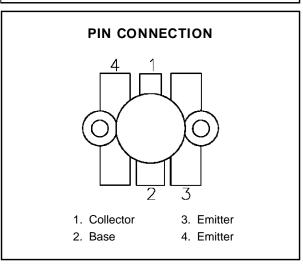


SD1477


RF & MICROWAVE TRANSISTORS VHF MOBILE APPLICATIONS

- 175 MHz
- 12.5 VOLTS
- COMMON EMITTER
- Pout = 100 W MIN. WITH 6.0 dB GAIN

DESCRIPTION

The SD1477 is a 12.5 V Class C epitaxial silicon NPN planar transistor designed primarily for VHF FM communications. This device utilizes diffused emitter resistors to withstand extremely high VSWR under rated operating conditions, and is internally input matched to optimize power gain and efficiency over the 136 - 175 MHz band.

ABSOLUTE MAXIMUM RATINGS $(T_{case} = 25^{\circ}C)$

Symbol	Parameter	Value	Unit
V _{CBO}	Collector-Base Voltage	36	V
V _{CEO}	Collector-Emitter Voltage	18	V
V _{CES}	Collector-Emitter Voltage	36	V
VEBO	Emitter-Base Voltage	4.0	V
Ic	Device Current	20	А
P _{DISS}	Power Dissipation	270	W
TJ	Junction Temperature	+200	°C
T _{STG}	Storage Temperature	- 65 to +150	°C

THERMAL DATA

R _{TH(j-c)} Junction-Case Thermal Resistance	0.65	°C/W
---	------	------

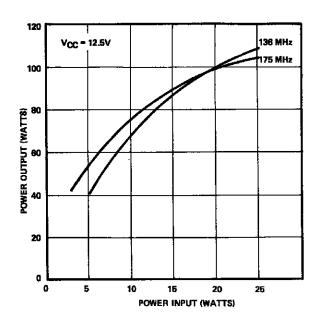
November 1992 1/6

ELECTRICAL SPECIFICATIONS (Tcase = 25°C)

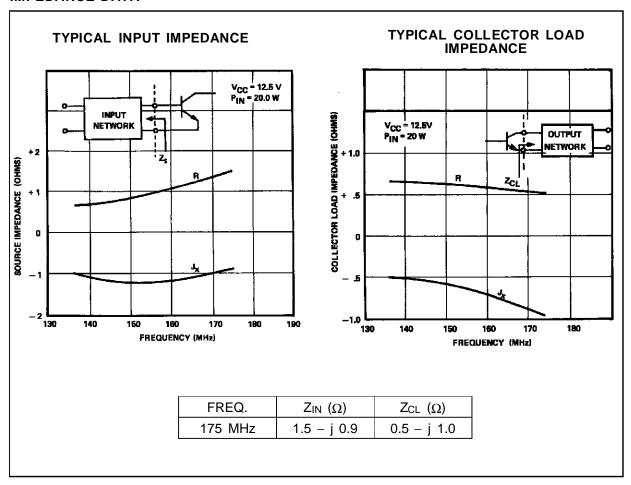
STATIC

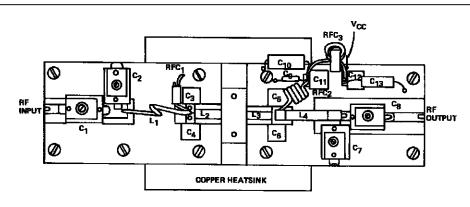
Symbol	Test Conditions	Value			Unit		
Symbol	rest conditions			Min.	Тур.	Max.	Oiiit
ВУсво	I _C = 50mA	$I_E = 0mA$		36		_	V
BVces	I _C = 100mA	$V_{BE} = 0V$		36			V
BV _{CEO}	I _C = 100mA	$I_B = 0mA$		18		_	V
BV _{EBO}	I _E = 10mA	$I_C = 0mA$		4.0	_	_	V
Ices	V _{CE} = 15V	I _E = 0mA		_		15	mA
hFE	V _{CE} = 5V	I _C = 5A		10	_	_	_

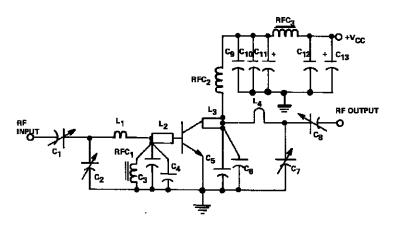
DYNAMIC


Symbol	Test Conditions				Value		
Syllibol		rest Conditions	•	Min.	Тур.	Max.	Unit
Pout	f = 175 MHz	$P_{IN} = 25 \text{ W}$	$V_{CC} = 12.5 \text{ V}$	100	_	_	W
G _P	f = 175 MHz	P _{IN} = 25 W	V _{CC} = 12.5 V	6.0	_	_	dB
Сов	f = 1 MHz	V _{CB} = 12.5 V			350	_	pF

TYPICAL PERFORMANCE


POWER OUTPUT vs FREQUENCY


POWER OUTPUT vs POWER INPUT

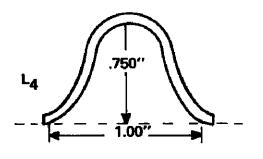


IMPEDANCE DATA

TEST CIRCUIT

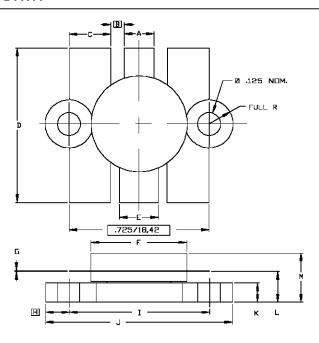
 $\begin{array}{llll} \text{C1, C2} & : & \text{Arco 462 5 - 80pF} \\ \text{C3, C4} & : & \text{Unelco 100pF, 350V} \\ \text{C5, C6} & : & \text{Unelco 120pF, 350V} \\ \text{C7, C8} & : & \text{Arco 463 9 - 180pF} \\ \text{C9, C12} & : & \text{Unelco 1000pF, 350V} \\ \text{C10} & : & \text{Erie .15\muF, 200V Red Cap} \\ \text{C11} & : & \text{25\muF, 25V Electrolytic} \\ \text{C13} & : & \text{10\muF, 25V Electrolytic} \\ \end{array}$


L1 : 1 Turn, #12, 1/4" I.D.


L2, L3 : 1/2" 50Ω Stripline (.180" Wide) L4 : 1/8" Thick Copper Strap 1/4" Wide

RFC1 : 1 1/2 Turns on Ferroxcube VK200/19-B RFC2 : 4 Turn #16 Enamel, 3/8" I.D., 3/8" Long RFC3 : 4 Turns #16 Enamel on T50-2 Torroid

Board


Material: 3M-K6098, 1/16" Thick

PACKAGE MECHANICAL DATA

Ref.: Dwg. No.12-0111

St	S-THOMSON MICR	DELECTRONICS		С	DNT'D
	MINIMUM Inches/mm	MAXIMUM Inches/mm		MINIMUM Inches/mm	MAXIMUM Inches/mm
Α	.150/3,43	.160/4,06	K	.095/2,41	.105/2,67
В	.045/1,1	4	L	.150/3,81	.170/4,32
С	.210/5,33	.220/5,59	М		.280/7,11
D	.835/21,21	.865/21,97			
E	.200/5,08	.210/5,33			
F	.490/12,45	.510/12,95			
G	80,0\E00.	.007/0,18			
Н	.125/3,18				
I	.720/18,29	.730/18,54			
J	.970/24,64	.980/24,89			

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

