pull 1 1 0

Alternate function bidirectional Open drain 1 1 1

Table 17.4 PIO port bits configurations

ST20-TP2

123/205



Note that the compare function is operational in all configurations for a PIO bit including the alter-
nate function modes.

PComp PIO base address + #50 Read/Write

Bit Bit field Function

7:0 PComp7:0
Bit 0 to 7 value to which the input data from the PIO port pins will be
compared.

Table 17.5 PComp register format - 1 register per port

PMask PIO base address + #60 Read/Write

Bit Bit field Function

7:0 PMask7:0
When set to 1, the compare function for the internal interrupt for the port is
enabled. If the respective bit (0 to 7) of the input is different to the respective
PComp7:0 bit in the PComp register, then an interrupt is generated.

Table 17.6 PMask register format

ST20-TP2

124/205



18 Serial link interface (OS-Link)
The ST20-TP2 has an OS-Link based serial communications subsystem. The OS-Link is used to
provide serial data transfer and its main function is for booting the device during software develop-
ment.

The OS-Link is a serial communications engine consisting of two signal wires, one in each direc-
tion. OS-Links use an asynchronous bit-serial (byte-stream) protocol, each bit received is sampled
five times, hence the term oversampled links (OS-Links). The OS-Link provides a pair of channels,
one input and one output channel.

The OS-Link is used for the following purposes:

• Bootstrapping - the program which is executed at power up or after reset can reside in ROM
in the address space, or can be loaded via the OS-Link directly into memory.

• Diagnostics - diagnostic and debug software can be downloaded over the link connected to
a PC or other diagnostic equipment, and the system performance and functionality can be
monitored.

• Communicating with OS-Link peripherals or other ST20 devices.

18.1 OS-Link protocol

The quiescent state of a link output is low. Each data byte is transmitted as a high start bit followed
by a one bit followed by eight data bits followed by a low stop bit (see Figure 18.1). The least signif-
icant bit of data is transmitted first. After transmitting a data byte the sender waits for the acknowl-
edge, which consists of a high start bit followed by a zero bit. The acknowledgesignifies both that a
process was able to receive the acknowledged data byte and that the receiving link is able to
receive another byte. The sending link reschedules the sending process only after the acknowl-
edge for the final byte of the message has been received. The link allows an acknowledge to be
sent before the data has been fully received.

Figure 18.1 OS-Link data and acknowledge formats

18.2 OS-Link speed

The OS-Link data rate is 19.641698 Mbits/s, but will operate correctly when connected to 20 Mbits/
s OS-Links.

0 1 2 3 4 5 6 7

Data Ack

H H L LH

ST20-TP2

125/205



18.3 OS-Link connections

Links are TTL compatible and intended to be used in electrically quiet environments, between
devices on a single printed circuit board or between two boards via a backplane. Direct connection
may be made between devices separated by a distance of less than 300 mm. For longer distances
a matched 100 ohm transmission line should be used with series matching resistors (RM), see
Figure 18.3. When this is done the line delay is less than 0.4 bit time to ensure that the reflection
returns before the next data bit is sent. Buffers may be used for very long transmissions, see
Figure 18.4. If so, their overall propagation delay should be stable within the skew tolerance of the
link, although the absolute value of the delay is immaterial.

For development support using the standard SGS-THOMSON interfaces the OS-Link should be
series terminated as in Figure 18.3.

Figure 18.2 OS-Links directly connected

Figure 18.3 OS-Links connected by transmission line

Figure 18.4 OS-Links connected by buffers

ST20-TP2 ST20-TP2

OSLinkOut

OSLinkIn

OSLinkIn

OSLinkOut

ST20-TP2 ST20-TP2

OSLinkOut

OSLinkIn

OSLinkIn

OSLinkOut

RM=75Ω Z0=100Ω

RM=75ΩZ0=100Ω

ST20-TP2 ST20-TP2

OSLinkOut

OSLinkIn

OSLinkIn

OSLinkOut

Buffers

ST20-TP2

126/205



19 Link IC interface
The Link-IC interface provides a byte wide data input from the Link-IC. It writes packets to memory
from the MPEG stream arriving on the Link-IC input pins. The interface between the CPU and this
module is provided using a channel interface as described in Appendix A. The base address for the
input buffer in the CPU memory space, and the packet size to transfer, are set by the in (input)
instruction from the CPU to the Link-IC interface channel. For channel mapping refer to the mem-
ory map.

19.1 External interface

19.2 Link IC interface operation

The MPEG stream is a series of packets of fixed length arriving at fixed intervals. The packets are
188 bytes long and may also contain 16 null bytes which may be anywhere in the packet including
at the beginning or at the end of the packet and may or may not be in a group. A null byte is indi-
cated by LByteClkValid being low at the rising edge of LByteClk .

Buffering is provided so that 80 bytes of a packet can arrive before a transfer is initiated and the
packet successfully written to memory.

When a transfer is initiated, the Link-IC interface waits until it detects the beginning of a packet and
then transfers all the bytes of the packet to the memory buffer specified. If the star t of a new packet
is detected before all the bytes of an incident packet are received, the Link-IC will start again with
the new packet and the same memory buffer and will not signal completion of the transfer until a
whole packet has been received.

All of the signals on the Link-IC external interface are assumed to be synchronous to, and are sam-
pled on, the positive rising edge of the LByteClk signal. Data and control signals are clocked into
the input FIFO on each rising edge of LByteClk if the LByteClkValid signal is high. When the
FIFO is full, input data is discarded. LByteClkValid is a masking signal and if low on the rising
edge of LByteClk , nothing is clocked in.

When the software executes an input from the Link-IC module the interface removes data from the
input FIFO until a low to high transition of the LPacketClk signal is seen. This data byte and all fol-
lowing bytes for which the LByteClkValid signal is high are transferred to the memory write FIFO
until the programmed packet size has been input. Data is written into memory by the Link-IC inter-
face module as 32-bit words whenever the FIFO level exceeds 4 bytes.

Pin In/Out Function

LByteClk in Link IC byte clock

LByteClkValid in Link IC byte clock valid

LData0-7 in Data input from Link-IC

LError in Link IC packet error

LPacketClk in Link IC packet clock

Table 19.1 Link IC interface pins

ST20-TP2

127/205



When the programmed number of bytes have been input the remaining data in the FIFO is written
to memory as 32-bit words, where possible, with a part-word write to flush remaining bytes from the
FIFO. An acknowledge to the channel input is sent to the CPU when all the received data has been
written to memory.

At any time during the reception of a packet, LError may be asserted. This indicates that the
packet being received is in fact in error and must be discarded. If this happens the Link-IC interface
stops writing the current packet to memory and resets itself so that the next packet is written to the
same memory buffer. If the LError signal is active while LPacketClk is inactive then the signal is
ignored. If LError is active on the low to high transition of LPacketClk then the data input is never
started and again the module waits for the next packet.

Note to software writers

The Link-IC interface module input FIFO of 80 locations allows a small amount of time for the soft-
ware to deal with the packet just received and to execute the next input from the Link-IC before
data is lost. This allows software to be written which can keep up with the packet rate without data
loss.

ST20-TP2

128/205



20 MPEG DMA controllers
Interfacing to the external application ICs such as the MPEG Audio, MPEG Video or a combined
chip is provided in two ways.

• Memory mapped - the device is memory mapped into EMI bank2. The notCS0-1 strobes
are used to provide the chip select strobes needed to access the registers of the IC or ICs.

• DMA output - Two MPEG DMA controllers can be used to transfer data from memory to a
DMA interface on the MPEG controller in response to a request strobe. The MPEG DMA
controller transfers the data to a fixed memory address which is decoded by the EMI and
causes an access in bank 2 with one of the notCDSTRB0-1 strobes active.

Two MPEG DMA controllers (MPEG0-1) are present on the ST20-TP2 which vary only in the fixed
address to which data is transferred.

The interface between the CPU and the MPEG DMA controllers is provided using a channel inter-
face, as described in Appendix A, to initiate the DMA transfer. Control registers are provided to
allow the characteristics of each to DMA transfer burst in response to a request to be programmed,
and the transfer to be suspended. The base address for the output buffer in the memory space and
the size of transfer in bytes are set by the out (output) instruction from the CPU to the MPEG DMA
controller channel. For channel mapping refer to the Memory Map.

20.1 External interface

The MPEG DMA module uses the EMI to decode the write address from the DMA controllers to
activate the correct notCDSTRB signal during an access. The notCDREQ0-1 are asynchronous
signals from the MPEG decoder which request the next burst of data when active.

Notes

1 These signals are common to the EMI and the MPEG DMA interface.

20.2 MPEG DMA transfers

To perform a DMA transfer to an MPEG decoder DMA data port connected to the EMI the MPEG
DMA controller must first be initialized and then an output to the MPEG DMA channel be executed
by the CPU.

The control registers are shown in section 20.3.

The MPEGBurstSize register controls the number of bytes transferred each time the DMA control-
ler samples the notCDREQ signal active. This should be programmed with a burst size appropriate
for the MPEG decoder DMA port.

Pin In/Out Function Notes

notCDREQ0-1 in Application IC compressed data request

notCDSTRB0-1 out Application IC compressed data strobe 1

notCS0-1 out Application IC chip select 1

Table 20.1 MPEG DMA pins

ST20-TP2

129/205



After sampling the notCDREQ signal active the signal is ignored until the burst size in bytes has
been transferred, the last write cycle of the burst has completed, and the hold-off time (in cycles
from the last write cycle completion) programmed in the MPEGHoldoff register has expired. If the
notCDREQ signal is active after this time then the DMA controller will transfer another burst of
data.

The MPEGSuspend register bit must be set to 0 before a transfer is initiated, otherwise the trans-
fer will not start.

Note, the MPEGBurstSize and MPEGHoldoff registers are not altered by transfer operations and
do not have to be set up before each transfer.

The final stage of initializing the DMA transfer is to execute an output to the MPEGDMA channel
which sets up the source base address and the DMA transfer size. This also deschedules the soft-
ware until the transfer is complete.

The maximum transfer size is 65535 bytes.

The DMA module will only transfer data when the appropriate notCDREQ input is active after the
output to the DMA channel. The DMA then transfers the programmed burst size in bytes of data to
the location set for the MPEG DMA controller. Note, if there are less than BurstSize bytes left to
transfer then only these bytes will be transferred.The destination address is not incremented.

The MPEG DMA controller fetches words from the source address whenever possible and buffers
these to perform word writes to the destination address whenever possible. The EMI will break
these word or part word writes into multiple byte writes since the bank width for bank 2 would nor-
mally be programmed to be eight bits.

During a transfer, DMA operations can be suspended by setting the MPEGSuspend register bit to
a 1. Note that although no new write transfers will be started after this bit has been set, software
must wait for a time long enough for the current write transfer to finish before assuming that no
DMA writes are being performed. This time is TBD. Transfers will start again when the MPEGSus-
pend register bit is set to 0.

When the number of bytes programmed in the out instruction have been transferred the channel
output is acknowledged to the CPU and the software rescheduled.

The destination address for the data and hence the strobe used as the DMA data strobe are fixed
in the two MPEG DMA controllers and are shown in Table 20.2. This table also shows which notC-
DREQ strobe is connected to the MPEG DMA controllers.

Timings of the notCDSTRB0-1 lines are programmablevia the EMI configuration.See “Support for
MPEG application devices” on page 61.

The base addresses for the MPEG DMA control registers are given in the Memory Map.

MPEG DMA controller Write address DMA data strobe DMA request strobe

0 #00002000 notCDSTRB0 notCDREQ0

1 #00003000 notCDSTRB1 notCDREQ1

Table 20.2 MPEG DMA controllers write addresses and strobes

ST20-TP2

130/205



20.3 MPEG control registers

MPEGBurstSize register

The MPEGBurstSize register is a write only register and controls the number of bytes transferred
each time the DMA controller samples the notCDREQ signal active.

This should be programmed with a burst size appropriate for the MPEG decoder DMA port.

MPEGHoldoff register

The MPEGHoldoff register is a write only register and must be programmed with the hold-off time
from the end of one burst to re-sampling.

MPEGSuspend register

The MPEGSuspend register is a write only register and determines whether DMA is enabled (nor-
mal operation) or suspended.

MPEGBurstSize MPEGDMA base address + #00 Write only

Bit Bit field Function

4:0 BurstSize4:0 DMA transfer burst size in response to notCDREQ0-1 .

BurstSize4:0 Transfer
00000 32 bytes per burst
00001 1 byte per burst
00010 2 bytes per burst
... ...
11111 31 bytes per burst

7:5 RESERVED. Write 0

Table 20.3 MPEGBurstSize register format

MPEGHoldoff MPEGDMA base address + #04 Write only

Bit Bit field Function

4:0 Holdoff4:0 DMA transfer hold-off time from the end of one burst to re-sampling
notCDREQ0-1 .

Holdoff4:0 Hold-off time in system clock cycles
00000 0 cycles
00001 1 cycle
00010 2 cycles
... ...
11111 31 cycles

7:5 RESERVED. Write 0

Table 20.4 MPEGHoldoff register format

ST20-TP2

131/205



MPEGSuspend MPEGDMA base address + #08 Write only

Bit Bit field Function

0 Suspend Enable DMA operations.

0 suspend DMA
1 enable DMA (normal operation)

7:1 RESERVED. Write 0

Table 20.5 MPEGSuspend register format

ST20-TP2

132/205



21 DVB decryption controller
This chapter describes the Digital Video Broadcasting (DVB) common decryption controller
(DVBC).

The DVBC reads packets containing encrypted data from memory, performs a decrypting opera-
tion, by means of the DVB common descrambling algorithm, and writes the decrypted data into
memory. Therefore there is an input address, an output address and a transfer size that need to be
specified. A decr yption key must be provided for the decrypting operation.

The interface between the CPU and the DVBC is provided using a channel interface to initiate the
DMA transfer. Control registers are provided for the transfer destination address of the data, and
the DVB key set up prior to a DMA operation. The base address for the input buffer in the memory
space, from which the encrypted source data is taken, and the size of transfer in bytes are set by
the out (output) instruction from the CPU to the DMA controller channel.

DVBC implements the Digital Video Broadcasting (DVB) common descrambling algorithm. The
DVBC decrypts input packets of up to 255 bytes in blocks of 8 bytes. If the packet size, in bytes, is
not a multiple of 8-byte blocks, the last block will contain less than 8 bytes and is called the ‘residue’
which is handled in conformance with the DVB specification.

21.1 Decrypting blocks of data

To perform a DMA transfer through the DVBC, from one memory buffer to another, the DVBC must
first be initialized and then an output to the DVBC channel executed by the CPU.

The control registers are shown in section 21.2.

The DVBCDest register must be written with the address of the first byte of the destination buffer
before each transfer. Then the 64-bit DVB key must be written into the DVBCKeyLSW and DVB-
CKeyMSW registers. The DVBCKey register is not altered during a transfer and need not be re-
written before each transfer unless a new key is to be used.

The final stage of initializing the DVBC DMA transfer is to execute an output to the DVBC DMA
channel which sets up the source base address and the DMA transfer size. This also deschedules
the software until the transfer is complete.

The maximum transfer size is 255 bytes.

After the out instruction has been executed by the CPU the transfer is started. The DVBC DMA
controller fetches 64-bit blocks as pairs of words from the source address. It then performs a DVB
decryption on blocks of 8 bytes and carries out word writes in pairs to the destination address
whenever possible.

When the number of bytes programmed in the out instruction have been transferred the channel
output is acknowledged to the CPU and the process which initiated the decryption operation is
rescheduled.

The base address for the DVBC control registers are given in the ST20-TP2 memory map.

ST20-TP2

133/205



21.2 Control registers

DVBCDest register

This register is write only and determines the DMA transfer destination address of the data block.

DVBCKeyLSW register

This register is write only and determines the least significant word (LSW) of the 64-bit decryption
key.

DVBCKeyMSW register

This register is write only and determines the most significant word (MSW) of the 64-bit decryption
key.

DVBCDest DVBC base address + #00 Write only

Bit Bit field Function

31:0 DMADestination DMA transfer destination address of block to decrypt

Table 21.1 Bit fields in the DVBCDest register

DVBCKeyLSW DVBC base address + #08 Write only

Bit Bit field Function

31:0 KeyLSW DVBC 64-bit key least significant w ord.

Table 21.2 Bit fields in the DVBCKeyLSW register

DVBCKeyMSW DVBC base address + #0C Write only

Bit Bit field Function

31:0 KeyMSW
DVBC 64-bit key most significant w ord.

Note, parity bits in bits 0, 8, 16, 24 are ignored

Table 21.3 Bit fields in the DVBCKeyMSW register

ST20-TP2

134/205



22 Block move DMA
This module copies blocks of data from one byte address to another in memory.

A source address, a destination address and a count of the number of bytes to be transferred must
be specified. The base address for the output buffer in the memory space, from which the block
move source data is taken, and the size of transfer in bytes are set by the out (output) instruction
from the CPU to the DMA controller channel. For channel mapping see the Memory Map.

The interface between the CPU and the block move module is provided using a channel interface
as described in Appendix A to initiate the DMA transfer.

22.1 Moving blocks of data

To perform a DMA block move, from one memory buffer to another, the block move module must
first be initialized and then an output to the block move channel executed by the CPU.

The configuration register is shown in section 22.2. The BMDmaAddress register must be written
with the address of the first byte of the destination buffer before each transfer. Note, this must be
done before every transfer because after the transfer the value is left undefined.

The final stage of initializing the block move DMA transfer is to execute an output to the block move
DMA channel which sets up the source base address and the DMA transfer size. This also de-
schedules the software until the transfer is complete.

The maximum transfer size is 65535 bytes.

After the out instruction has been executed by the CPU the transfer is started. The block move
DMA controller fetches 64-bit blocks as pairs of words from the source address whenever possible,
and buffers the bytes before performing word writes in pairs to the destination address.

When the number of bytes programmed in the out instruction have been transferred the channel
output is acknowledged to the CPU and the software rescheduled.

22.2 Configuration register

22.2.1 BMDmaAddress register

The BMDmaAddress register is a write only register and must be written with the first byte of the
destination buffer before each transfer. Note, after the transfer this value is left undefined.

BMDmaAddress BM base address + #00 Write only

Bit Bit field Function

31:0 DestAddress Address of block move destination.

Table 22.1 BMDmaAddress register format

ST20-TP2

135/205



23 Teletext interface
The ST20-TP2 has a teletext interface (TtxtInt) which interfaces to a teletext peripheral. It trans-
lates teletext data to/from memory. It has two modes of operation, which is determined by the set-
ting of the TtxtMode register:

• Teletext data out

• Teletext data in

In teletext data out mode, the teletext interface uses DMA to retrieve teletext data from memory,
and serializes the data for transmission to a composite video encoder.

In teletext data in mode teletext data is extracted from the composite video signal and is fed into the
teletext interface as a serial stream. The teletext interface assembles the data and uses DMA to
pass this data to memory.

The interface between the CPU and the teletext interface is not a channel model but is based on an
interrupt mechanism.

23.1 Teletext interface pins

23.2 Teletext data out

In this mode, the teletext interface uses DMA to retrieve teletext data from memory, and serializes
the data for transmission to a composite video encoder. Clock run-in bits are added to the start of
the serial stream, as defined in the ETSI specification1.

The CPU is responsible for assuring the correct programming of the video encoder. The encoder
must be programmed such that it makes requests for teletext lines only on pre-specified lines.

The TtxtEvennotOdd input from the encoder is used to interrupt the CPU allowing software con-
trol of the teletext out DMA initialization.

The CPU initiates the output of a number of lines of teletext data. These lines are output when suit-
able requests are made from the video encoder. The teletext interface uses the device protocols to
allow control by the CPU.

1. Specification for conveying ITU-R Systems B Teletext in Digital Video Broadcasting (DVB) bitstreams.

Pin In/Out Function

TtxtData in/out Teletext serial data

TtxtEvennotOdd in Teletext even not odd

TtxtRequest in
Teletext serial data request input. This becomes the hsync signal when the
teletext interface is operating in the IN mode.

TtxtClockIn (PIO4[2]) in Teletext input clock

Table 23.1 Teletext interface pins

ST20-TP2

136/205



23.2.1 Format of the output line

One teletext line is output as a stream of 360 bits, at an average frequency of 6.9375 MHz. The line
is composed of two bytes of clock run-in (16 bits), followed by the data extracted from the transport
packet. The data field consists of the framing_code, magazine_and_pac ket_address, and
data_block fields . These three fields provide the block of teletext data.

The clock run-in is composed of two bytes of ‘10101010’. The framing code, which is extracted
from the data_field, should be a single byte of ‘11100100’2. Hence one line of teletext output will be
composed as in Figure 23.1. The data will be transmitted from least significant bit (LSB) to most
significant bit (MSB).

Figure 23.1 Line output

The 360 bits of output data are defined to be nine 37-bit sequences , ending with one 27-bit
sequence. Within each sequence, all bits are transmitted using four 27 MHz cycles, except bits 10,
19, 28 and 37, which are transmitted using three 27 MHz cycles, see Figure 23.2.

Figure 23.2 Output data

2. Document SPB492, ‘Teletext Specification’. European Broadcasting Union, Geneva, December 1992.

data field
(43 bytes, 344 bits)

8 bits 16 bits 320 bits

framing code
magazine and packet address data block

1010101010101010

clock run-in

LS
B

M
S

B

Teletext line
(45 bytes, 360 bits)

Clockin

TtxtRequest

TtxtData Invalid Bit 1 Bit 2 Bit 10

27MHz

ST20-TP2

137/205



23.3 Teletext data in

Teletext data is extracted from the composite video signal. This data is fed into the teletext interface
as a serial stream. The teletext interface assembles the data and uses DMA to pass this data to
memory.

Horizontal and vertical sync information is extracted from a composite video signal. This defines
the field and line positions .

An event on TtxtEvennotOdd causes the line counter to reset. Every successive hsync pulse
increments this counter. When the current line is equal to that specified in the TtxtInStartLine reg-
ister, the line is input as teletext data. In order to ignore color-burst data etc, both the TtxtData
input and the TtxtClock in signals will be gated off for a number of 27 MHz clock cycles after
hsync, where the number of cycles is specified in the TtxtInCbDelay register. After the color burst
blanking, the data on TtxtData will be shifted in on the rising edge of the teletext clock input. A valid
teletext line will be determined on the first occurrence of the framing code contained within the shift
register. Only at this point will the line be considered valid for writing to memory.

23.4 Teletext interrupt control

The teletext interface can be programmed, via the TtxtIntEnable register to interrupt the CPU
whenever one of the following occurs:

• a teletext in/out data transfer completes

• the current video frame toggles odd to even or even to odd

The interrupt status contained within the TtxtIntStatus register is masked with the TtxtIntEnable
register. The interrupt bits are reset when the CPU writes to the specific acknowledgement register,
or when a DMA operation completes.

23.5 Control registers

The teletext interface is programmable via configuration registers.

TtxtDmaAddress register

The TtxtDmaAddress register is a 32-bit read/write register. It specifies the DMA star t location of
data to/from memory.

TtxtDmaCount register

The TtxtDmaCount register specifies the number of bytes to be transferred to/from memory during
the DMA operation. For teletext out operation, this value must be a multiple (n) of 46 bytes, where n
is the number of lines to output. For teletext in operation, the value must be a multiple (n) of 42
bytes, where n is the number of teletext lines to input.

TtxtDmaAddress Ttxt base address + #00 Read/Write

Bit Bit field Function

31:0 DmaAddress DMA start location of data to/from memory.

Table 23.2 TtxtDmaAddress register format

ST20-TP2

138/205



A write to this register also arms the teletext in/out operations.

TtxtOutDelay register

This register is used to program the delay, in 27 MHz clock periods, from TtxtRequest to TtxtData .

TtxtInStartLine register

This register is used to specify the first line number to input teletext data.

TtxtInCbDelay register

This register is used during teletext in mode to specify the delay from a rising edge on hsync to
when the teletext interface starts to look for the framing code. This delay is in 27 MHz cycles, and is
used to mask out the color burst present at the beginning of every line. The default value is 270
(#10E), which provides a delay of 10 µs.

TtxtDmaCount Ttxt base address + #04 Read/Write

Bit Bit field Function

10:0 DMACount
Specifies the number of bytes to be transferred during the DMA operation to/from
memory and starts the DMA.

Table 23.3 TtxtDmaCount register format

TtxtOutDelay Ttxt base address + #08 Read/Write

Bit Bit field Function

8:0 Delay
Delay from the rising edge of TtxtRequest to the first valid teletext data bit in
27MHz clock periods.

Table 23.4 TtxtOutDelay register format

TtxtInStartLine Ttxt base address + #0C Read/Write

Bit Bit field Function

8:0 StartLineIn Delay from toggle in TtxtEvennotOdd to first valid teletext line.

Table 23.5 TtxtInStartLine register format

TtxtInCbDelay Ttxt base address + #10 Read/Write

Bit Bit field Function

8:0 CbDelay Delay (in 27MHz cycles) from hsync pulse to enable TtxtData in/TtxtClock .
Used to mask color burst.

Table 23.6 TtxtInCbDelay register format

ST20-TP2

139/205



TtxtMode register

This register sets the mode of the teletext interface, to teletext data out or teletext data in. It also
specifies whether teletext data in memory is for odd or even fields .

TtxtIntStatus register

This register gives the current state of the teletext interface operations.

TtxtIntEnable register

This register allows masking of the TtxtIntStatus register.

TtxtAckOddEven register

This register is address sensitive only and clears the Odd and Even bits of the TtxtIntStatus reg-
ister.

TtxtMode Ttxt base address + #14 Read/Write

Bit Bit field Function

0 Mode

Teletext interface mode

0Teletext OUT enabled

1Teletext IN enabled

1 OddEven

Specifies odd or even fields of teletext data.

0Teletext data to/from memory is for EVEN fields

1Teletext data to/from memory is for ODD fields

Table 23.7 TtxtMode register format

TtxtIntStatus Ttxt base address + #18 Read

Bit Bit field Function

0 InOutComplete Teletext in/out operation completed. Set at reset.

1 Odd Current (video encoder) field is ODD.

2 Even Current (video encoder) field is EVEN.

Table 23.8 TtxtIntStatus register format

TtxtInttEnable Ttxt base address + #1C Read/Write

Bit Bit field Function

0 InOutCompleteEn Enable teletext in/out operation completed interrupt.

1 OddEnable Enable odd field interrupt.

2 EvenEnable Enable even field interrupt.

Table 23.9 TtxtIntEnable register format

TtxtAckOddEven Ttxt base address + #20 Write

Bit Bit field Function

AckOddEven Acknowledge odd/even toggle interrupt.

Table 23.10 TtxtAckOddEven register format

ST20-TP2

140/205



TtxtAbort register

This register is write only and address sensitive only. A write to this address causes the teletext
interface to abort the current operation. The state of the teletext in/out operation is reset, and the
teletext data transfer is interrupted. The DMA engine is reset only after the current word read/write
is complete.

TtxtAbort Ttxt base address + #24 Write only

Bit Bit field Function

Abort Abort current operation.

Table 23.11 TtxtAbort register format

ST20-TP2

141/205



24 Section filter
The section filter module parses the section information in an MPEG-2 transport stream packet and
detects sections that need to be processed. The transport packet consists of: a header containing
information on the contents of the packet; an optional adaptation field; and a payload field. The
payload field can contain stream data, such as video or audio MPEG compressed data, or data
sections which are sections from a data table. These sections have a fixed format and are defined
by the MPEG-2 systems specification1.

The data sections can arrive at a faster rate than the system can process so a filter selects only
those sections that are required and thus reduces the data rate. In addition, the sections that are
used to construct the tables are repeated regularly so it is possible to build up an information table
by capturing a proportion of them using one set of values in the filters, and then capturing the
remainder of the table by setting the filters up to select the missing sections.

The filter system looks for a match to a total of 32 filters of 8 bytes each. Each bit of each of the fil-
ters is individually maskable so that no comparison is performed on that bit of the filter. The filter is
interfaced to the system across a DMA engine which internally contains all the necessary registers.
In addition to the filter ing operation this system performs CRC checking on the sections which
match a filter. CRC checking is performed on 1 byte per system cycle, taking 4 cycles to process 32
bits.

24.1 Section filter configuration register s

The section filter is prog rammable via configuration registers. In addition the section filter core
CAM (content addressablememory) and RAM arrays appear as if they were a large bank of config-
uration registers. CAM is used to store the matched patterns and to perform the matching function
when match data are presented to the CAM. RAM is used to store the mask bits to mask individual
CAM bits during the match operations. Each 64-bit line of the filter is mapped as two 32-bit words
in the CAM address space and two 32-bit words in the RAM address space.

The base addresses for the section filter registers are given in the Memory Map chapter.

24.1.1 Core memory mapped registers

Each section filter entr y is composed of four 32-bit words in memory, with each group of four words
aligned on a 4-word boundary. Within the 4-word group the section filter is composed of two 32-bit
words dedicated to the storage of data, and two 32-bit words dedicated to the storage of masking
information. An overall view of the section filter as it appears in the memory map is shown in
Figure 24.1.

1. Generic Coding Of Moving Pictures And Associated Audio: Systems, Recommendation H.222.0, ISO/IEC
13818-1

ST20-TP2

142/205



Figure 24.1 CAM memory map

SFFilterDataLS and SFFilterDataMS

The SFFilterDataLS and SFFilterDataMS registers are the least significant word and most signifi-
cant word of the SFFilterData register. This enables the least significant or most significant w ord to
be written independently without affecting the other word.

SFFilterMaskLS and SFFilterMaskMS

The SFFilterMaskLS and SFFilterMaskMS registers are the least significant word and most sig-
nificant word of the SFFilterMask register. This enables the least significant or most significant
word to be written independently without affecting the other word.

SFFilterDataLS SF base address + #000 to 1F0 + #00 Read/Write

Bit Bit field Function

31: 0 FilterDataLS Least significant w ord (bits 31:0) of the filter data.

Table 24.1 SFFilterDataLS register format - 1 register per section filter

SFFilterDataMS SF base address + #000 to 1F0 + #08 Read/Write

Bit Bit field Function

31: 0 FilterDataMS Most significant word (bits 63:32) of the filter data.

Table 24.2 SFFilterDataMS register format - 1 register per section filter

SFFilterMaskLS0

SFFilterMaskMS0

SFFilterDataMS0

SFFilterDataLS31

SFFilterMaskLS31

SFFilterMaskMS31

SFFilterDataMS31
Section Filter 31

Section Filter 0

Each word in the filter is 32 bits wide

1 + # FC

1 + # F8

1 + # F4

1 + # F0

Address: SF base address + #000

CAM address bit

0 + # 0C

0 + # 08

0 + # 04

0 + # 00

8......7...0

Read/Write

SFFilterDataLS0

ST20-TP2

143/205



Bits set to 1 in the SFFilterMask registers enable the corresponding bits in the SFFilterData regis-
ters. Bits set to 0 have no effect (‘don’t care’).

24.2 DMA registers

The contents of the DMA registers are undefined while DMA operations are in progress, with the
exception of the Busy bit of the SFStatus register.

SFDmaAddress register

The SFDmaAddress register holds the address of the next byte to be read from memory by the
DMA operation.

At the start of the section filter ing operation it is written with the address of the first byte of the first
section of the transport packet to be filtered. This sets the initial address for the section filter DMA
operations and initializes the module.

Note: While section filter ing is being performed the contents of this register should not be read.
After section filter ing is suspended by an end of packet (EOP) or match condition the contents of
this register are undefined.

SFMode register

This register sets the mode of the filter. The section filter can be set to filter and/or CRC chec k.

SFFilterMaskLS SF base address + #000 to 1F0 + #04 Read/Write

Bit Bit field Function

31: 0 FilterMaskLS Least significant w ord (bits 31:0) of the filter mask.

Table 24.3 SFFilterMaskLS register format - 1 register per filter

SFFilterMaskMS SF base address + #000 to 1F0 + #0C Read/Write

Bit Bit field Function

31: 0 FilterMaskMS Most significant word (bits 63:32) of the filter mask.

Table 24.4 SFFilterMaskMS register format - 1 register per filter

SFDmaAddress SF base address + #200 Read/Write

Bit Bit field Function

31: 0 DmaAddress Address of the next byte to be read from memory by the DMA.

Table 24.5 SFDmaAddress register format

ST20-TP2

144/205



If CRC checking is on then all sections that match one or more filters are CRC checked before flag-
ging the match and stopping the filtering.

SFStart register

This register is used to hold the byte index of the first byte of the section header that is being
matched.

The byte index is used to determine the end of packet conditions. At the start of the section filter ing
operation it is written with the byte index of the first byte of the first section of the transport packet to
be filtered or CRC checked or filtered and CRC checked. The transport packet is a byte array of
188 bytes (first byte index = 0).

After section filter ing operations, when the Busy bit is reset, this register contains the byte index of
the first byte of the section that has just been processed.

If a match condition has occurred then the filtering is restarted by re-writing the SFStart register
with the byte index of the next section to process.

SFMode SF base address + #204 Read/Write

Bit Bit field Function

0 DisableCRC Sets CRC checking on or off.

0 CRC check enable
1 CRC check disable (CRC checking off)

1 DisableFilter Sets filter on or off .

0 filter enable
1 filter disable

Table 24.6 SFMode register format

SFStart SF base address + #208 Read/Write

Bit Bit field Function

7:0 ByteIndex Byte index of the first byte of the section header that is being matched.

Table 24.7 SFStart register format

ST20-TP2

145/205



SFStatus register

This register gives the current state of the section filter ing and CRC operations. The state of the
Match and EOP bits are undefined when the section filter is in oper ation (i.e. Busy bit is 1).

SFMatch register

This register gives the state of the filters after a match has occurred. Each bit of the register corre-
sponds to one of the filters. When a bit is set, it signals that a match has occurred with the corre-
sponding filter and that the corresponding bit was set in the SFMatchMask register.

SFStatus SF base address + #20C Read only

Bit Bit field Function

0 Busy Indicates that the section filter is performing a section filter ing operation.

0 Not busy - the other status bits are valid
1 Busy - the other status bits are invalid

1 Match Indicates a match against one or more filters has occurred.

0 No match
1 Match

2 EOP Specifies an end of packet (EOP), i.e. it indicates the section is the last in this
packet or that the section is split over the end of packet.

0 Not end of packet
1 End of packet - the Stuffing , HeaderError and

LengthError bits are valid.

3 Stuffing Indicates that the EOP bit was set because a stuffing byte (first byte of section =
#FF) was present.

0 First byte of last section processed < #FF
1 First byte of last section processed = #FF

4 HeaderError Indicates that the section header is incomplete in this packet.

0 Section header complete in this packet
1 Section header incomplete in this packet

5 LengthError Indicates that the section is incomplete in this packet.

0 Section complete in this packet
1 Section incomplete in this packet

6 CRCError Indicates a CRC error.

0 No CRC error
1 CRC error

Table 24.8 SFStatus register format

ST20-TP2

146/205



The contents of this register are undefined unless the Busy bit is cleared and the Match bit of the
SFStatus register is set.

SFMatchMask register

This register allows the filters to be masked during the filter ing operations. Each bit of the register
corresponds to one of the filters. When a bit is set, the corresponding filter is enab led for matching
operations.

This register should be initialized before starting the filter ing. It is not changed by the filter ing oper-
ations. The contents of this register are valid at all times but the register should not be read during
filter ing as this may slow the DMA accesses.

SFPartRemainder register

This register holds the value of the CRC partial remainder register. This register is read when the
‘end of packet’ and an ‘error length’ condition occurs.

This register is defined only when CRC checking is enabled (DisableCRC bit in the SFMode regis-
ter is 0).

Note, this register must only be written during the section filter initialize phase, before writing the
SFStart register.

SFSectionLength register

The CPU may restart the section filter to CRC check only part of a section by disabling the filter
(DisableFilter bit set to 1). The SFSectionLength register contains the length of the rest of the
section to be CRC checked.

SFMatch SF base address + #210 Read only

Bit Bit field Function

31-0 Filter0-31Match Filter match bits - filter has matched data in the current section.

0 No match - filter did not match or is masked
1 Match - filter matched and was not masked

Table 24.9 SFMatch register format

SFMatchMask SF base address + #214 Read/Write

Bit Bit field Function

31-0 Filter0-31MatchMask Filter match mask bits - section filter is carrying out a section filter ing operation.

0 disable filter
1 enable filter

Table 24.10 SFMatchMask register format

SFPartRemainder SF base address + #218 Read/Write

Bit Bit field Function

31-0 CRCpartialRemainder Current value of the CRC remainder.

Table 24.11 SFPartRemainder register format

ST20-TP2

147/205



In CRC mode, when the EOP condition occurs and the section is not complete the DMA engine
updates the SectionLength field with the length of the rest of the section to be CRC checked. The
CPU reads this value and puts it back when the rest of the section is available.

SFDataToMatch register

This register holds the data which is to be matched. It allows the CPU to filter data directly without
DMA memory access. This is intended to be used only for test purposes.

24.3 Section filtering operation

The section filter CAM and Mask memor y arrays must be configured with the filter data bef ore a
section matching operation can be performed. This is generally done during initialization of the
application in the set top box. The filters then need to be updated by the application to capture the
section information required for service information table updates and other data.

Prior to each section filter ing operation the SFMatchMask register must contain the mask for the
set of filters to filter the sections of the ne xt transport packet payload. Matching operations are initi-
ated by the ST20-TP2 writing to the SFDmaAddress register and the SFStart registers. Writing to
the SFDmaAddress register initializes the DMA state machines, while writing to the SFStart regis-
ter triggers the DMA operations.These registers give the module the address of the first byte of the
first section in the packet and the byte index in the transport packet.

When CRC mode is enabled and the filter operation is disabled, the section filter will CRC check
only the section whose remaining length is readable from the SFSectionLength register.

If CRC checking and filter ing is enabled, the section filter module parses the section header to read
8 bytes from the start of the section into the input data register for matching. These 8 bytes consist
of the first byte of the section and the fourth to tenth bytes.

When CRC mode is enabled, if a match occurs the entire section is CRC checked then DMA oper-
ations are stopped and the Busy bit is cleared. If during the CRC check the end of packet condition
occurs (section data not completely contained in the current packet) DMA stops and the Busy bit is
cleared. The SFStatus register can then be read to determine the state of the DMA operation.

When CRC mode is not enabled, if a match occurs the module stops DMA operations and the
Busy bit is cleared. The SFStatus register can then be read.

In the case of a match occurring the byte index of the first byte of the current section can be read
from the SFStart register and the length of the matching section read from the Length field of the
section in memory. This data is stored so that a subsequent section processing task can extract the
matching section records from the transport packets.

SFSectionLength SF base address + #21C Read/Write

11:0 SectionLength Length of the rest of the section to be CRC checked.

Table 24.12 SFSectionLength register format

SFDataToMatch SF base address + #220 Read/Write

Bit Bit field Function

31-0 MatchData Data to be matched.

Table 24.13 SFDataToMatch register format

ST20-TP2

148/205



To restart matching operations after a match the SFStart register needs to be re-written without
writing the SFDmaAddress register.

There are four cases in which the end of packet condition can occur:

1 If the first byte of a section to be matched has a value of 0xFF the matching is complete on
this packet. The Busy bit is reset and the EOP bit set.

2 The section header of the current section runs beyond the end of the packet. In this case
the bytes of the header in the current transport packet will need to be stored until the
remainder of the header is available in the next transport packet for the same program ID
(PID).

3 The current section header is complete in this transport packet but the length of the section
indicates that the section is completed in the next transport packet for the same PID.

4 The current section exactly fits the remaining length of the transport packet.

If no match occurs on the current section then the section length field of the section is used to cal-
culate the address of the first byte of the next section and the filter operation repeated. A check is
made to ensure that the section or the section header does not run beyond the end of a transport
packet, if it does, the section filter stops and the Busy bit is cleared. If the section header runs
beyond the end of the packet the section header information from the current packet is inserted in
the next packet in front of the remainder of the section header before the section filter DMA is
started.

If CRC is enabled, the CRC check will be completed on the remaining bytes of the section and the
result checked against the CRC field at the end of the section. The result of the CRC is indicated by
the CRCError bit in the SFStatus register.

The SFStatus register gives the reason for the section filter ing operation stopping.

Sections that match the filters are moved into a queue in memory, with a record of the filter match
data and the PID for further processing to produce the data tables.

ST20-TP2

149/205



25 IEEE 1284 port (PC parallel port)
An 8-bit wide parallel interface supports a high speed data input/output port to/from the set top
receiver and is capable of interfacing to a PC to the IEEE 1284 standard. The interface has a dedi-
cated DMA controller to transfer data to/from memory to the port with little CPU overhead.

The IEEE 1284 specification1 defines a standard for an asynchronous, interlocked, bidirectional
parallel communications between a host and a peripheral.

The 1284 port supports all IEEE 1284 modes of communication (except EPP mode) with appropri-
ate software control and use of DMA transfers where appropriate to increase throughput and
decrease system load. The port has three additional non IEEE 1284 compliant modes to support
transport stream output modes and allows software control of the port.

Data may be accessed/sourced from either internal registers or via a DMA transfer.

DMA transfers are not word aligned and may transfer between 1 and 65535 bytes. The DMA may
only operate in one direction at any one time.

The method used to indicate the port has completed a transfer or has an event which needs servic-
ing is based on an interrupt mechanism.

Note, the pins meet IEEE1284 level 2 device requirements and are designed to directly drive a
1284 compliant cable with external matching resistors.

1. IEEE Standard 1284-1994: IEEE Standard Signalling method for a Bidirectional Parallel Peripheral Interface
for Personal Computers.

ST20-TP2

150/205



25.1 1284 port pins

The nine control pins have different functions depending on the mode of operation of the port inter-
face. The mapping of the 1284 port pins to the function of the pin in a specific mode is given in
Table 25.1 below. For full details of the 1284 signal functions in each mode refer to the IEEE Stan-
dard 1284-1994. The different modes of operation are detailed in the following sections.

Pin In/Out Function

1284Data0-7 in/out 1284 serial data

1284notSelectIn in The function of these control pins is dependent on the mode of
operation of the 1284 port, see Table 25.1 below.1284notInit in

1284notFault out

1284notAutoFd in

1284Select out

1284PError/

TSByteClkValid

out

1284Busy/

TSPacketClk

out

1284notAck/
TSByteClk

out

1284notStrobe in

1284InnotOut (PIO3[7]) out 1284 data output enable for an external buffer

1284PeriphLogicH (PIO4[3]) out Peripheral logic high

1284HostLogicH (PIO4[4]) in Host logic high

Table 25.1 1284 port pins

Pin
IEEE 1284 modes Transport

stream modeCompatible mode Nibble mode Byte mode ECP mode

1284notStrobe nStrobe HostClk HostClk HostClk

1284notAck nAck PtrClk PtrClk PeriphClk TSByteClk

1284Busy busy PtrBusy PtrBusy PeriphAck TSPacketClk

1284PError pError AckDataReq AckDataReq nAckReverse TSByteClkValid

1284Select select XFlag XFlag XFlag

1284notAutoFd nAutoFD HostBusy HostBusy HostAck

1284notInit nInit high high nReverseRequest

1284notFault nFault nDataAvail nDataAvail nPeriphRequest

1284notSelectIn nSelectIn active active active

Table 25.1 1284 port control pin functions

ST20-TP2

151/205



25.2 1284 Port modes of operation

The 1284 port supports three main modes of operation, as follows:

• IEEE 1284 mode

• Transport stream mode

• Software control mode

Each of these modes and their associated modes are discussed in the following section.

25.2.1 IEEE 1284 mode

The 1284 port supports IEEE 1284 modes of communication, as defined below, with appropriate
software control and use of DMA transfers where appropriate to increase throughput and decrease
system load.

For full details of the 1284 protocols and signal functions in each mode refer to the IEEE Standard
1284-1994.

Forward transfer implies a transfer from the host to the peripheral, reverse transfer, from the periph-
eral to the host.

The 1284ModeEnable , 1284PulseWidth and 1284PinOut registers must be set before entering
any 1284 mode.

The 1284PeriphLogicH pin is forced high in all 1284 modes.

IEEE 1284 mode initialization

On entering the 1284 modes, the peripheral always completes an initialization sequence before
starting in compatibility mode. If the OverrideHostLogicH bit in the 1284Control register is not set
then the part remains in this mode until the 1284HostLogicH pin goes high.

Note: It is the responsibility of the software driver to ensure that the 1284PeriphLogicH pin setting
is correct before entering the i1284 modes.

The status of the peripheral is indicated to the host using the values in the 1284PinOut register. If
the Busy bit is high then the peripheral will be busy on entering compatible mode and the values of
the 1284PError , 1284Select and 1284notFault pins will reflect the values in the 1284PinOut reg-
ister.

The value of the 1284Busy and 1284notAck pins are not under user control.

Compatibility mode

Forward transfer only.

Following initialization, or reset by either the host or the peripheral, the port operates in this mode
until the host negotiation allows the port to move to another mode. This mode is comparable to the
‘Centronics Parallel Port’ (CPP).

Following any protocol exceptions or termination requests the module returns to this mode.

The busy status of the peripheral in this mode is controlled by the Busy bit of the 1284PinOut reg-
ister. The peripheral becomes busy when a transfer occurs, or when the Busy bit of the
1284PinOut register is set.

ST20-TP2

152/205



If the Busy bit is high, the 1284PError , 1284Select and 1284notFault pins are driven to the value
given in the 1284PinOut register. The value of the 1284notAck pin is not under user control.

Compatibility mode is always enabled when 1284 mode is enabled.

Negotiation

The host may request that the 1284 compliant device change communication mode, by placing an
extensibility request on the data bus during negotiation mode.

Negotiation may only be entered from compatibility mode, and a negative response to a request
will stall the port until the host terminates the transaction, and returns the port to compatibility
mode.

The modes to which the module responds positively depends on the specific implementation and
the 1284ModeEnable register, see Table 25.2 on page 156.

On entering this mode the 1284Busy pin assumes the value in the 1284PinOut register. The con-
trol of the other pins is dependent on the mode being entered, and whether data is available to be
transferred.

Nibble mode

Reverse transfers only.

This is the most basic reverse transfer mode and is used as the reverse channel in conjunction with
compatible mode. The data is transferred as 4-bit values on four of the 1284 control pins:
1284PError , 1284Busy , 1284notFault , 1284Select .

The 1284Busy pin reflects the value in the 1284PinOut register or the data value depending on
the point in the transfer. The other pins are not under user control.

Nibble mode is always enabled if 1284 mode is enabled.

Byte mode

Reverse transfers only.

This mode uses a similar protocol to nibble mode, but transfers the data as 8-bit values on the data
bus (1284Data0-7).

The 1284Busy pin reflects the value in the 1284PinOut register. The other pins are not under user
control.

ECP mode

Both forward and reverse transfers.

The module supports run length encoding (RLE). The hardware allows access to channel and RLE
data, and software support is provided.

Expansion of incoming data using RLE encoding is supported in hardware and enabled using the
1284Control register. All output RLE encoded data must be pre-encoded.

If channel or RLE information is passed to the DMA engines, a DMA error occurs.

The 1284notFault pin reflects the value in the 1284PinOut register and is expected to be used to
trigger a host interrupt.

ST20-TP2

153/205



For the case when the 1284 port is not busy and a forward transfer is occurring, then the peripheral
should ensure that when a token becomes available it is accepted from the 1284 port within 35 ms.
Failure to do so may cause the host to signal a time-out error. If hardware RLE decode is enabled,
the application should ensure that a complete decoded RLE sequence will be accepted within
35 ms. The maximal RLE sequence length allowed by the IEEE 1284 standard is 128 bytes. The
tokens may be accepted either by the DMA or register transfers.

Device identification

The peripheral asserts an interrupt to indicate a device id request has occurred. Software will han-
dle this and return the device id data stream.

The protocol used to return the id stream depends on the 1284ModeEnable register.

Host reset

The interface may be re-initialized at any time by the host, this produces an interrupt for the periph-
eral to respond to. The slave may request to terminate a communication, or request to interrupt the
master, but will wait for acknowledgement when operating in IEEE 1284 mode.

Termination

Following termination of a mode by the host, the peripheral will always return to compatible mode.
The behavior of the 1284PError , 1284notFault and 1284Select pins is dependent on the value in
the 1284PinOut register, and will reflect the value in this register if the Busy bit is set.

If Busy bit of the 1284PinOut register is set, the peripheral will be busy on entering compatible
mode. The peripheral will set the value of the 1284Busy pin.

Data transfer rates

The data transfer rate in these modes is dependent on the host, operating mode and memory
speed, and is expected to be limited by the host response time.

The DMA engine implements eight bytes of buffering for outgoing data, and four for incoming data.

25.2.2 Transport stream mode

The transport stream interface produces a byte wide output data stream compatible with the
Link-IC protocol, refer to “Link IC interface” on page 126. The two alternate implementations of this
output stream are defined below.

Note, the number of null byte transfers must be controlled by the driver software.

The following sections describe the pin and register functionality of the 1284 port in transport
stream mode.

The value of the 1284PulseWidth , 1284PinOut and 1284PacketSize registers must be set before
entering transport mode.

TSByteClk

The data (1284Data0-7), TSPacketClk and TSByteClkValid are valid on the rising edge of this
signal. The data, TSPacketClk and TSByteClkValid change on the falling edge of this clock. The
clock is active when a valid data token is available on the data bus.

The minimum frequency of the byte clock is dependent on the value held in the 1284PulseWidth
register, see Table 25.3 on page 157. This gives the delay in number of clock cycles between byte

ST20-TP2

154/205



clock edge transitions. At 40 MHz, a value of 2 in this register produces a byte clock with a nominal
100 ns period.

In transport stream mode A, the byte clock is free running and TSByteClkValid going high indi-
cates that the clock is active. The frequency of the clock is fixed, and in the case of memory stalls,
TSByteClkValid going low indicates there is no data packet to transmit.

In transport stream mode B, a rising transition only occurs on this clock when valid information is
available to transmit. The frequency of the clock may change in the event of a memory stall. At the
end of a packet transfer the clock becomes free running until the next packet transfer is started.

TSByteClkValid

This validates the byte clock and indicates that the TSByteClk transition is valid.

TSPacketClk

This is high during a packet transfer. The length of a packet is defined by the 1284PacketSize reg-
ister, see Table 25.13 on page 161. A packet transfer commences when valid data has been read
from memory and is available on the data bus. It completes when the number of bytes defined by
the 1284PacketSize register have been transferred.

1284PacketSize register

A write to the 1284PacketSize register defines the number of bytes within a packet.

The 1284 packet size count is restarted after the required number of bytes have been transferred,
and if a DMA transfer of greater than one packet is started, the second packet is transferred with a
single null byte between packets. If a DMA transfer transfers an incomplete packet, the module will
stall until more bytes become available.

The count may be restarted by writing to the Reset bit in the 1284Control register or by writing to
the 1284PacketSize register.

Transfer stream mode A and B examples

Figure 25.2 and Figure 25.3 give an example of a single packet transfer in transport stream mode
A and B respectively. The number of null bytes depends on the time taken to start a second DMA
transfer.

ST20-TP2

155/205



Figure 25.2 Packet transfer in transport stream mode A

Figure 25.3 Packet transfer in transport stream mode B

Data rates

In transport mode the data throughput is a function of the memory speed, the byte clock rate and
packet size. Assuming an average memory speed of 12 cycles a sustained data rate of 8 Mbytes/s
can be maintained for word aligned accesses for large packets.

25.2.3 Software mode

Software mode supports direct software control of the 1284 port, via the relevant control registers.

TSByteClk

TSPacketClk

TSByteClkValid

1284Data0-7

Data packet
Null
bytes

Invalid bytes due to modulePacket start Length defined by
stall or DMA transfer end 1284PulseWidth

Data packet

register

TSByteClk

TSPacketClk

TSByteClkValid

1284Data0-7

Data packet
Null

bytes

Invalid bytes due to memoryPacket start Length defined by
stall or DMA transfer end 1284PulseWidth

register

Data packet

ST20-TP2

156/205



The peripheral may set the value of the output pins, control the value and direction of the data bus,
and examine the input pins.

Interrupts may be set to occur if the input pins fail to match a pattern.

Data tokens may be transferred to and from the DMA engines.

25.3 1284 port control registers

The 1284 port is controlled via registers.

Following system reset the registers are set to zero, unless otherwise specified .

All enables are active high unless otherwise stated.

1284ModeEnable register

The 1284ModeEnable register bits are a direct mask of the 1284 extensibility request values. If a
bit corresponding to the mode is set low, the peripheral is refused access to enter the mode when
operating in 1284 mode. If all the bits are disabled the device operates in the nibble and compatible
modes.

If the register is modified, the change takes effect at the next 1284 negotiation transaction.

This register is only valid when 1284 mode is enabled.

1284PulseWidth register

In 1284 mode, the 1284PulseWidth register specifies the time per iod (Tp2) in number of system
clock cycles. For the ST20-TP2 running at 40 MHz this value must be 20 system clock cycles mini-
mum in order to comply with the IEEE 1284 minimum time period of 500 ns.

In transport stream mode, this register specifies the minimum period between byte clock (TSByte-
Clk) edge transitions, for details see the transport mode description.

A write to this register takes effect at the next byte transfer. Note, this register must only be written
when transport and 1284 modes are disabled.

2. Tp: Defined in the IEEE 1284 spec as the Minimum setup or pulse width for IEEE 1284 handshakes.

1284ModeEnable 1284 base address + #00 Write only

Bit Bit field Function

0 EnByte Enable byte

2 EnDevID Enable device identification

4 EnECP Enable ECP

5 EnRLE Enable RLE

1,3,6,7 RESERVED, write 0.

Table 25.2 1284ModeEnable register format

ST20-TP2

157/205



Following system reset, this register is undefined.

1284Control register

The 1284Control register controls the operating mode of the 1284 port.

Setting the Reset bit forces all machines back to the idle status, discarding any stored data. Note,
this may cause protocol errors and loss of data. This is a functional synchronous reset, and returns
the module to the initialization state in the enabled mode. This only resets the 1284 module, and
not the DMA engines.

If any 1284 mode or the transport stream mode is disabled during a transaction, the mode is dis-
abled next time the controlling state machine reaches idle, after completing any ongoing transac-
tions. In transport stream modes, the current package is completed before returning to idle, in 1284
mode it waits until returning to compatible mode.

If the hardware enables (bits 3 and 5) are changed during a transaction, the change takes effect
next time the action associated with that transaction occurs.

Note, when operating in 1284 mode, the point at which the 1284 port returns to idle is controlled by
the host and therefore may be an unbounded period of time.

1284Status register

The 1284Status register gives the current status of the 1284 module.

1284PulseWidth 1284 base address + #04 Write only

Bit Bit field Function

7:0 ClockCycles The function of this register is dependent on the mode of operation of the 1284 port.

Time period (Tp) in system clock cycles - 1284 mode

Minimum period between TSByteClk edge transitions - transport stream mode

Table 25.3 1284PulseWidth register format

1284Control 1284 base address + #08 Write only

Bit Bit field Function

2:0 Mode 1284 port operating mode.

Mode2:0 Operation
000 software mode
001 IEEE 1284 mode
010 transport stream mode A
011 transport stream mode B

5 HwInputRLEexpan Enable hardware input RLE expansion

6 ExtBusDirection Enable external bus direction control

7 Reset When set to 1, the 1284 port is reset, and any stored data is discarded.

8 OverrideHostLogicH When set to 1, the 1284HostLogicH input signal is forced high, so when operating
in any 1284 mode the 1284 module always assumes that the input signals from the
host are valid.

3, 4 RESERVED, write 0.

Table 25.4 1284Control register format

ST20-TP2

158/205



Bit three is valid in ECP mode. It indicates that RLE expansion has been enabled. If the hardware
expansion is not enabled then software is required to expand the byte stream.

Following system reset the 1284 module starts in software mode.

A 1284Request is cleared when the next data token is transferred to the 1284 module.

1284PinIn register

The 1284PinIn register reflects the current status of the input pins in all modes. The value read is
the value on the pins when the request is granted.

1284Status 1284 base address + #0C Read only

Bit Bit field Function

0 OutputDataReady Output clear and available. The 1284 module is ready to output data to the host.

1 InputDataReady Input byte available. Data from the host is available in the 1284 module input buffer.

2 1284Request Device id request.

3 EnableRLEext RLE extensions enabled - in ECP mode

7:4 OpMode Operational mode. Valid values are as follows:

OpMode7:4 Operational mode
0000 1284 mode: initialization
0001 1284 mode: compatible
0010 1284 mode: negotiation
0011 1284 mode: nibble
0100 1284 mode: byte
0101 1284 mode: ECP
0111 1284 mode: terminate
1000 software mode - peripheral control of 1284 port
1001 transport stream mode A
1010 transport stream mode B

8 DataTransferDir Data transfer direction

0 from host to 1284 module
1 from 1284 module to host

Table 25.5 1284Status register format

1284PinIn 1284 base address + #10 Read only

Bit Bit field Function

0 notStrobe 1284notStrobe pin status

1 notAutoFd 1284notAutoFd pin status

2 notInit 1284notInit pin status

3 notSelectIn 1284notSelectIn pin status

4 HostLogicH 1284HostLogicH pin status

Table 25.6 1284PinIn register format

ST20-TP2

159/205



1284PinInEnable register

This register enables generation of an interrupt based on the values contained in the
1284PinInValue register, see Table 25.8.

1284PinInValue register

This register holds the value against which the input pins are compared. Any difference in the asso-
ciated bits results in an interrupt being generated if the corresponding bit in the enable register
(1284PinInEnable , see Table 25.7) is set.

The compare function is level sensitive, and any change in input must be held for longer than the
interrupt response time to be seen as a valid interrupt.

Following system reset this register is undefined.

1284PinOut register

The bus direction, pin signals are only under the control of this register when not being controlled
by the 1284 or transport mode state machine. For details of the pin control in the transport and
1284 modes refer below.

All pins are under user control when the device is operating in software mode.

A read from this register gives the current value of the output pin/bus direction. If the pin is not
under user control this may not be the value written to this register, but will reflect the current value
on the output pins.

1284PinInEnable 1284 base address + #14 Read/Write

Bit Bit field Function

0 notStrobeIntEn When set, it enables generation of an interrupt if the associated value given in the
1284PinInValue register does not match the 1284notStrobe input pin setting.

1 notAutoFdIntEn When set, it enables generation of an interrupt if the associated value given in the
1284PinInValue register does not match the 1284notAutoFd input pin setting.

2 notInitIntEn When set, it enables generation of an interrupt if the associated value given in the
1284PinInValue register does not match the 1284notInit input pin setting.

3 notSelectInIntEn When set, it enables generation of an interrupt if the associated value given in the
1284PinInValue register does not match the 1284notSelect input pin setting.

4 HostLogicHIntEn When set, it enables generation of an interrupt if the associated value given in the
1284PinInValue register does not match the 1284HostLogicH input pin setting.

Table 25.7 1284PinInEnable register format

1284PinInValue 1284 base address + #18 Read/Write

Bit Bit field Function

0 notStrobeIntVal Value to which the 1284notStrobe input pin setting is compared.

1 notAutoFdIntVal Value to which the 1284notAutoFd input pin setting is compared.

2 notInitIntVal Value to which the 1284notInit input pin setting is compared.

3 notSelectInIntVal Value to which the 1284notSelect input pin setting is compared.

4 HostLogicHIntVal Value to which the 1284HostLogicH input pin setting is compared.

Table 25.8 1284PinInValue register format

ST20-TP2

160/205



If DataBusEnable is set low, the data bus is high impedance and may be driven by the host.

1284DataIn register

When in any IEEE 1284 mode, a read from the 1284DataIn register reads the input data token
stored in the 1284 module. In other modes it reflects the data currently on the input data pins
(1284Data0-7).

This data is valid and available only when the InputDataReady bit is set high in the 1284Status
register, see Table 25.5. If data is available, then reading this register removes the data token from
the 1284 port and allows the next access sequence to proceed.

Reading from the register during a DMA transfer will interrupt that transfer sequence, and may
invalidate the DMA transfer.

Bit 8 is valid only in ECP mode and indicates byte packet type, in all other modes it is undefined.
The type of an incoming data package is mode dependent.

1284DataOut register

A write to the 1284DataOut register writes a data token to the 1284 module.

If a write to this register occurs in 1284 mode or transport stream mode, and the OutputDataR-
eady bit of the 1284Status register is set high, then a data token is transferred to the 1284 port and
the access sequence started. In other modes it reflects the value on the data pins if the data bus is
being driven.

1284PinOut 1284 base address + #1C Read/Write

Bit Bit field Function

0 notFault 1284notFault output pin setting

1 Select 1284Select output pin setting

2 Perror 1284PError output pin setting

3 notAck 1284notAck output pin setting

4 Busy 1284Busy output pin setting

5 PeriphLogicH 1284PeriphLogicH output pin setting

6 DataBusEnable 1284Out output pin setting

Table 25.9 1284PinOut register format

1284DataIn 1284 base address + #20 Read only

Bit Bit field Function

6:0 Data6:0 Input data token stored in the 1284 module - in any IEEE 1284 mode.

Data currently on the data pins (1284Data0-6) - in any other mode.

7 Control/Data7 Data currently on the data pin (1284Data7) - in any other mode.

Control packet type - in ECP mode, where 1 indicates channel number packet, 0
indicates RLE count packet.

8 Control/Address Byte packet type

0 data
1 control packet in ECP mode

Table 25.10 1284DataIn register format

ST20-TP2

161/205



Bit 8 is valid in ECP mode only and controls the type of access triggered.

Writing to this register during a DMA access will interrupt the access sequence and may invalidate
the DMA transfer.

1284Checksum register

The 1284Checksum register contains a checksum of all bytes transmitted or received by the 1284.
A read from this register causes it to be reset. The checksum is calculated by the accumulative bit-
wise XOR of each bit in the byte passing through the 1284 with the previous checksum value.

This register is not defined in transport modes for a single cycle pulse width.

This function is not part of the IEEE 1284 Standard, and is an addition to allow rapid checksum cal-
culation in a specific application.

1284PacketSize register

The 1284PacketSize register contains the packet size during a transport stream transfer. This reg-
ister is valid only when transport mode is enabled.

1284DmaToken register

This register allows the DMA engines to be used when driving the 1284 port directly in software
mode. The register is valid only when software mode is enabled, writes to this register in other
modes are undefined.

1284DataOut 1284 base address + #24 Write only

Bit Bit field Function

6:0 Data6:0 Output data token stored in the 1284 module - in any IEEE 1284 mode or transport
mode.

Data currently on the data pins (1284Data0-6) - in any other mode.

7 Control/Data7 Data currently on the data pin (1284Data7) - in any other mode.

Control packet type - in ECP mode, where 1 indicates channel number packet, 0
indicates RLE count packet.

8 Control Byte packet type

0 data
1 control packet in ECP mode

Table 25.11 1284DataOut register format

1284Checksum 1284 base address + #28 Read only

Bit Bit field Function

7:0 Checksum Checksum of all bytes transmitted or received.

Table 25.12 1284Checksum register format

1284PacketSize 1284 base address + #2C Write only

Bit Bit field Function

11:0 PacketSize Packet size during a transport stream transfer.

Table 25.13 1284PacketSize register format

ST20-TP2

162/205



A read from this register indicates whether the token has been successfully transferred to the DMA
engine. If the bit is high then the memory system has not yet accepted the token, if the bit is zero it
indicates that it has accepted the token.

The token transfer will only occur if the direction of the DMA engine corresponds to the token trans-
fer direction.

The DMA engine may assemble each byte token in word packets before writing the token to mem-
ory.

Writing a 1 to bit 0 transfers a data token to the DMA engine from the data pins. Writing a 1 to bit 1
transfers a data token to the data pins from the DMA engine.

1284DmaAddress register

This defines the byte address from which the DMA starts. Following the completion of a DMA
access this register points to the next location in memory.

This register is undefined following system reset.

1284DmaCount register

In the event of a DMA error, or other exception, the 1284DmaCount register contains the number
of bytes which remain to be transferred.

Writing to this register starts a new DMA sequence, starting from the address given in the
1284DmaAddress register, for the number of bytes written to this location.

Reading from this register gives the number of bytes remaining to be transferred. This value is con-
stant only when the DMA engine has been stalled or reset.

A value of zero in this register indicates that the DMA transfer has completed transfers to/from
memory. If a zero is written to this register, a memory access may occur, but no data is transferred.

This register is undefined following system reset.

1284DmaToken 1284 base address + #30 Read/Write

Bit Bit field Function

0 TokenToDma Data token transfer from the data pins to the DMA engine.

1 TokenFromDma Data token transfer from the DMA engine to the data pins.

Table 25.14 1284DmaToken register format

1284DmaAddress 1284 base address + #40 Write only

Bit Bit field Function

31:0 DmaAddress Byte address from which the DMA starts.

Table 25.15 1284DmaAddress register format

1284DmaCount 1284 base address + #44 Read/Write

Bit Bit field Function

15:0 DmaCount Number of bytes to be transferred.

Table 25.16 1284DmaCount register format

ST20-TP2

163/205



1284DmaControl register

The 1284DmaControl register controls the DMA transfer.

The direction of the DMA access, either from memory to the 1284 port or vice versa is specified by
the DmaDirection bit.

Setting the DmaReset bit terminates the DMA transfer. Buffered incoming data is written to mem-
ory. Stored outgoing data is lost. The 1284DmaCount register shows the number of bytes suc-
cessfully transferred before reset occurred. When reset is complete, the DmaReset bit is set to
zero.

Note: If the DMA engine is reset whilst a DMA output is occurring and the byte transfer is in
progress on the 1284 port, the byte transfer may be corrupted, or the host left in a position of
expecting data to be transferred. This byte is not included in the DMA count.

DMA reset is only expected to be used to clear the DMA engines in exceptional conditions such as,
errors, at which point the interface is stalled, or by stalling the DMA engines for long enough for all
buffered tokens to be removed.

Setting the DmaStall bit stops the DMA transfer. The 1284DmaCount register shows the total
number of bytes remaining to be transferred. Resetting the DmaStall bit allows the DMA transfer to
continue.

1284IntEnable register

The 1284IntEnable register determines whether an interrupt is enabled.

If the bit relating to the interrupt is set, then if that event occurs, an interrupt is generated.

A DMA error occurs if a non-data packet (an RLE count, channel number or an address value) is
passed during a DMA transfer. The DMA sequence stalls at this point. The DMA engine must then
be reset to flush valid buffered incoming bytes to memory. The erroneous data token can be
accessed directly and removed from the 1284 module by reading the 1284DataIn register, see
Table 25.10 on page 160. Outgoing data tokens are not checked.

The DMA access can also be stalled by a number of events such as mode and direction changes,
protocol errors and 1284 requests. These events can be monitored and treated as a DMA error if

1284DmaControl 1284 base address + #48 Read/Write

Bit Bit field Function

0 DmaDirection Direction of the DMA access.

0 from 1284 port to memory
1 from memory to 1284 port

1 DmaStall Stalls the DMA transfer

2 DmaReset Terminates the DMA transfer.

Table 25.17 1284DmaControl register format

ST20-TP2

164/205



the events are seen, by explicitly resetting the DMA engines, which flushes buffered valid bytes to
memory, leaving the engines in the same state as a DMA error following a reset.

1284IntStatus register

The 1284IntStatus register gives the identity of the event which caused the interrupt. This register
may also be read to monitor the status of non-enabled interrupts.

1284IntEnable 1284 base address + #4C Read/Write

Bit Bit field Function

0 1284OutputAvailEn When set, an interrupt is generated when the 1284 output is clear and available.

1 1284InputAvailEn When set, and interrupt is generated when a 1284 input byte is available.

2 DmaCompleteEn When set, an interrupt is generated when a DMA transfer is completed and all
tokens have been transferred to/from the 1284 port.

3 DmaErrorEn When set, an interrupt is generated if a non-data packet (an RLE count, channel
number or address value) is passed by the 1284 port during a DMA transfer.

4 1284PinIntEn When set, an interrupt is generated when the enabled (1284PinInEnable register)
1284 input pins fail to match the pattern in the 1284PinInValue register. The value
of the input pins can be read from the 1284PinIn register, see Table 25.6.

5 1284ModeChangeEn When set, an interrupt is generated if the 1284 port changes mode. The operational
modes are specified in the 1284Status register. Additional information on the
direction of the bidirectional modes is also available in the 1284Status register or
can be interpreted from bits 1:0 of the 1284IntStatus register.

6 1284DirecChangeEn When set, an interrupt is generated if the transfer direction of the 1284 port
changes. The current transfer direction can be read from the 1284Status register.

7 1284RequestEn When set, an interrupt is generated if a device id request is made.

8 1284ErrorEn When set, an interrupt is generated if a protocol error is detected by the 1284 port.

9 1284ResetEn When set, an interrupt is generated if the host system resets the 1284 port.

Table 25.18 1284IntEnable register format

1284IntStatus 1284 base address + #50 Read only

Bit Bit field Function

0 1284OutputAvail When set, indicates 1284 output clear and available interrupt was generated.

1 1284InputAvail When set, indicates 1284 input byte available interrupt was generated.

2 DmaComplete When set, indicates DMA complete interrupt was generated.

3 DmaError When set, indicates DMA error interrupt was generated.

4 1284PinInt When set, indicates input pin interrupt was generated.

5 1284ModeChange When set, indicates mode change interrupt was generated.

6 1284DirecChange When set, indicates direction change interrupt was generated.

7 1284Request When set, indicates request interrupt was generated.

8 1284Error When set, indicates error interrupt was generated.

9 1284Reset When set, indicates reset interrupt was generated.

Table 25.19 1284IntStatus register format

ST20-TP2

165/205



1284IntAck register

The 1284IntAck register is write only. Writing a ‘1’ to a bit in this register explicitly clears the asso-
ciated active interrupt.

The locations marked ‘Not applicable’ reference interrupts which are implicitly cleared by complet-
ing the action associated with the interrupt. An explicit reset will clear these bits, but the interrupt
will be immediately re-asserted if the triggering condition is still true.

The 1284 input and output interrupts are cleared when the associated data token is transferred.
The DMA error and DMA complete interrupts can be cleared by resetting/restarting the DMA
engine. A 1284 request is cleared by outputting a data token.

25.3.1 Power on, initialization and termination

The interface may be re-initialized at any time by the host, this produces an interrupt for the periph-
eral to respond to. The slave may request to terminate a communication, or request to interrupt the
master, but will wait for acknowledgement when operating in IEEE 1284 mode.

25.4 Signal Filtering

All 1284 control inputs (all inputs with the exception of the data bus) have a digital filter to remove
signal glitches and are synchronized to the internal clock using a two stage synchronizer.

1284IntAck 1284 base address + #54 Write only

Bit Bit field Function

0 1284OutputAvailAck Not applicable

1 1284InputAvailAck Not applicable

2 DmaCompleteAck Not applicable

3 DmaErrorAck Not applicable

4 1284PinIntAck Not applicable

5 1284ModeChangeAck When set, the associated interrupt is cleared.

6 1284DirecChangeAck When set, the associated interrupt is cleared.

7 1284RequestAck Not applicable

8 1284ErrorAck When set, the associated interrupt is cleared.

9 1284ResetAck When set, the associated interrupt is cleared.

Table 25.20 1284IntAck register format

ST20-TP2

166/205



Figure 25.4 Signal filter ing

The function of the majority filter is given in Table 25.21, and will remove features in the input signal
smaller than the clock period (25 ns at 40 MHz).

Node Input/output of majority filter

a 0 1 0 1 0 1 0 1

b 0 0 1 1 0 0 1 1

c 0 0 0 0 1 1 1 1

output 0 0 0 1 0 1 1 1

Table 25.21 Majority filter functionality

Input

Two stage synchronizer
Majority filter

Output

2 of 3

c

b

a

ST20-TP2

167/205



26 Configuration register ad dresses
This chapter lists all the ST20-TP2 configuration registers and gives the addresses of the registers.
The complete bit format of each of the registers and its functionality is given in the relevant chapter.

The registers can be examined and set by the devlw (device load word) and devsw (device store
word) instructions. Note, they can not be accessed using memory instructions.

Register Address Size Set Clear
Read/
Write

HandlerWptr0 #20000000 32 R/W

HandlerWptr1 #20000004 32 R/W

HandlerWptr2 #20000008 32 R/W

HandlerWptr3 #2000000C 32 R/W

HandlerWptr4 #20000010 32 R/W

HandlerWptr5 #20000014 32 R/W

HandlerWptr6 #20000018 32 R/W

HandlerWptr7 #2000001C 32 R/W

TriggerMode0 #20000040 3 R/W

TriggerMode1 #20000044 3 R/W

TriggerMode2 #20000048 3 R/W

TriggerMode3 #2000004C 3 R/W

TriggerMode4 #20000050 3 R/W

TriggerMode5 #20000054 3 R/W

TriggerMode6 #20000058 3 R/W

TriggerMode7 #2000005C 3 R/W

Pending #20000080 8 Interrupt trigger Interrupt grant R/W

Set_Pending #20000084 8 W

Clear_Pending #20000088 8 W

Mask #200000C0 17 R/W

Set_Mask #200000C4 17 W

Clear_Mask #200000C8 17 W

Exec #20000100 8 Interrupt valid Interrupt done R/W

Set_Exec #20000104 8 W

Clear_Exec #20000108 8 W

LPTimerLS #20000400 32 R/W

LPTimerMS #20000404 32 R/W

Table 26.1 ST20-TP2 configuration register addresses

ST20-TP2

168/205



LPTimerStart #20000408 1
By a write to
LPTimerLS or
LPTimerMS

R/W

LPAlarmLS #20000410 32 R/W

LPAlarmMS #20000414 8 R/W

LPAlarmStart #20000418 1 R/W

LPSysPll #20000420 2 R/W

LPDisableLink #20000428 1 R/W

SysRatio #20000500 6 R

WdEnable #20000510 1 R/W

ConfigDataField0 #20002000 32 R/W

ConfigDataField1 #20002004 32 R/W

ConfigDataField2 #20002008 32 R/W

ConfigDataField3 #2000200C 32 R/W

ConfigCommand #20002010 32 W

ConfigStatus #20002020 32 R

ASC0BaudRate #20003000 16 R/W

ASC0TxBuffer #20003004 16 W

ASC0RxBuffer #20003008 16 R

ASC0Control #2000300C 16 R/W

ASC0IntEnable #20003010 8 R/W

ASC0Status #20003014 8 R

ASC0GuardTime #20003018 16 R/W

ASC1BaudRate #20004000 16 R/W

ASC1TxBuffer #20004004 16 W

ASC1RxBuffer #20004008 16 R

ASC1Control #2000400C 16 R/W

ASC1IntEnable #20004010 8 R/W

ASC1Status #20004014 8 R

ASC1GuardTime #20004018 16 R/W

ASC2BaudRate #20005000 16 R/W

ASC2TxBuffer #20005004 16 W

ASC2RxBuffer #20005008 16 R

ASC2Control #2000500C 16 R/W

ASC2IntEnable #20005010 8 R/W

Register Address Size Set Clear
Read/
Write

Table 26.1 ST20-TP2 configuration register addresses

ST20-TP2

169/205



ASC2Status #20005014 8 R

ASC2GuardTime #20005018 16 R/W

ASC3BaudRate #20006000 16 R/W

ASC3TxBuffer #20006004 16 W

ASC3RxBuffer #20006008 16 R

ASC3Control #2000600C 16 R/W

ASC3IntEnable #20006010 8 R/W

ASC3Status #20006014 8 R

ASC3GuardTime #20006018 16 R/W

Sc0ClkVal #20007000 5 R/W

Sc0ClkCon #20007004 2 R/W

Sc1ClkVal #20008000 5 R/W

Sc1ClkCon #20008004 2 R/W

SSC0BaudRate #20009000 16 R/W

SSC0TxBuffer #20009004 16 W

SSC0RxBuffer #20009008 16 R

SSC0Control #2000900C 16 R/W

SSC0IntEnable #20009010 8 R/W

SSC0Status #20009014 8 R

SSC1BaudRate #2000A000 16 R/W

SSC1TxBuffer #2000A004 16 W

SSC1RxBuffer #2000A008 16 R

SSC1Control #2000A00C 16 R/W

SSC1IntEnable #2000A010 8 R/W

SSC1Status #2000A014 8 R

PWMVal0 #2000B000 8 R/W

PWMVal1 #2000B004 8 R/W

CaptureVal0 #2000B008 32 R

CaptureVal1 #2000B00C 32 R

CaptureControl #2000B010 32 R/W

CaptureStatus #2000B014 8 R

CaptureAck #2000B018 8 W

P0Out #2000C000 8 R/W

Set_P0Out #2000C004 8 W

Register Address Size Set Clear
Read/
Write

Table 26.1 ST20-TP2 configuration register addresses

ST20-TP2

170/205



Clear_P0Out #2000C008 8 W

P0In #2000C010 8 R

P0C0 #2000C020 8 R/W

Set_P0C0 #2000C024 8 W

Clear_P0C0 #2000C028 8 W

P0C1 #2000C030 8 R/W

Set_P0C1 #2000C034 8 W

Clear_P0C1 #2000C038 8 W

P0C2 #2000C040 8 R/W

Set_P0C2 #2000C044 8 W

Clear_P0C2 #2000C048 8 W

P0Comp #2000C050 8 R/W

Set_P0Comp #2000C054 8 W

Clear_P0Comp #2000C058 8 W

P0Mask #2000C060 8 R/W

Set_P0Mask #2000C064 8 W

Clear_P0Mask #2000C068 8 W

P1Out #2000D000 8 R/W

Set_P1Out #2000D004 8 W

Clear_P1Out #2000D008 8 W

P1In #2000D010 8 R

P1C0 #2000D020 8 R/W

Set_P1C0 #2000D024 8 W

Clear_P1C0 #2000D028 8 W

P1C1 #2000D030 8 R/W

Set_P1C1 #2000D034 8 W

Clear_P1C1 #2000D038 8 W

P1C2 #2000D040 8 R/W

Set_P1C2 #2000D044 8 W

Clear_P1C2 #2000D048 8 W

P1Comp #2000D050 8 R/W

Set_P1Comp #2000D054 8 W

Clear_P1Comp #2000D058 8 W

P1Mask #2000D060 8 R/W

Register Address Size Set Clear
Read/
Write

Table 26.1 ST20-TP2 configuration register addresses

ST20-TP2

171/205



Set_P1Mask #2000D064 8 W

Clear_P1Mask #2000D068 8 W

P2Out #2000E000 8 R/W

Set_P2Out #2000E004 8 W

Clear_P2Out #2000E008 8 W

P2In #2000E010 8 R

P2C0 #2000E020 8 R/W

Set_P2C0 #2000E024 8 W

Clear_P2C0 #2000E028 8 W

P2C1 #2000E030 8 R/W

Set_P2C1 #2000E034 8 W

Clear_P2C1 #2000E038 8 W

P2C2 #2000E040 8 R/W

Set_P2C2 #2000E044 8 W

Clear_P2C2 #2000E048 8 W

P2Comp #2000E050 8 R/W

Set_P2Comp #2000E054 8 W

Clear_P2Comp #2000E058 8 W

P2Mask #2000E060 8 R/W

Set_P2Mask #2000E064 8 W

Clear_P2Mask #2000E068 8 W

P3Out #2000F000 8 R/W

Set_P3Out #2000F004 8 W

Clear_P3Out #2000F008 8 W

P3In #2000F010 8 R

P3C0 #2000F020 8 R/W

Set_P3C0 #2000F024 8 W

Clear_P3C0 #2000F028 8 W

P3C1 #2000F030 8 R/W

Set_P3C1 #2000F034 8 W

Clear_P3C1 #2000F038 8 W

P3C2 #2000F040 8 R/W

Set_P3C2 #2000F044 8 W

Clear_P3C2 #2000F048 8 W

Register Address Size Set Clear
Read/
Write

Table 26.1 ST20-TP2 configuration register addresses

ST20-TP2

172/205



P3Comp #2000F050 8 R/W

Set_P3Comp #2000F054 8 W

Clear_P3Comp #2000F058 8 W

P3Mask #2000F060 8 R/W

Set_P3Mask #2000F064 8 W

Clear_P3Mask #2000F068 8 W

P4Out #20010000 8 R/W

Set_P4Out #20010004 8 W

Clear_P4Out #20010008 8 W

P4In #20010010 8 R

P4C0 #20010020 8 R/W

Set_P4C0 #20010024 8 W

Clear_P4C0 #20010028 8 W

P4C1 #20010030 8 R/W

Set_P4C1 #20010034 8 W

Clear_P4C1 #20010038 8 W

P4C2 #20010040 8 R/W

Set_P4C2 #20010044 8 W

Clear_P4C2 #20010048 8 W

P4Comp #20010050 8 R/W

Set_P4Comp #20010054 8 W

Clear_P4Comp #20010058 8 W

P4Mask #20010060 8 R/W

Set_P4Mask #20010064 8 W

Clear_P4Mask #20010068 8 W

Int0Priority #20011000 3 R/W

Int1Priority #20011004 3 R/W

Int2Priority #20011008 3 R/W

Int3Priority #2001100C 3 R/W

Int4Priority #20011010 3 R/W

Int5Priority #20011014 3 R/W

Int6Priority #20011018 3 R/W

Int7Priority #2001101C 3 R/W

Int8Priority #20011020 3 R/W

Register Address Size Set Clear
Read/
Write

Table 26.1 ST20-TP2 configuration register addresses

ST20-TP2

173/205



Int9Priority #20011024 3 R/W

Int10Priority #20011028 3 R/W

Int11Priority #2001102C 3 R/W

Int12Priority #20011030 3 R/W

Int13Priority #20011034 3 R/W

Int14Priority #20011038 3 R/W

Int15Priority #2001103C 3 R/W

Int16Priority #20011040 3 R/W

Int17Priority #20011044 3 R/W

InputInterrupts #20011048 18 R

SelectnotInv #2001104C 4 R/W

ExtIntEnable #20011050 4 R/W

MPEG0BurstSize #20020000 8 W

MPEG0Holdoff #20020004 8 W

MPEG0Suspend #20020008 8 W

MPEG1BurstSize #20021000 8 W

MPEG1Holdoff #20021004 8 W

MPEG1Suspend #20021008 8 W

DVBCDest #20022000 32 W

DVBCKeyLSW #20022008 32 W

DVBCKeyMSW #2002200C 32 W

TtxtDmaAddress #20024000 32 R/W

TtxtDmaCount #20024004 11 R/W

TtxtOutDelay #20024008 4 R/W

TtxtInStartLine #2002400C 9 R/W

TtxtInCbDelay #20024010 9 R/W

TtxtMode #20024014 2 R/W

TtxtIntStatus #20024018 3 R

TtxtIntEnable #2002401C 3 R/W

TtxtAckOddEven #20024020 - W

TtxtAbort #20024024 - W

I1284ModeEnable #20025000 8 W

I1284PulseWidth #20025004 8 W

I1284Control #20025008 8 W

Register Address Size Set Clear
Read/
Write

Table 26.1 ST20-TP2 configuration register addresses

ST20-TP2

174/205



I1284Status #2002500C 9 R

I1284PinIn #20025010 5 R

I1284PinInEnable #20025014 5 R/W

I1284PinInValue #20025018 5 R/W

I1284PinOut #2002501C 7 R/W

I1284DataIn #20025020 9 R

I1284DataOut #20025024 9 W

I1284Checksum #20025028 8 R

I1284PacketSize #2002502C 12 W

I1284DmaToken #20025030 2 R/W

I1284DmaAddress #20025040 32 W

I1284DmaCount #20025044 16 R/W

I1284DmaControl #20025048 3 R/W

I1284IntEnable #2002504C 9 R/W

I1284IntStatus #20025050 9 R

I1284IntAck #20025054 9 W

BMDmaAddress #20026000 32 W

SFFilterDataLS0-31
#20027000
+ #000 to 1F0
+ #00

32 R/W

SFFilterMaskLS0-31
#20027000
+ #000 to 1F0
+ #04

32 R/W

SFFilterDataMS0-31
#20027000
+ #000 to 1F0
+ #08

32 R/W

SFFilterMaskMS0-31
#20027000
+ #000 to 1F0
+ #0C

32 R/W

SFDmaAddress #20027200 32 R/W

SFMode #20027204 2 R/W

SFStart #20027208 8 R/W

SFStatus #2002720C 7 R

SFMatch #20027210 32 R

SFMatchMask #20027214 32 R/W

Register Address Size Set Clear
Read/
Write

Table 26.1 ST20-TP2 configuration register addresses

ST20-TP2

175/205



SFPartRemainder #20027218 32 R/W

SFSectionLength #2002721C 12 R/W

SFDataToMatch #20027220 32 R/W

Register Address Size Set Clear
Read/
Write

Table 26.1 ST20-TP2 configuration register addresses

ST20-TP2

176/205



27 Device configuration
This section gives the assignments of functions to shared pins and the assignment of interrupts to
peripherals.

27.1 PIO pins and alternate functions

To allow the flexibility for the ST20-TP2 to fit into different set-top box application architectures, the
input and output signals from some of the peripherals are not directly connected to the pins of the
device. Instead they are assigned to the alternate function inputs and outputs of a PIO port bit.

This scheme allows these pins of the device to be configured as general purpose PIO if the associ-
ated peripheral input or output is not required in the application.

Peripheral inputs connected to the alternate function input of a PIO bit are connected to the input
pin all the time. The output signal from a peripheral is only connected when the PIO bit is config-
ured into either push-pull or open drain driver alternate function mode.

Table 27.1 shows the assignment of the alternate functions to the PIO bits.

Figure 27.1 I/O port pin

I/O pin

Push-pull
Tristate
Open drain
Weak pull-up

Output latch Input latch

Alternate function output Alternate function input

Alternate function
1 0

ST20-TP2

177/205



() indicates suggested or possible pin function

Port bit Alternate function

Port 0 Bit 0 ASC0 TXD (Sc1DataOut)

Port 0 Bit 1 ASC0 RXD (Sc1DataIn)

Port 0 Bit 2 Sc1ClkGenExtClk

Port 0 Bit 3 Sc1Clk

Port 0 Bit 4 (Sc1RST)

Port 0 Bit 5 (Sc1CmdVcc)

Port 0 Bit 6 ASC2 notOE (ScCmdVpp)

Port 0 Bit 7 (Sc1Detect)

Port 1 Bit 0 SSC0 MTSR

Port 1 Bit 1 SSC0 MRST

Port 1 Bit 2 SSC0 SClk

Port 1 Bit 3 PWMOut0

Port 1 Bit 4 PWMOut1

Port 1 Bit 5 ASC1 TXD

Port 1 Bit 6 ASC1 RXD

Port 1 Bit 7 -

Port 2 Bit 0 ASC2 TXD (Sc0DataOut)

Port 2 Bit 1 ASC2 RXD (Sc0DataIn)

Port 2 Bit 2 Sc0ClkGenExtClk

Port 2 Bit 3 Sc0Clk

Port 2 Bit 4 (Sc0RST)

Port 2 Bit 5 (Sc0CmdVcc)

Port 2 Bit 6 ASC2 notOE (ScCmdVpp)

Port 2 Bit 7 (Sc0Detect)

Port 3 Bit 0 SSC1 MTSR

Port 3 Bit 1 SSC1 MRST

Port 3 Bit 2 SSC1 SClk

Port 3 Bit 3 CaptureIn0

Port 3 Bit 4 CaptureIn1

Port 3 Bit 5 CaptureClk0

Port 3 Bit 6 CaptureClk1

Port 3 Bit 7 1284Out

Port 4 Bit 0 ASC3 TXD

Port 4 Bit 1 ASC3 RXD

Port 4 Bit 2 Teletext clock

Port 4 Bit 3 1284PeriphLogicH

Port 4 Bit 4 1284HostLogicH

Port 4 Bit 5 Interrupt2

Port 4 Bit 6 Interrupt3

Port 4 Bit 7 Not available

Table 27.1 PIO port alternate function assignments

ST20-TP2

178/205



27.2 Interrupt assignments

The interrupts from the peripherals on the ST20-TP2 are assigned as follows:

These interrupts are inputs to the interrupt level controller, see Chapter 5 on page 33 for details.
This allows these interrupts to be assigned to any of eight interrupt priority levels and for multiple
interrupts to share a priority level.

Interrupt Peripheral Signals ORed together to generate interrupt signal

0 Port 0 Compare function

1 Port 1 Compare function

2 Port 2 Compare function

3 Port 3 Compare function

4 Port 4 Compare function

5 SSC0 SSC0TxBufEmpty, SSC0RxBufFull, SSC0ErrorInterrupt

6 SSC1 SSC1TxBufEmpty, SSC1RxBufFull, SSC1ErrorInterrupt

7 ASC3 ASC3TxBufEmpty, ASC3TxEmpty, ASC3RxBufFull, ASC3ErrorInterrupt

8 ASC2 ASC2TxBufEmpty, ASC2TxEmpty, ASC2RxBufFull, ASC2ErrorInterrupt

9 ASC1 ASC1TxBufEmpty, ASC1TxEmpty, ASC1RxBufFull, ASC1ErrorInterrupt

10 ASC0 ASC0TxBufEmpty, ASC0TxEmpty, ASC0RxBufFull, ASC0ErrorInterrupt

11 PWM and Capture PWM0Int, PWM1Int, Capture0Int, Capture1Int

12 1284 port 1284 interrupt, see Table 25.19 on page 164.

13 Teletext Teletext interrupt, Table 23.9 on page 139.

14 Interrupt0 pin

15 Interrupt1 pin

16 Interrupt2 pin (PIO4[5])

17 Interrupt3 pin (PIO4[6])

Table 27.2 Interrupt assignments

ST20-TP2

179/205



28 Pin list
Signal names are prefixed by not if they are active low, otherwise they are active high.

States during and after assertion of notRST are given for output pins. Codes are as follows:
0 = low; 1 = high; Z = tristate; X = unknown; H = high if not forced from outside (weak pullup).

The state of all pins when the VDD power supply is outside the operating range, or before notRST
is asserted, is undefined.

Supplies

System

Reset

Clocks

†Once LPClock is running. When LPClock is not running the state is unknown.

Pin In/Out Function

VDD Power supply

GND Ground

Table 28.1 ST20-TP2 supply pins

Pin In/Out Function

ClockIn in System input clock - PLL or TimesOneMode

SpeedSelect0-1 in PLL speed selector

Table 28.2 ST20-TP2 system services pins

Pin In/Out Function
Reset state

During After

notRST in Reset

CPUReset in System reset

CPUAnalyse in Error analysis

ErrorOut out Error indicator 0 0

Table 28.3 ST20-TP2 Reset pins

Pin In/Out Function
Reset state

During After

LPClockIn in Low power input clock

LPClockOsc in/out Low power clock oscillator - -

RTCVDD in Real time clock supply

notWdReset out Watchdog timer reset 1† 1†

Table 28.4 ST20-TP2 clock pins

ST20-TP2

180/205



Interrupts

Link

Memory

†If clocks are running. If clocks are not running the state is unknown.

Pin In/Out Function

Interrupt0-1 in Interrupt

Table 28.5 ST20-TP2 interrupt pins

Pin In/Out Function
Reset state

During After

LinkIn in Serial data input channel

LinkOut out Serial data output channel 0 0

Table 28.6 ST20-TP2 link pins

Pin In/Out Function
Reset state

During After

MemAddr2-23 out Address bus Z 0

MemData0-31
in/out Data bus. Data0 is the least significant bit (LSB)

and Data31 is the most significant bit (MSB).
Z Z

notMemRd out Read strobe 0† 1

MemReq in Direct memory access request

MemGrant out Direct memory access granted 0† 0

notMemRf out Dynamic memory refresh indicator 0† 1

MemWait in Memory cycle extender

notMemCAS0-3 out CAS strobes – banks 0-3 or bytes 0-3 1 1

notMemRAS0/1/3 out RAS strobes – banks 0, 1, 3 1 1

notMemPS0/1/3 out Programmable strobes – banks 0, 1, 3 1 1

notMemBE0-3 out Byte enable strobes – banks 0-3 1 1

notCS0-1 out MPEG ICs chip select 1 1

notCDSTRB0-1 out MPEG ICs compressed data strobe 1 1

BootSource0-1 in Boot from ROM or from link

ProcClkOut out Processor clock 0 0

Table 28.7 ST20-TP2 memory pins

ST20-TP2

181/205



DMA control

Link IC

Teletext interface

1284 port

Pin In/Out Function

notCDREQ0-1 in MPEG IC compressed data request

Table 28.8 ST20-TP2 DMA control pins

Pin In/Out Function

LByteClk in Link IC byte clock

LByteClkValid in Link IC byte clock valid edge

LData0-7 in Link IC data

LError in Link IC packet error

LPacketClk in Link IC packet strobe

Table 28.9 ST20-TP2 link IC pins

Pin In/Out Function
Reset state

During After

TtxtData in/out Teletext serial data Z Z

TtxtEvennotOdd in Teletext even not odd

TtxtRequest
in Teletext serial data request input. This becomes

the hsync signal when the teletext interface is
operating in the IN mode.

Table 28.10 ST20-TP2 teletext interface pins

Pin In/Out Function
Reset state

During After

1284Data0-7 in/out 1284 data Z Z

Table 28.11 ST20-TP2 1284 port pins

ST20-TP2

182/205



Test Access Port (TAP)

Parallel Input/Output

Alternate functions are described in section 27.1.

1284notSelectIn in

The function of these control pins is dependent on
the mode of operation of the 1284 port, Chapter 25.

1284notInit in

1284notFault out 0 0

1284notAutoFd in

1284Select out 0 0

1284PError/
TsByteClkValid

out
0 0

1284Busy/
TsPacketClk

out
0 0

1284notAck/

TsByteClk

out
0 0

1284notStrobe in

Pin In/Out Function
Reset state

During After

TDI in Test data input

TDO out Test data output Z Z

TMS in Test mode select

TCK in Test clock

notTRST in Test logic reset

Table 28.12 ST20-TP2 TAP pins

Pin In/Out Function
Reset state

During After

PIO0[0-7] in/out Parallel input/output pin or alternate function (see Table 27.1). H H

PIO1[0-7] in/out Parallel input/output pin or alternate function (see Table 27.1). H H

PIO2[0-7] in/out Parallel input/output pin or alternate function (see Table 27.1). H H

PIO3[0-7] in/out Parallel input/output pin or alternate function (see Table 27.1). H H

PIO4[0-6] in/out Parallel input/output pin or alternate function (see Table 27.1). H H

Table 28.13 ST20-TP2 PIO pins

Table 28.11 ST20-TP2 1284 port pins

ST20-TP2

183/205



29 Package specifications
The ST20-TP2 will be available in a 208 pin plastic quad flat pack (PQFP) package.

29.1 ST20-TP2 package pinout

Pin Pin name I/O

1 MemAddr2 O

2 MemAddr3 O

3 GND

4 MemAddr4 O

5 MemAddr5 O

6 MemAddr6 O

7 MemAddr7 O

8 VDD

9 MemAddr8 O

10 MemAddr9 O

11 MemAddr10 O

12 MemAddr11 O

13 GND

14 MemAddr12 O

15 MemAddr13 O

16 MemAddr14 O

17 MemAddr15 O

18 VDD

19 MemAddr16 O

20 MemAddr17 O

21 MemAddr18 O

22 MemAddr19 O

23 GND

24 MemAddr20 O

25 MemAddr21 O

26 MemAddr22 O

27 MemAddr23 O

28 VDD

29 MemData0 I/O

Table 29.1 ST20-TP2 pin allocation

ST20-TP2

184/205



30 MemData1 I/O

31 MemData2 I/O

32 MemData3 I/O

33 GND

34 MemData4 I/O

35 MemData5 I/O

36 MemData6 I/O

37 MemData7 I/O

38 VDD

39 MemData8 I/O

40 MemData9 I/O

41 MemData10 I/O

42 MemData11 I/O

43 GND

44 MemData12 I/O

45 MemData13 I/O

46 MemData14 I/O

47 MemData15 I/O

48 VDD

49 MemData16 I/O

50 MemData17 I/O

51 MemData18 I/O

52 MemData19 I/O

53 GND

54 MemData20 I/O

55 MemData21 I/O

56 MemData22 I/O

57 MemData23 I/O

58 VDD

59 MemData24 I/O

60 MemData25 I/O

61 MemData26 I/O

62 MemData27 I/O

63 GND

64 MemData28 I/O

Pin Pin name I/O

Table 29.1 ST20-TP2 pin allocation

ST20-TP2

185/205



65 MemData29 I/O

66 MemData30 I/O

67 MemData31 I/O

68 VDD

69 LData0 I

70 LData1 I

71 LData2 I

72 LData3 I

73 LData4 I

74 LData5 I

75 LData6 I

76 LData7 I

77 VDD

78 LByteClk I

79 LByteClkValid I

80 LPacketClk I

81 LError I

82 GND

83 1284notSelectIn I

84 1284notInit I

85 1284notFault O

86 1284notAutoFd I

87 VDD

88 1284Select O

89 1284PError/TSByteClkValid O

90 1284Busy/TSPacketClk O

91 1284notAck/TSByteClk O

92 GND

93 1284Data7 I/O

94 1284Data6 I/O

95 1284Data5 I/O

96 1284Data4 I/O

97 VDD

98 1284Data3 I/O

99 1284Data2 I/O

Pin Pin name I/O

Table 29.1 ST20-TP2 pin allocation

ST20-TP2

186/205



100 1284Data1 I/O

101 1284Data0 I/O

102 GND

103 1284notStrobe I

104 Interrupt0 I

105 Interrupt1 I

106 TtxtEvennotOdd I

107 TtxtRequest I

108 TtxtData I/O

109 VDD

110 ClockIn I

111 SpeedSelect0 I

112 SpeedSelect1 I

113 LPClockOsc

114 LPClockIn

115 RTCVDD

116 notRST I

117 CPUAnalyse I

118 GND

119 CPUReset I

120 ErrorOut O

121 TDI I

122 TMS I

123 TCK I

124 notTRST I

125 TDO O

126 LinkIn I

127 LinkOut O

128 VDD

129 PIO0<0> I/O

130 PIO0<1> I/O

131 PIO0<2> I/O

132 PIO0<3> I/O

133 PIO0<4> I/O

134 PIO0<5> I/O

Pin Pin name I/O

Table 29.1 ST20-TP2 pin allocation

ST20-TP2

187/205



135 PIO0<6> I/O

136 PIO0<7> I/O

137 GND

138 PIO1<0> I/O

139 PIO1<1> I/O

140 PIO1<2> I/O

141 PIO1<3> I/O

142 PIO1<4> I/O

143 PIO1<5> I/O

144 VDD

145 PIO1<6> I/O

146 PIO1<7> I/O

147 PIO2<0> I/O

148 PIO2<1> I/O

149 PIO2<2> I/O

150 PIO2<3> I/O

151 PIO2<4> I/O

152 GND

153 PIO2<5> I/O

154 PIO2<6> I/O

155 PIO2<7> I/O

156 PIO3<0> I/O

157 PIO3<1> I/O

158 PIO3<2> I/O

159 PIO3<3> I/O

160 PIO3<4> I/O

161 VDD

162 PIO3<5> I/O

163 PIO3<6> I/O

164 PIO3<7> I/O

165 PIO4<0> I/O

166 PIO4<1> I/O

167 PIO4<2> I/O

168 PIO4<3> I/O

169 PIO4<4> I/O

Pin Pin name I/O

Table 29.1 ST20-TP2 pin allocation

ST20-TP2

188/205



170 notWdReset O

171 GND

172 PIO4<5> I/O

173 PIO4<6> I/O

174 notCDREQ0 I

175 notCDREQ1 I

176 VDD

177 MemReq I

178 MemGrant O

179 notMemRd O

180 notMemRf O

181 MemWait I

182 BootSource0 I

183 BootSource1 I

184 GND

185 ProcClockOut O

186 VDD

187 notCS0 O

188 notCS1 O

189 notCDSTRB0 O

190 notCDSTRB1 O

191 GND

192 notMemBE0 O

193 notMemBE1 O

194 notMemBE2 O

195 notMemBE3 O

196 VDD

197 notMemPS0 O

198 notMemPS1 O

199 notMemPS3 O

200 notMemRAS0 O

201 GND

202 notMemRAS1 O

203 notMemRAS3 O

Pin Pin name I/O

Table 29.1 ST20-TP2 pin allocation

ST20-TP2

189/205



29.2 208 pin PQFP package dimensions

Notes

1 Lead finish to be 85 Sn/15 Pb solder plate.

204 notMemCAS0 O

205 notMemCAS1 O

206 VDD

207 notMemCAS2 O

208 notMemCAS3 O

REF. CONTROL DIM. mm

NOM MIN MAX

A 4.10

A1 0.25

A2 3.40 3.20 3.60

B 0.17 0.27

C 0.09 0.20

D 30.60

D1 28.00

D3 25.50

E 30.60

E1 28.00

E3 25.50

e 0.50

K 3.5d 0d 7d

L 0.60 0.45 0.75

L1 1.30

Table 29.2 208 pin PQFP package dimensions

Pin Pin name I/O

Table 29.1 ST20-TP2 pin allocation

ST20-TP2

190/205



Figure 29.1 208 pin PQFP package dimensions

ST20-TP2

191/205



30 Electrical specifications
30.1 Absolute maximum ratings

Note : Stresses greater than those listed under ‘Absolute maximum ratings’ may cause permanent
damage to the device. This is a stress rating only and functional operation of the device at these or
any other conditions above those indicated in the operating sections of this specification is not
implied. Exposure to absolute maximum rating conditions for extended periods may affect reliabil-
ity.

30.2 Operating conditions

Notes

1 Excursions beyond the supplies are permitted but not recommended.
2 Excluding LinkOut load capacitance and EMI pin load capacitance.
3 Measured at 50 MHz with no static loads on the EMI pins and with a 40 pF load on all out-

put pins.
4 Power supplied to both RTCVdd and Vdd supplies and PLL still running, but internal clocks

stopped.
5 Power removed from Vdd but power remaining on RTCVdd to allow the real time clock to

continue operating.

Symbol Parameter Min Max Units

VDDmax DC supply voltage 4.5 V

VImax Voltage on input and bi-directional pins GND-0.6 5.75 V

VOmax Voltage on output pins GND-0.6 VDD+0.6 V

IOmax DC output current 25 mA

TSmax Storage temperature (ambient) -55 125 °C

TAmax Temperature under bias (ambient) -55 125 °C

Table 30.1 Absolute maximum ratings

Symbol Parameter Min Max Units Notes

VI, VO Input or output voltage 0 5.75 V 1

CL Load capacitance per pin 60 pF 2

CLD Load capacitance per data pin 60 pF

CLA Load capacitance per address/strobe pin 100 pF

CLP Load capacitance per PIO pin 400 pF

TA Operating temperature (ambient) 0 70 °C

PD Power dissipation 2.4 W 3

PDlp Power dissipation (low power mode) 400 mW 4

PDpd Power dissipation (power down mode) 5 mW 5

Table 30.2 Operating conditions

ST20-TP2

192/205



30.3 DC specifications

Notes

1 0 ≤ VI ≤ 5.5
2 0 ≤ VI ≤ VDD and 4.5 < VI < 5.5
3 VDD ≤ VI ≤ 4.5V
4 0 ≤ VI ≤ VDD
5 Iload = 14 mA for IEEE1284, 4 mA for PIO, 2 mA for all other outputs

Symbol Parameter Min Typical Max Units Notes

VDD Positive supply voltage 3.0 3.3 3.6 V

VIH Input logic 1 voltage 2.0 5.75 V

VIL Input logic 0 voltage -0.5 0.8 V

IIN Input current (input pin) ±10 µA 1

IOZ Off state digital output current ±50 µA 2

IOZPIO Peak off state PIO input/output current ±200 µA 3

IOZEMI Peak off state EMI input/output current 1 mA 3

IwpPIO Input weak pull-up current on PIO pins 30 µA 4

VOH Output logic 1 voltage 2.4 V 5

VOL Output logic 0 voltage 0.4 V 5

CIN Input capacitance (input pins) 10 pF

CIO Input capacitance (bi-directional pins) 15 pF

COUT Output capacitance 15 pF

Table 30.3 DC specifications

ST20-TP2

193/205



31 Timing specifications

31.1 EMI timings

The timings are based on the following loading conditions: 40 pF load with the pad drive strengths
(refer to EMI chapter for details on the pad drive strength) as follows:

Address pin drive strength at level 1

Strobe pin drive strength at level 1

Data pin drive strength at level 3

The ‘Reference Clock’ used in the EMI timings is a virtual clock and is defined as the point at which
all positively edged EMI strobe and address outputs are valid. This is designed to remove process
dependent skews from the datasheet description and highlight the dominant influence of address
and strobe timings on memory system design.

All timing measurements are taken using an output threshold of 1.5V unless otherwise stated.

The reference clock duty cycle is 50:50.

Notes

1 Minimum values are guaranteed by design.

Symbol Parameter Min Max Units Note

tCHAV Reference Clock high to Address valid -8.0 0.0 ns

tCLSV Reference Clock low to Strobe valid -8.0 3.0 ns

tCHSV Reference Clock high to Strobe valid -8.0 0.0 ns

tRDVCH Read Data valid to Reference Clock high 15.0 ns

tCHRDX Read Data hold after Reference Clock high -2.0 ns

tSVRDX Read Data hold after Strobe valid 0.0 ns 1

tCLWDV Reference Clock low to Write Data valid -10.0 11.0 ns 1

tCHWDV Reference Clock high to Write Data valid -8.0 6.0 ns 1

tCHRSV Reference Clock high to remaining Strobes valid -8.0 3.0 ns

tCHPH Reference Clock high to ProcClkOut high -8.0 3.0 ns

tWVCH MemWait valid to Reference Clock high 15.0 ns

tCHWX MemWait hold after Reference Clock high -2.0 ns

tRVCH MemReq valid to Reference Clock high 15.0 ns

tCHRX MemReq hold after Reference Clock high -2.0 ns

tPHWX MemWait hold after ProcClkOut high 0.0 ns 1

tPHRX MemReq hold after ProcClkOut high 0.0 ns 1

Table 31.1 EMI cycle timings

ST20-TP2

194/205



Figure 31.1 EMI timings

MemData0-31
(Read)

MemWait

MemReq

tPHWX

tPHRX

tSVRDX

tCHWX

tCHRX

Reference clock

(Write on 0,1 clock)

(Write on half clock)

MemAddr2-23

notMemRAS0/1/3
notMemCAS0-3
notMemPS0/1/3

notMemBE0-3
notCS0-1

notCDSTRB0-1

MemData0-31

MemData0-31

notMemRd
notMemRf
MemGrant

ProcClkOut

tCHAV

tCHSV tCLSV

tRDVCH
tCHRDX

tCHWDV

tCLWDV

tCHRSV

tCHPH tCHPH

tWVCH

tRVCH

ST20-TP2

195/205



Figure 31.2 Rise and fall times for data pins for different pad drive strengths

Figure 31.3 Rise and fall times for address and strobe pins for different pad drive strengths

5

10

20 50 80 100

00
01
10
11

150

Cload (pF)

Fall time (ns)

1

2

3

4

6

7

8

9

5

10

15

20 50 80 100 150

Rise time (ns)

Cload (pF)

11

10

01

00

1
2
3
4

6
7
8
9

11
12
13
14

Cload (pF)

Rise time (ns)

11
10

01

0015

10

5

1
2
3
4

6
7
8
9

11
12
13
14

20 40 60 80 100 120140 160180200

15

10

5

1
2
3
4

6
7
8
9

11
12
13
14

20 40 60 80 100 120 140 160180 200
Cload (pF)

Fall time (ns)

11
10
01

00

ST20-TP2

196/205



Figure 31.4 Rise and fall times for ProcClkOut

All rise and fall times are measured at 10 – 90%, on typical silicon at 3.3 V, 25°C.

31.2 PIO timings

Notes :

1 Load = 50pf.

Symbol No. Parameter Min Max Units Notes

tIOr Output rise time 7.0 30.0 ns 1

tIOf Output fall time 7.0 30.0 ns 1

Table 31.2 PIO timings

Cload (pF)

Rise time (ns)15

10

5

1
2
3
4

6
7
8
9

11
12
13
14

20 40 60 80 100 120140160180200

15

10

5

1
2
3
4

6
7
8
9

11
12
13
14

20 40 60 80 100 120 140 160180 200
Cload (pF)

Fall time (ns)

ST20-TP2

197/205



31.3 Link timings

Notes

1 This is the variation in the total delay through buffers, transmission lines, differential receiv-
ers etc, caused by such things as short term variation in supply voltages and differences in
delays for rising and falling edges.

Figure 31.5 Link timings

Figure 31.6 Buffered Link timings

Symbol Parameter Min Nom Max Units Notes

tJQr LinkOut rise time 20 ns

tJQf LinkOut fall time 10 ns

tJDr LinkIn rise time 20 ns

tJDf LinkIn fall time 20 ns

tJQJD Buffered edge delay 0 ns

∆tJB Variation in tJQJD 20 Mbits/s 3 ns 1

10 Mbits/s 10 ns 1

5 Mbits/s 30 ns 1

CLIZ LinkIn capacitance @ f=1MHz 10 pF

CLL LinkOut load capacitance 50 pF

Table 31.3 Link timings

LinkOut

LinkIn

90%

10%

90%

10%

tJQr tJQf

tJDr tJDf

LinkOut

Latest tJQJD

Earliest tJQJD

1.5 V

1.5 V

∆tJB

LinkIn

ST20-TP2

198/205



31.4 Reset and Analyse timings

Figure 31.7 Reset and Analyse timings

Symbol Parameter Min Nom Max Units

tRHRL notRST pulse width low 8 ClockIn

tRHRL CPUReset pulse width high 1 ClockIn

tAHRH CPUAnalyse setup before CPUReset 3 ms

tRLAL CPUAnalyse hold after CPUReset end 1 ClockIn

Table 31.4 Reset and Analyse timings

notRST

CPUReset

CPUAnalyse

tRSTHRSTL

tRHRL tRHRL

tRLALtAHRH

ST20-TP2

199/205



31.5 Clock timings

31.5.1 ClockIn timings

Notes

1 Measured between corresponding points on consecutive falling edges.

2 Variation of individual falling edges from their nominal times.

3 Clock transitions must be monotonic within the range VIH to VIL (see Electrical Specifica-
tions chapter).

Figure 31.8 ClockIn timings

Symbol Parameter Min Nom Max Units Notes

tDCLDCH ClockIn pulse width low 6 ns

tDCHDCL ClockIn pulse width high 10 ns

tDCLDCL ClockIn period 37 ns 1, 2

tDCr ClockIn rise time 10 ns 3

tDCf ClockIn fall time 10 ns 3

Table 31.5 ClockIn timings

2.0V
1.5V
0.8V

tDCLDCH tDCHDCL

tDCLDCL

90%

10%

tDCf

90%

10%

tDCr

ST20-TP2

200/205



31.6 TAP timings

The TAP will function at 5 MHz TCK with the following timings. All other electrical characteristics of
the TAP pins are as defined in the Electrical Specifications chapter.

Figure 31.9 TAP timings

Symbol Parameter Min Nom Max Units

Tsetup Set-up time 10 ns

Thold Hold time 10 ns

Tprop Propagation delay 50 ns

Table 31.6 TAP timings

1.5V

1.5V

1.5V

1.5V

TCK

Input signal

TCK

Output signal

Tsetup Thold

Tprop

ST20-TP2

201/205



31.7 Link IC timings

Figure 31.10 Link IC timings

Symbol Parameter Min Nom Max Units Notes

tLCLLCL LByteClk period 100 ns

tLCHLCL LByteClk pulse width high 10 ns

tLCLLCH LByteClk pulse width low 10 ns

tLDVLCH Link IC signal valid to LByteClk high 10 ns

tLCHLDX Link IC signal hold after LByteClk high 3 ns

Table 31.7 Link IC timings

LByteClk

LByteClkValid
LData0-7
LError
LPacketClk

tLCLLCH tLCHLCL

tLCLLCL

tLDVLCH tLCHLDX

ST20-TP2

202/205



31.8 Teletext timings

31.8.1 Teletext data out

Table 31.8 Teletext data out

Figure 31.11 Teletext data out

31.8.2 Teletext data in

Table 31.9 Teletext data in

1 tTCHTDIX is expressed in clock cycles i.e. 111ns = 3 x 27MHz clock cycles.

Figure 31.12 Teletext data in

Symbol Parameter Min Nom Max Units Notes

tCIHTRX TeletextRequest hold time from clockin high 4 ns

tTRVCIH TeletextRequest setup time to clockin high 10 ns

tCIHTDOX TeletextData output hold after clockin high 6 ns

tCIHTDOV Clockin high to Teletext data output valid 25 ns

Symbol Parameter Min Nom Max Units Notes

tTDIVTCH Teletext data in setup time to teletext clock high 0 ns

tTCHTDIX Teletext data in hold time from teletext clock high 111 ns 1

Clockin

TtxtRequest

TtxtData

= Delay from TtxtRequest input high to TtxtData out is programmable via TtxtOutDelay register

tRVCIH tCIHTRX

tCIHDOV
tCIHDOX

TtxtDataIn

TtxtClock

tTCHTDIX
tTDIVTCH

ST20-TP2

203/205



32 Device ID
The identification code for the ST20-TP2 is #m5193041, where m is a manufacturing revision num-
ber reserved by SGS-THOMSON. See Table 32.1.

The identification code is returned by the ldprodid instruction, see Table 6.4.

33 Ordering information

For further information contact your local SGS-THOMSON sales office.

a. Defined as 1 in IEEE 1149.1 standard.

bit 31 bit 0

Mask rev
ST20
family

Variant SGS-THOMSON
manufacturers id

a

reserved 0 1 0 1 0 0 0 1 1 0 0 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1

5 1 9 3 0 4 1

Table 32.1 Identification code

Device
Maximum processor

clock rate Package

ST20TP2BX50S 50 MHz 208 pin plastic quad flat pack (PQFP)

ST20-TP2

204/205



Appendix A Channel model
The ST20-TP2 on-chip bus which connects the ST20 processor core and the other modules pro-
vides a unique way of communicating between data processing/interface modules, the CPU and
memory (both on and off chip).

The model relies on three main elements of the system. The microkernel of the CPU, the intercon-
nect protocol, and the design of the module. Instructions are provided which enable the program-
mer to make use of these features in a simple and flexible way.

The CPU uses a group of reserved locations at the base of memory to store the task identifier of a
task using one of the channels, see the memory map for details. When a task performs an instruc-
tion requiring communication via the channel the task identifier is stored in the channel location
(specified by the instruction operand) and the appropriate command (determined by the instruc-
tion) is sent to the module. This task is now considered inactive and will take no further CPU time.
The microkernel will begin executing the next active task from its queue. When the module has
completed the command, an acknowledge is sent to the CPU which signals the microkernel to
remove the task identifier from the channel location and put it on the back of the queue of active
processes waiting for CPU time.

The type of operations this is used for is data transfers into and out of CPU memory. This method
of communication has the advantage that the speed and overhead of the data transfer are not tak-
ing up CPU time. The close coupling of the microkernel and these protocols means that the set-up,
acknowledge and context switch times are very short, less than 500 ns in most cases.

A.1 Example

The CPU executes an in instruction from the Link-IC interface module. Operands to the in instruc-
tion are the base pointer in CPU memory and the size in bytes. The task ID of the task executing
the in instruction is placed in address #8000002C.The internal bus sends the channel number, the
in command, the base pointer and the size. This will be received by the correct module using the
channel number. The CPU is now free to continue with another operation. The Link-IC interface
module will now input ‘size’ bytes of data and place them in the addresses above the base pointer.
When the correct number of bytes have been received the module returns an acknowledge com-
mand and the channel number to the CPU. The microkernel takes the task ID from address
#8000002C and adds it to the back of the active list.

ST20-TP2

205/205



Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license
is grantedby implication or otherwise under any patent or patent rightsof SGS-THOMSON Microelectronics. Specifications mentionedin thispub lication
are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics
products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON
Microelectronics.

 1997 SGS-THOMSON Microelectronics - All Rights Reserved

is a registered trademark of the SGS-THOMSON Microelectronics Group.

SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco -

The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

