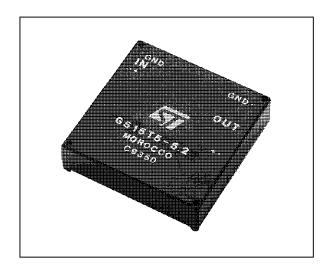


15 W DC-DC CONVERTER FOR ECL

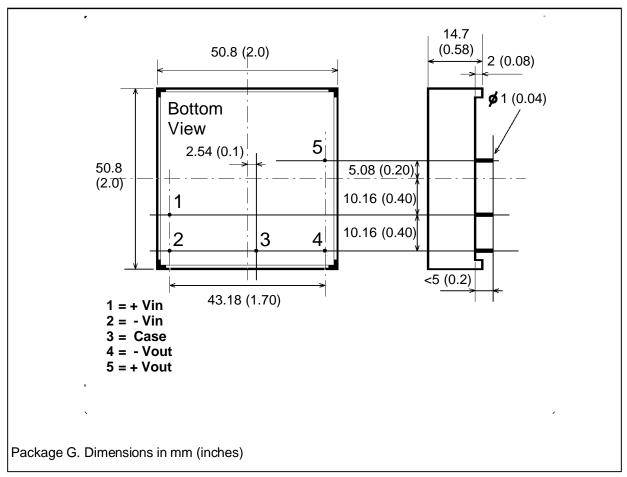

Туре	V _{in}	V _{out}	l _{out}
GS15T5-5.2	5 V	5,2 V	3 A

DESCRIPTION

The GS15T5-5.2 is a 15W DC-DC converter designed to provide a 5.2V isolated output from a 5V input.

The device can operate with an output current in the range of 0.0 to 3.0A without any intermittent operation (packet switching).

It offers short-circuit protection and input-output isolation of 750VDC minimum. The integral heatsink allows a large power handling capability and it provides also an effective shielding to minimize EMI.



ELECTRICAL CHARACTERISTICS (T_{amb.}= 25° C unless otherwise specified)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
Vi	Input Voltage	V ₀ = 5.2V I ₀ = 0.0 to 3.0A	4.75	5.0	5.35	V
lir	Input Reflected Current	$V_i = 5.0V$ $V_0 = 5.2V$ $I_0 = 3.0A$		40	50	mApp
liq	Input Quiescent Current	$V_i = 5.0V$ $V_0 = 5.2V$ $I_0 = 0.0A$		87	95	mA
Vo	Output Voltage	V _i = 4.75 to 5.25V I ₀ = 0.0 to 3.0A	5.04	5.2	5.36	V
lo	Output Current	Vi = 4.75 to 5.25V	0.0		3.0	Α
δVol	Line Regulation	Vi = 4.75 to 5.25V I _O = 3.0A		1	10	mV
δVoo	Load Regulation	$V_i = 5.0V$ $I_0 = 0.0 \text{ to } 3.0A$		10	15	mV
Vor	Output Ripple Voltage	$V_i = 5.0V$ $I_0 = 3.0A$		20	30	m∨pp
Vor	Output Ripple Voltage	V _i = 5.0V I _O = 3.0A		8		mVRMS
losc	Output Short-circuit Current	Vi = 5.0V			4.75	A
Vis	Isolation Voltage		750			V _{DC}
fs	Switching Frequency	V _i = 4.75 to 5.25V I ₀ = 0.0 to 3.0A		100		kHz
η	Efficiency	$V_i = 5.0V$ $I_0 = 3.0A$	77	79		%
Rthc	Thermal Resistance Case to Ambient	Tamb.= 25°C Vi = 5.0V Io = 3.0A		8		°C/W
T _C	Maximum Case Temperature				90	°C
Tstg	Storage Temperature Range		- 40		+105	°C

June 1994 1/2

CONNECTION DIAGRAM AND MECHANICAL DATA

USER NOTES

Thermal Characteristics

Worst case power dissipation at full load is less than 5W.

To operate the device at an ambient temperature of 60 °C the thermal resistance case-to-ambient must be lower than 6.5 °C/W.

This can be accomplished by adding an external heatsink or by forced ventilation with air speed of about 100 linear feet/minute.

MTBF Calculations

The MTBF according to MIL HDBK-217E calculation for a ground benign environment is:

- 216k hours for a case temperature of 91 °C.
- 379k hours for a case temperature of 60 °C.

This last condition can be obtained at T_{amb}.= 40 °C and forced ventilation of 100 feet/minute.

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specification mentioned in this publication are subject to change without notice. This publication superseds and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

