

FAST RECOVERY RECTIFIER DIODES

 VERY FAST FORWARD AND REVERSE RECOVERY DIODES

SUITABLE APPLICATION

- SWTCHING POWER TRANSISTORS DRIVER CIRCUITS (SERIES DIODES IN ANTISATURATION CLAMP SPEED UP DIODE IN DISCRETE DARLINGTON...)
- THYRISTORS GATE DRIVER CIRCUITS
- HIGH FREQUENCY RECTIFICATION

ABSOLUTE RATINGS (limiting values)

Symbol	Parameter	Value	Unit			
I _{FRM}	Repetive Peak Forward Current	20	Α			
I _{F (AV)}	Average Forward Current*	1	А			
I _{FSM}	Surge non Repetitive Forward Current	t _p = 10ms Sinusoidal	20	А		
P_{tot}	Power Dissipation*	1.7	W			
T _{stg} T _j	Storage and Junction Temperature Range	- 40 to 125	°C			
TL	Maximum Lead Temperature for Soldering during 10s at 4mm 230 °C from Case					

Symbol	Parameter	PLQ 08	PLQ 1	Unit
V_{RRM}	Repetitive Peak Reverse Voltage	80	100	V
V _{RSM}	Non Repetitive Peak Reverse Voltage	80	100	V

THERMAL RESISTANCE

Symbol	Parameter	Value	Unit
R _{th (j-a)}	Junction-ambient*	60	°C/W

^{*} On infinite heatsink with 10mm lead length.

November 1994 1/5

ELECTRICAL CHARACTERISTICS

STATIC CHARACTERISTICS

Synbol		Min.	Тур.	Max.	Unit	
I _R	T _j = 25°C	$V_R = V_{RRM}$			10	μΑ
	T _j = 100°C				0.5	mA
V _F	T _j = 25°C	I _F = 1A			1.1	V

RECOVERY CHARACTERISTICS

Symbol		Test Conditions	Min.	Тур.	Max.	Unit	
t _{rr}	$T_j = 25^{\circ}C$ $V_R = 30V$	I _F = 1A See figure 12	$di_F/dt = -50A/\mu s$			50	ns
t _{fr}	T _j = 25°C Measured at 1.1 x V _F	I _F = 1A	t _r = 20ns			50	ns

Figure 1. Power losses versus average current.

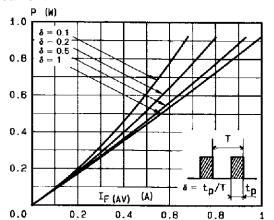


Figure 2. Allowable DC current versus ambient temperature.

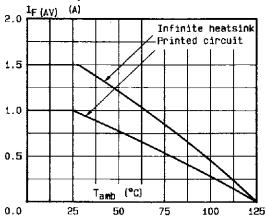


Figure 3. Non repetitive surge peak current versus number of cycles.

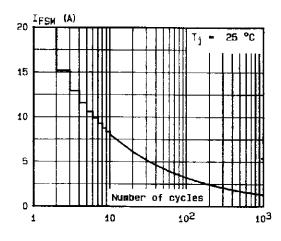


Figure 4. Transient thermal impedance junction-ambient. Printed circuit versus pulse duration ($L=10\,$ mm).

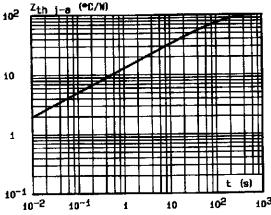


Figure 5. Voltage drop versus forward current.

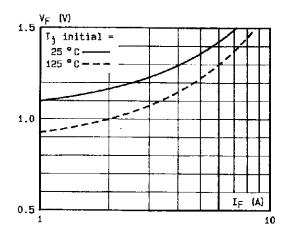


Figure 6. Voltage drop versus forward current.

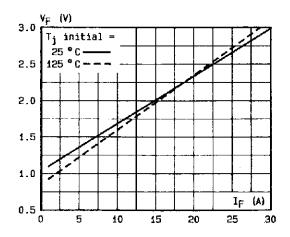


Figure 7. Capacitance versus reverse voltage applied.

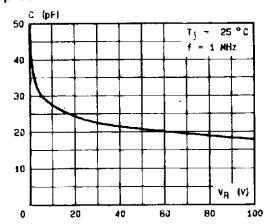


Figure 8. Thermal resistance junction-ambient versus lead length.

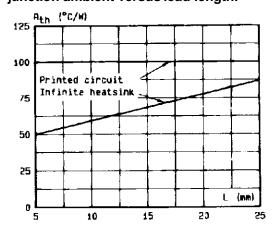


Figure 9. Recovery time versus dif/dt.

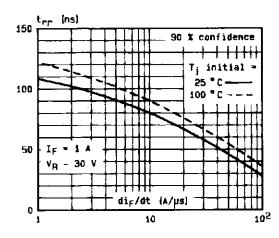


Figure 10. Peak reverse current versus di_F/dt.



Figure 11. Dynamic parameters versus junction temperature.

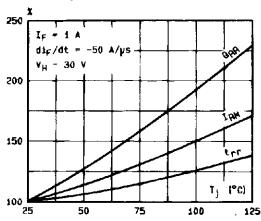
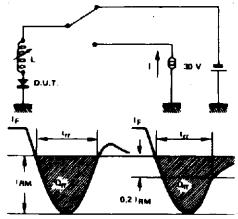
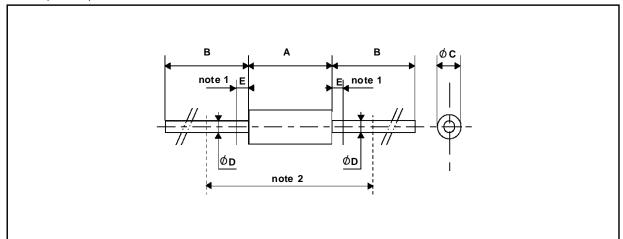




Figure 12. Measurement of $t_{\mbox{\tiny fr}}$ (fig. 8) and $I_{\mbox{\tiny RM}}$ (fig. 10).

PACKAGE MECHANICAL DATA

F 126 (Plastic)

	DIMENSIONS					
REF.	REF. Millimeters		Inches		NOTES	
	Min.	Max.	Min.	Max.		
Α	6.05	6.35	0.238	0.250	1 - The lead diameter Ø D is not controlled over zone E	
В	26		1.024			
ØC	2.95	3.05	0.116	0.120	2 - The minimum axial lengh within which the device may be placed with its leads bent at right angles is 0.59"(15 mm)	
ØD	0.76	0.86	0.029	0.034	phaced with its leads bent at hight drighes is 0.39 (13 min)	
E		1.27		0.050		

Cooling method: by convection (method A) Marking: type number Weight: 0.4g

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

 $\ensuremath{\texttt{@}}$ 1994 SGS-THOMSON Microelectronics - Printed in Italy - All rights reserved.

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - United Kingdom - U.S.A.

