

SMALL SIGNAL SCHOTTKY DIODES

DESCRIPTION

Metal to silicon rectifier diodes in glass case featuring very low forward voltage drop and fast recovery time, intended for low voltage switching mode power supply, polarity protection and high frequency circuits.

ABSOLUTE RATINGS (limiting values)

Symbol	Parameter	Value	Unit		
I _{F(AV)}	Average Forward Current*	current* T _{amb} = 60 °C		А	
I _{FSM}	Surge non Repetitive Forward Current	$T_{amb} = 25$ °C $t_p = 10$ ms	25 Sinusoidal Pulse	А	
		$T_{amb} = 25$ °C $t_p = 300 \mu s$			
T _{stg} T _j	Storage and Junction Temperature Range	and Junction Temperature Range			
TL	Maximum Lead Temperature for Soldering durin from Case	230	°C		

Symbol	Parameter	BYV 10-40	Unit
V_{RRM}	Repetitive Peak Reverse Voltage	40	V

^{*} On infinite heatsink with 4mm lead length

THERMAL RESISTANCE

Symbol	Test Conditions	Value	Unit
R _{th(j-a)}	Junction-ambient*	110	°C/W

^{*} On infinite heatsink with 4mm lead length

August 1998 Ed : 1A 1/4

ELECTRICAL CHARACTERISTICS

STATIC CHARACTERISTICS

Symbol	Test Conditions		Min.	Тур.	Max.	Unit
I _R *	T _j = 25°C	$V_R = V_{RRM}$			0.5	mA
	T _j = 100°C				10	
V _F *	I _F = 1A	T _j = 25°C			0.55	V
	I _F = 3A				0.85	

^{*} Pulse test: $t_p \le 300 \mu s$ $\delta < 2\%$.

DYNAMIC CHARACTERISTICS

Symbol	Test Conditions		Тур.	Max.	Unit
С	$T_j = 25$ °C $V_R = 0$		220		pF

Forward current flow in a Schottky rectifier is due to majority carrier conduction. So reverse recovery is not affected by stored charge as in conventional PN junction diodes.

Nevertheless, when the device switches from forward biased condition to reverse blocking state, current is required to charge the depletion capacitance of the diode.

Fig.1: Forward current versus forward voltage at low level (typical values).

2/4

This current depends only of diode capacitance and external circuit impedance. Satisfactory circuit behaviour analysis may be performed assuming that Schottky rectifier consists of an ideal diode in parallel with a variable capacitance equal to the junction capacitance (see fig. 5 page 4/4).

Fig.2: Forward current versus forward voltage at high level (typical values).

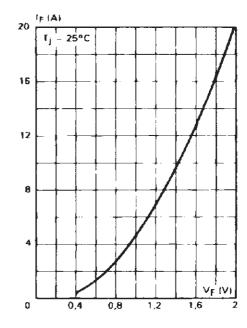


Fig.3: Reverse current versus junction temperature.

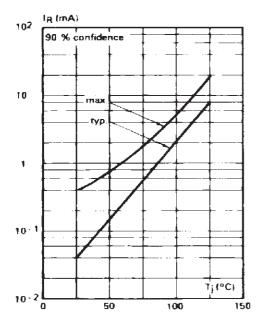


Fig.4 : Reverse current versus \textbf{V}_{RRM} in per cent.

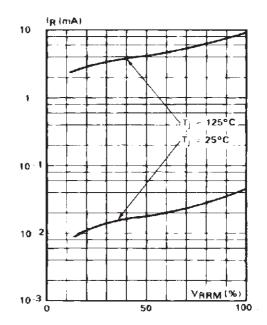


Fig.5 : Capacitance C versus reverse applied voltage V_{R} (typical values).

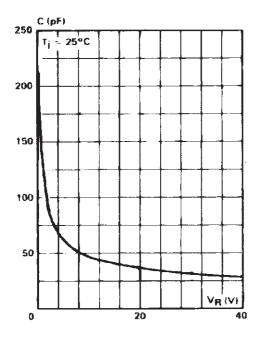
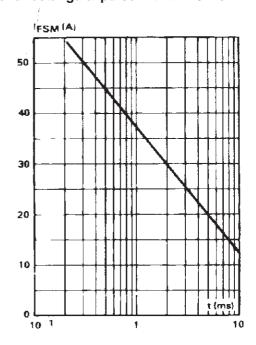
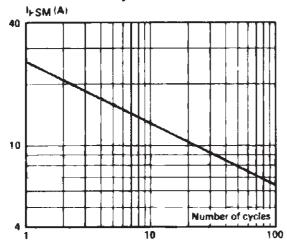
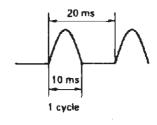
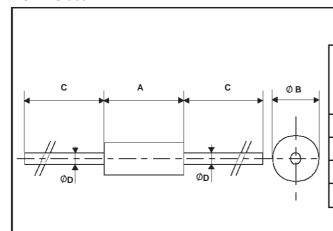


Fig.6 : Surge non repetitive forward current for a rectangular pulse with $t \le 10$ ms.


Figure 7. Surge non repetitive forward current versus number of cycles.

PACKAGE MECHANICAL DATA

DO 41 Glass

REF.	DIMENSIONS			
	Millimeters		Inc	hes
	Min.	Max.	Min.	Max.
Α	4.07	5.20	0.160	0.205
В	2.04	2.71	0.080	0.107
С	28		1.102	
D	0.712	0.863	0.028	0.034

- Marking: clear, ring at cathode end.
- Cooling method: by convection and conduction
- Weight: 0.33g

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.

STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval

of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 1999 STMicroelectronics - Printed in Italy - All rights reserved.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com