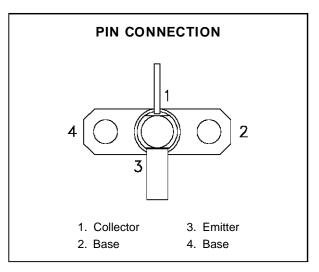


MSC83301

RF & MICROWAVE TRANSISTORS GENERAL PURPOSE AMPLIFIER APPLICATIONS


- REFRACTORY/GOLD METALLIZATION
- EMITTER SITE BALLASTED
- VSWR CAPABILITY ∞:1 @ RATED CONDITIONS
- HERMETIC STRIPAC® PACKAGE
- P_{OUT} = 1.0 W MIN. WITH 7.0 dB GAIN

 @ 3.0 GHz

DESCRIPTION

The MSC83301 is a common base hermetically sealed silicon NPN microwave power transistor utilizing an overlay, emitter site ballasted geometry with a refractory gold metallization system. This device is capable of withstanding an infinite load VSWR at any phase angle under rated conditions. The MSC83301 is designed for Class C amplifier/oscillator applications in the 1.0 - 3.0 GHz frequency range.

ABSOLUTE MAXIMUM RATINGS $(T_{case} = 25^{\circ}C)$

Symbol	Parameter	Value	Unit
P _{DISS}	Power Dissipation* (T _C ≤ 50°C)	6.0	W
Ic	Device Current*	200	mA
Vcc	Collector-Supply Voltage*	30	V
TJ	Junction Temperature	200	°C
T _{STG}	Storage Temperature	- 65 to +200	°C

THERMAL DATA

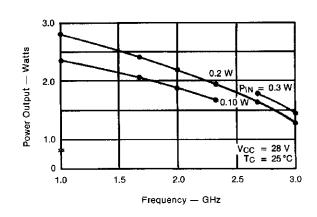
_				
	$R_{TH(j-c)}$	Junction-Case Thermal Resistance*	25	°C/W

 $^{^*}$ Applies only to rated RF amplifier operation

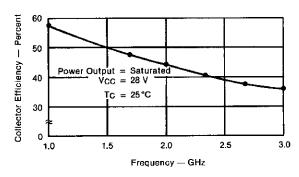
September 2, 1994 1/5

ELECTRICAL SPECIFICATIONS $(T_{case} = 25^{\circ}C)$

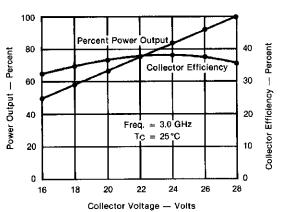
STATIC


Cymph a l	Took Conditions	Value			11:4		
Symbol	Test Conditions		Min.	Тур.	Max.	Unit	
BV _{CBO}	I _C = 1 mA	$I_E = 0 \text{ mA}$		45	_		V
BV _{EBO}	I _E = 1 mA	$I_C = 0 \text{ mA}$		3.5	_	_	V
BV _{CER}	I _C = 5 mA	$R_{BE} = 10 \Omega$		45	_	_	V
Ісво	V _{CB} = 28V			_	_	0.5	mA
h _{FE}	V _{CE} = 5 V	I _C = 100 mA		30	_	300	_

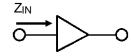
DYNAMIC

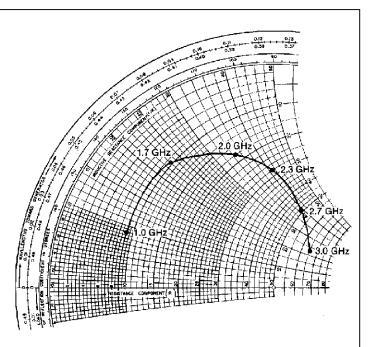

Symbol	Took Conditions			Value			
Symbol		Test Conditions			Тур.	Max.	Unit
Pout	f = 3.0 GHz	$P_{IN} = 0.20 \text{ W}$	$V_{CC} = 28 V$	1.0	1.3	_	W
ης	f = 3.0 GHz	$P_{IN} = 0.20 \text{ W}$	$V_{CC} = 28 \text{ V}$	33	36	_	%
P _G	f = 3.0 GHz	$P_{IN} = 0.20 \text{ W}$	$V_{CC} = 28 \text{ V}$	7.0	8.1	_	dB
Сов	f = 1 MHz	V _{CB} = 28 V			_	3.5	pF

TYPICAL PERFORMANCE


TYPICAL POWER OUTPUT vs FREQUENCY

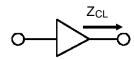
TYPICAL COLLECTOR EFFICIENCY vs FREQUENCY

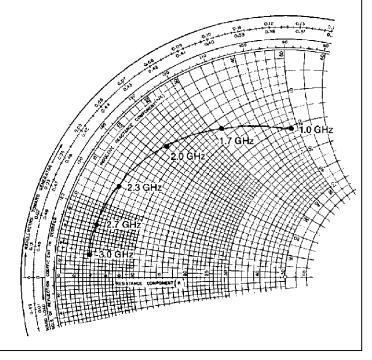

PERCENT POWER OUTPUT & COLLECTOR EFFICIENCY vs COLLECTOR VOLTAGE



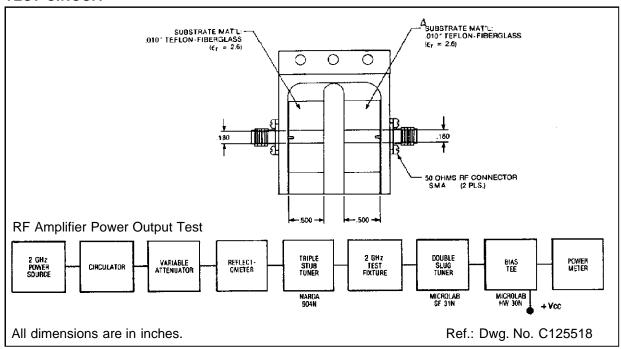
IMPEDANCE DATA

TYPICAL INPUT IMPEDANCE

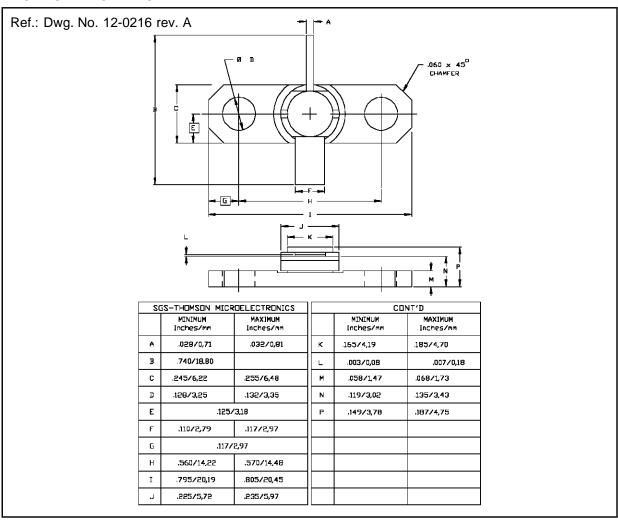




FREQ.	$Z_{IN}\left(\Omega\right)$	Z _{CL} (Ω)
1.0 GHz	9.0 + j 9.0	21.0 + j 48.0
1.7 GHz	9.5 + j 23.0	12.0 + j 32.0
2.0 GHz	18.0 + j 34.5	7.5 + j 22.0
2.3 GHz	28.0 + j 41.0	5.0 + j 13.0
2.7 GHz	49.0 + j 39.0	4.0 + j 7.0
3.0 GHz	65.0 + j 22.0	3.8 + j 3.0


 $P_{OUT} = Saturated$ $V_{CC} = 28 V$ Normalized to 50 ohms

TYPICAL COLLECTOR LOAD IMPEDANCE



TEST CIRCUIT

PACKAGE MECHANICAL DATA

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

©1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

