

# M41T81

512 Bit (64 bit x 8)

# SERIAL ACCESS RTC SRAM with ALARMS

PRELIMINARY DATA

### **FEATURES SUMMARY**

- 2.0 to 5.5V CLOCK OPERATING VOLTAGE
- COUNTERS for TENTHS/HUNDREDTHS of SECONDS, SECONDS, MINUTES, HOURS, DAY, DATE, MONTH, YEAR, and CENTURY
- AUTOMATIC SWITCH-OVER and DESELECT CIRCUITRY
- SERIAL INTERFACE SUPPORTS I<sup>2</sup>C BUS (400KHz PROTOCOL)
- 44 BYTES of GENERAL PURPOSE RAM
- PROGRAMMABLE ALARM and INTERRUPT FUNCTION (VALID EVEN DURING BATTERY BACK-UP MODE)
- WATCHDOG TIMER
- LOW OPERATING CURRENT of 400µA
- OPERATING TEMPERATURE of -40 to 85°C
- BATTERY LOW FLAG
- ULTRA-LOW BATTERY SUPPLY CURRENT of 1µA

Figure 1. Packages



January 2001 1/28

# M41T81

# **TABLE OF CONTENTS**

| SUMMARY DESCRIPTION                 | 4  |
|-------------------------------------|----|
| Logic Diagram                       | 4  |
| Signal Names                        |    |
| 16-pin SOIC Connections             | 5  |
| 28-pin SOIC Connections             | 5  |
| Block Diagram                       | 5  |
| OPERATION                           | 6  |
| 2-Wire Bus Characteristics          | 6  |
| Serial Bus Data Transfer Sequence   | 7  |
| Acknowledgement Sequence            | 7  |
| Bus Timing Requirements Sequence    | 8  |
| AC Characteristics                  | 8  |
| Read Mode                           | 9  |
| Slave Address Location              |    |
| Read Mode Sequences                 |    |
| Alternative Read Mode Sequences     |    |
| Write Mode Sequence                 | 10 |
| CLOCK OPERATION                     | 11 |
| Data Retention Mode                 | 11 |
| TIMEKEEPER® Registers               | 11 |
| TIMEKEEPER® Register Map            | 12 |
| Setting Alarm Clock Registers       | 13 |
| Back-up Mode Alarm Waveform         |    |
| Alarm Interrupt Reset Waveforms     |    |
| Alarm Repeat Modes                  |    |
| Watchdog Timer                      |    |
| Square Wave Output                  |    |
| Square Wave Output Frequency        |    |
| Calibrating the Clock               |    |
| Output Driver Pin                   |    |
| Century Bit.                        |    |
| Crystal Accuracy Across Temperature |    |
| Clock Calibration                   | 17 |
| MAXIMUM RATING                      | 18 |
| Absolute Maximum Ratings            | 18 |

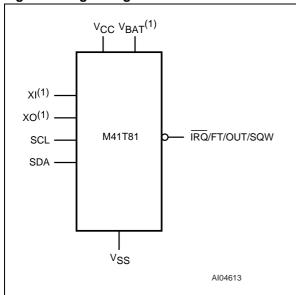
| DC AND AC PARAMETERS                         | 19 |
|----------------------------------------------|----|
| Operating and AC Measurement Conditions      | 19 |
| AC Measurement I/O Waveform                  | 19 |
| AC Measurement Load Circuit                  |    |
| Capacitance                                  | 19 |
| DC Characteristics                           |    |
| Crystal Electrical Characteristics           | 20 |
| Power Down/Up Mode AC Waveforms              | 21 |
| Power Down/Up AC Characteristics             | 21 |
| Power Down/Up Trip Points DC Characteristics | 21 |
| PACKAGE MECHANICAL                           | 22 |
| PART NUMBERING                               | 26 |
| DEVISION LISTORY                             | 27 |

#### SUMMARY DESCRIPTION

The M41T81 Serial Access TIMEKEEPER SRAM is a low power 512 bit static CMOS SRAM organized as 64 words by 8 bits. A built-in 32.768 KHz oscillator (external crystal controlled) and 8 bytes of the SRAM (see Table 3, page 12) are used for the clock/calendar function and are configured in binary coded decimal (BCD) format. An additional 12 bytes of RAM provide status/control of Alarm, Watchdog and Square Wave functions. Addresses and data are transferred serially via a two line, bi-directional I<sup>2</sup>C interface. The built-in address register is incremented automatically after each write or read data byte.

The M41T81 has a built-in power sense circuit which detects power failures and automatically switches to the battery supply when a power failure occurs. The energy needed to sustain the SRAM and clock operations can be supplied by a small lithium button supply when a power failure occurs. Functions available to the user include a non-volatile, time-of-day clock/calendar, Alarm interrupts, Watchdog Timer and programmable Square Wave output. The eight clock address locations contain the century, year, month, date, day, hour, minute, second and tenths/hundredths of a second in 24 hour BCD format. Corrections for 28, 29 (leap year - valid until year 2100), 30 and 31 day months are made automatically. The ninth

clock address location controls user access to the clock information and also stores the clock software calibration setting.


The M41T81 is supplied in either a 28 lead SOIC SNAPHAT package (which integrates both crystal and battery in a single SNAPHAT top) or a 16 pin SOIC. The 28 pin 330mil SOIC provides sockets with gold plated contacts at both ends for direct connection to a separate SNAPHAT housing containing the battery and crystal. The unique design allows the SNAPHAT battery/crystal package to be mounted on top of the SOIC package after the completion of the surface mount process.

Insertion of the SNAPHAT housing after reflow prevents potential battery and crystal damage due to the high temperatures required for device surface-mounting. The SNAPHAT housing is also keyed to prevent reverse insertion.

The SOIC and battery/crystal packages are shipped separately in plastic anti-static tubes or in Tape & Reel form. For the 28 lead SOIC, the battery/crystal package (i.e. SNAPHAT) part number is "M4TXX-BR12SH" (see Table 18, page 26).

**Caution:** Do not place the SNAPHAT battery/crystal top in conductive foam, as this will drain the lithium button-cell battery.

Figure 2. Logic Diagram



Note: 1. For SO16 package only.

Table 1. Signal Names

| XI <sup>(1)</sup>               | Oscillator Input                                                                 |
|---------------------------------|----------------------------------------------------------------------------------|
| XO <sup>(1)</sup>               | Oscillator Output                                                                |
| ĪRQ/OUT/<br>FT/SQW              | Interrupt / Output Driver / Frequency<br>Test (Open Drain)<br>Square Wave (CMOS) |
| SDA                             | Serial Data Input/Output                                                         |
| SCL                             | Serial Clock Input                                                               |
| V <sub>BAT</sub> <sup>(1)</sup> | Battery Supply Voltage                                                           |
| V <sub>CC</sub>                 | Supply Voltage                                                                   |
| V <sub>SS</sub>                 | Ground                                                                           |

Note: 1. For SO16 package only

Figure 3. 16-pin SOIC Connections

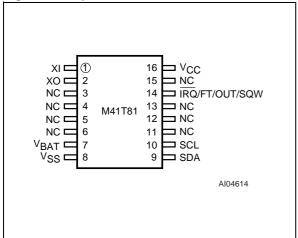
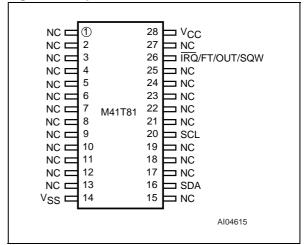
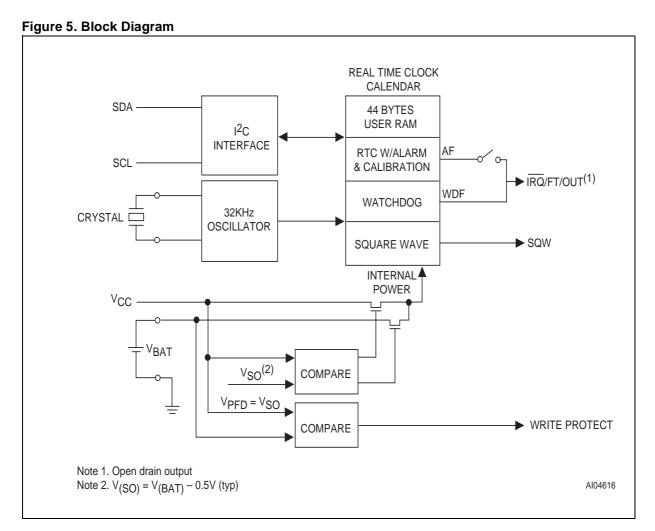





Figure 4. 28-pin SOIC Connections





#### **OPERATION**

The M41T81 clock operates as a slave device on the serial bus. Access is obtained by implementing a start condition followed by the correct slave address (D0h). The 64 bytes contained in the device can then be accessed sequentially in the following order:

- 1. Tenths/Hundredths of a Second Register
- 2. Seconds Register
- 3. Minutes Register
- 4. Century/Hours Register
- 5. Day Register
- 6. Date Register
- 7. Month Register
- 8. Year Register
- 9. Control Register
- 10. Watchdog Register
- 11 16. Alarm Registers
- 17 19. Reserved
- 20. Square Wave Register
- 21 64. User RAM

The M41T81 clock continually monitors Vcc for an out-of tolerance condition. Should Vcc fall below V<sub>SO</sub>, the device terminates an access in progress and resets the device address counter. Inputs to the device will not be recognized at this time to prevent erroneous data from being written to the device from a an out-of-tolerance system. The device also automatically switches over to the battery and powers down into an ultra low current mode of operation to conserve battery life. As system power returns and Vcc rises above Vso, the battery is disconnected, and the power supply is switched to external Vcc.

For more information on Battery Storage Life refer to Application Note AN1012.

### 2-Wire Bus Characteristics

The bus is intended for communication between different IC's. It consists of two lines: a bi-directional data signal (SDA) and a clock signal (SCL). Both the SDA and SCL lines must be connected to a positive supply voltage via a pull-up resistor.

The following protocol has been defined:

- Data transfer may be initiated only when the bus is not busy.
- During data transfer, the data line must remain stable whenever the clock line is High.

 Changes in the data line, while the clock line is High, will be interpreted as control signals.

Accordingly, the following bus conditions have been defined:

**Bus not busy.** Both data and clock lines remain High.

**Start data transfer.** A change in the state of the data line, from high to Low, while the clock is High, defines the START condition.

**Stop data transfer.** A change in the state of the data line, from Low to High, while the clock is High, defines the STOP condition.

**Data Valid.** The state of the data line represents valid data when after a start condition, the data line is stable for the duration of the high period of the clock signal. The data on the line may be changed during the Low period of the clock signal. There is one clock pulse per bit of data.

Each data transfer is initiated with a start condition and terminated with a stop condition. The number of data bytes transferred between the start and stop conditions is not limited. The information is transmitted byte-wide and each receiver acknowledges with a ninth bit.

By definition a device that gives out a message is called "transmitter," the receiving device that gets the message is called "receiver." The device that controls the message is called "master." The devices that are controlled by the master are called "slaves."

Acknowledge. Each byte of eight bits is followed by one acknowledge bit. This acknowledge bit is a low level put on the bus by the receiver whereas the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed is obliged to generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter.

The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse in such a way that the SDA line is a stable Low during the High period of the acknowledge related clock pulse. Of course, setup and hold times must be taken into account. A master receiver must signal an end of data to the slave transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this case the transmitter must leave the data line High to enable the master to generate the STOP condition.

Figure 6. Serial Bus Data Transfer Sequence

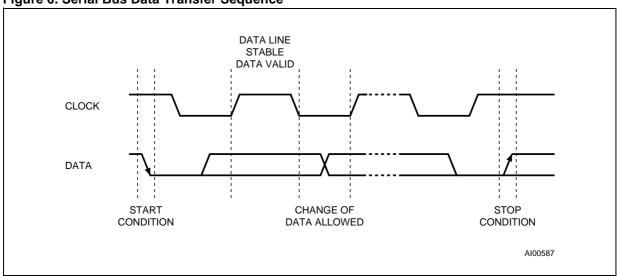
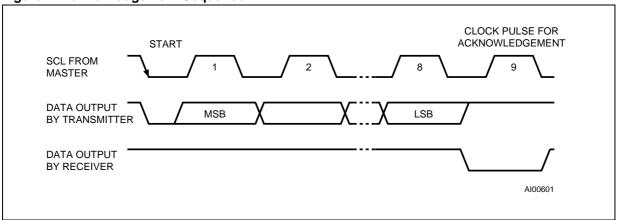
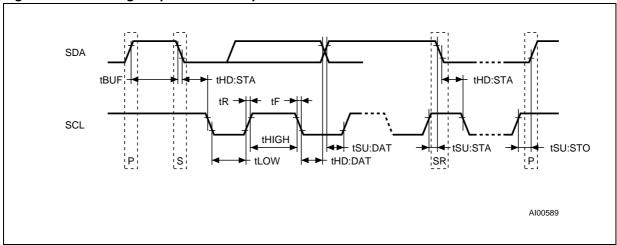





Figure 7. Acknowledgement Sequence







**Table 2. AC Characteristics** 

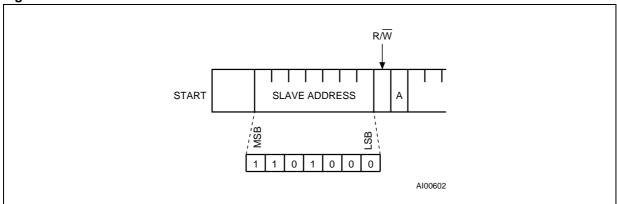
| Sym                     | Parameter                                                                        | Min | Тур | Max | Units |
|-------------------------|----------------------------------------------------------------------------------|-----|-----|-----|-------|
| f <sub>SCL</sub>        | SCL Clock Frequency                                                              | 0   |     | 400 | kHz   |
| t <sub>LOW</sub>        | Clock Low Period                                                                 | 1.3 |     |     | μs    |
| tHIGH                   | Clock High Period                                                                | 600 |     |     | ns    |
| t <sub>R</sub>          | SDA and SCL Rise Time                                                            |     |     | 300 | ns    |
| t <sub>F</sub>          | SDA and SCL Fall Time                                                            |     |     | 300 | ns    |
| t <sub>HD:STA</sub>     | START Condition Hold Time (after this period the first clock pulse is generated) | 600 |     |     | ns    |
| t <sub>SU:STA</sub>     | START Condition Setup Time (only relevant for a repeated start condition)        | 600 |     |     | ns    |
| t <sub>SU:DAT</sub> (1) | Data Setup Time                                                                  | 100 |     |     | ns    |
| t <sub>HD:DAT</sub>     | Data Hold Time                                                                   | 0   |     |     | μs    |
| t <sub>SU:STO</sub>     | STOP Condition Setup Time                                                        | 600 |     |     | ns    |
| t <sub>BUF</sub>        | Time the bus must be free before a new transmission can start                    | 1.3 |     |     | μs    |

#### **Read Mode**

In this mode the master reads the M41T81 slave after setting the slave address (see Figure 10, page 10). Following the write mode control bit (R/ W=0) and the acknowledge bit, the word address 'An' is written to the on-chip address pointer. Next the START condition and slave address are repeated followed by the READ mode control bit (R/  $\overline{W}$ =1). At this point the master transmitter becomes the master receiver. The data byte which was addressed will be transmitted and the master receiver will send an acknowledge bit to the slave transmitter. The address pointer is only incremented on reception of an acknowledge bit. The M41T81 slave transmitter will now place the data byte at address An+1 on the bus, the master receiver reads and acknowledges the new byte and the address pointer is incremented to "An+2."

This cycle of reading consecutive addresses will continue until the master receiver sends a STOP condition to the slave transmitter.

The system-to-user transfer of clock data will be halted whenever the address being read is a clock address (00h to 07h). The update will resume ei-


ther due to a Stop Condition or when the pointer increments to a RAM address.

An alternate READ mode may also be implemented whereby the master reads the M41T81 slave without first writing to the (volatile) address pointer. The first address that is read is the last one stored in the pointer (see Figure 11, page 10).

#### Write Mode

In this mode the master transmitter transmits to the M41T81 slave receiver. Bus protocol is shown in Figure 12, page 10. Following the START condition and slave address, a logic '0' (R/W=0) is placed on the bus and indicates to the addressed device that word address "An" will follow and is to be written to the on-chip address pointer. The data word to be written to the memory is strobed in next and the internal address pointer is incremented to the next memory location within the RAM on the reception of an acknowledge clock. M41T81 slave receiver will send an acknowledge clock to the master transmitter after it has received the slave address (see Figure 7, page 7) and again after it has received the word address and each data byte.

Figure 9. Slave Address Location



**477** 

Figure 10. Read Mode Sequences

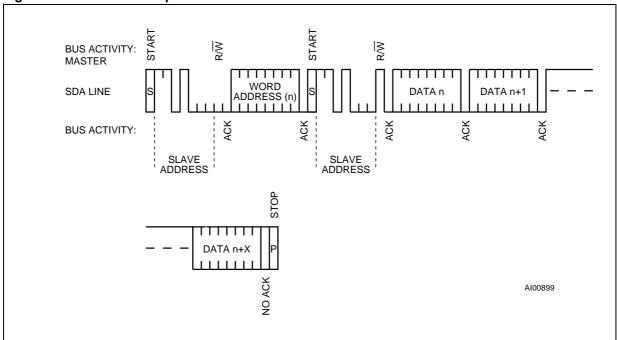



Figure 11. Alternative Read Mode Sequences

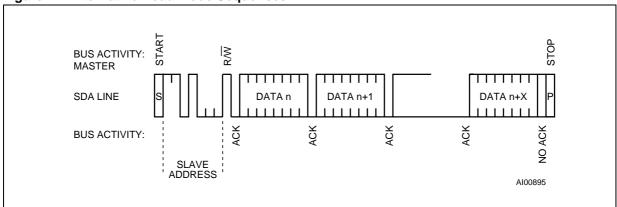
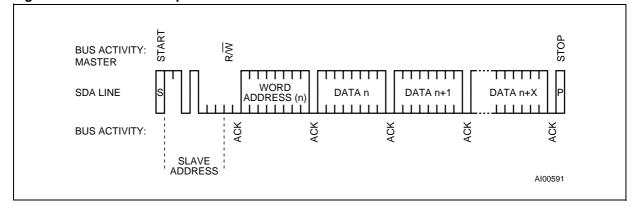




Figure 12. Write Mode Sequence



### **CLOCK OPERATION**

The twenty byte clock register (see Table 3, page 12) is used to both set the clock and to read the date and time from the clock, in a binary coded decimal format. Tenths/Hundredths of Seconds, Seconds, Minutes, and Hours are contained within the first four registers. Bits D6 and D7 of clock register 3 (Century/Hours Register) contain the CENTURY ENABLE Bit (CEB) and the CENTURY Bit (CB). Setting CEB to a '1' will cause CB to toggle, either from '0' to '1' or from '1' to '0' at the turn of the century (depending upon its initial state). If CEB is set to a '0', CB will not toggle. Bits D0 through D2 of register 4 contain the Day (day of week). Registers 5, 6 and 7 contain the Date (day of month), Month and Years. The ninth clock register is the Control Register (this is described in the Clock Calibration section). Bit D7 of register 1 contains the STOP Bit (ST). Setting this bit to a '1' will cause the oscillator to stop. If the device is expected to spend a significant amount of time on the shelf, the oscillator may be stopped to reduce current drain. When reset to a '0' the oscillator restarts within one second.

The eight Clock Registers may be read one byte at a time, or in a sequential block. The Control Register (Address location 08h) may be accessed independently. Provision has been made to assure that a clock update does not occur while any of the seven clock addresses are being read. If a clock address is being read, an update of the clock registers will be halted. This will prevent a transition of data during the read.

**Note:** Upon power-up following a power failure, the HT bit will automatically be set to a '1'. This will prevent the clock from updating the TIMEKEEPER registers, and will allow the user to read the exact

time of the power-down event. Resetting the HT bit to a '0' will allow the clock to update the TIME-KEEPER registers with the current time.

### **Data Retention Mode**

With valid  $V_{CC}$  applied, the M41T81 can be accessed as described above with read or write cycles. Should the supply voltage decay, the M41T81 will automatically deselect, write protecting itself when Vcc falls between VpFD (max) and VpFD (min). This is accomplished by internally inhibiting access to the clock registers and SRAM. When Vcc falls below the Battery Back-up Switchover Voltage (VsO), power input is switched from the Vcc pin to the battery and the clock registers and SRAM are maintained from the attached battery supply.

All outputs become high impedance. On power up, when Vcc returns to a nominal value, write protection continues for  $t_{\rm REC}$ .

For a further more detailed review of lifetime calculations, please see Application Note AN1012.

### TIMEKEEPER® Registers

The M41T81 offers 20 internal registers which contain Clock, Alarm, Watchdog, Flag, Square Wave and Control data. These registers are memory locations which contain external (user accessible) and internal copies of the data (usually referred to as BiPORT<sup>TM</sup> TIMEKEEPER cells). The external copies are independent of internal functions except that they are updated periodically by the simultaneous transfer of the incremented internal copy. TIMEKEEPER and Alarm Registers store data in BCD. Control, Watchdog and Square Wave Registers store data in Binary Format.

**477** 

Table 3. TIMEKEEPER® Register Map

| Addr |      |             |            |        |              |             |            |     | Function/        | Range         |
|------|------|-------------|------------|--------|--------------|-------------|------------|-----|------------------|---------------|
|      | D7   | D6          | D5         | D4     | D3           | D2          | D1         | D0  | BCD Fo           |               |
| 00h  |      | 0.1 Seconds |            |        | 0.01 Seconds |             |            |     | Seconds          | 00-99         |
| 01h  | ST   |             | 10 Seconds | 3      |              | Sec         | onds       |     | Seconds          | 00-59         |
| 02h  | 0    |             | 10 Minutes |        |              | Min         | utes       |     | Minutes          | 00-59         |
| 03h  | CEB  | СВ          | 10 H       | lours  | ŀ            | Hours (24 H | lour Forma | t)  | Century/<br>Hour | 0-1/00-<br>23 |
| 04h  | 0    | 0           | 0          | 0      | 0            |             | Day of Wee | k   | Day              | 01-7          |
| 05h  | 0    | 0           | 10 [       | Date   |              | Date: Day   | of Month   |     | Date             | 01-31         |
| 06h  | 0    | 0           | 0          | 10M    |              | Month       |            |     |                  | 01-12         |
| 07h  |      | 10 Y        | 10 Years   |        |              | Year        |            |     | Year             | 00-99         |
| 08h  | OUT  | FT          | S          |        |              | Calibration |            |     | Control          |               |
| 09h  | 0    | BMB4        | BMB3       | BMB2   | BMB1         | BMB0        | RB1        | RB0 | Watchdog         |               |
| 0Ah  | AFE  | SQWE        | ABE        | Al 10M |              | Alarm       | Month      |     | Al Month         | 01-12         |
| 0Bh  | RPT4 | RPT5        | Al 10 Date |        |              | Alarm       | n Date     |     | Al Date          | 01-31         |
| 0Ch  | RPT3 | HT          | AI 10      | Hour   |              | Alarm       | 1 Hour     |     | Al Hour          | 00-23         |
| 0Dh  | RPT2 | Ala         | rm 10 Minu | ıtes   |              | Alarm I     | Minutes    |     | Al Min           | 00-59         |
| 0Eh  | RPT1 | Alaı        | m 10 Seco  | onds   |              | Alarm S     | Seconds    |     | Al Sec           | 00-59         |
| 0Fh  | WDF  | AF          | 0          | 0      | 0            | 0           | 0          | 0   | Flags            |               |
| 10h  | 0    | 0           | 0          | 0      | 0            | 0           | 0          | 0   | Reserved         |               |
| 11h  | 0    | 0           | 0          | 0      | 0            | 0           | 0          | 0   | Reserved         |               |
| 12h  | 0    | 0           | 0          | 0      | 0            | 0           | 0          | 0   | Reserved         |               |
| 13h  | RS3  | RS2         | RS1        | RS0    | 0            | 0           | 0          | 0   | SQW              |               |

Keys:

S = Sign Bit

FT = Frequency Test Bit

ST = Stop Bit

0 = Must be set to zero

BMB0-BMB4 = Watchdog Multiplier Bits

CEB = Century Enable Bit

CB = Century Bit

OUT = Output level

AFE = Alarm Flag Enable Flag

RB0-RB1 = Watchdog Resolution Bits

ABE = Alarm in Battery Back-Up Mode Enable Bit

RPT1-RPT5 = Alarm Repeat Mode Bits

WDF = Watchdog flag

AF = Alarm flag

SQWE = Square Wave Enable RS0-RS3 = SQW Frequency

HT = Halt Update Bit

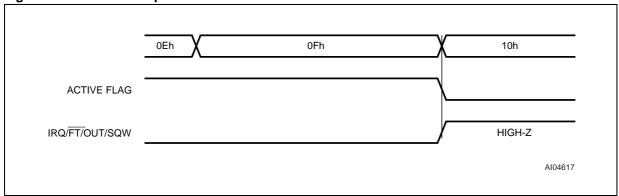
### **Setting Alarm Clock Registers**

Address locations 0Ah-0Eh contain the alarm settings. The alarm can be configured to go off at a prescribed time on a specific month, date, hour, minute, or second or repeat every year, month, day, hour, minute, or second. It can also be programmed to go off while the M41T81 is in the battery back-up to serve as a system wake-up call.


Bits RPT5-RPT1 put the alarm in the repeat mode of operation. Table 4, page 14 shows the possible configurations. Codes not listed in the table default to the once per second mode to quickly alert the user of an incorrect alarm setting.

When the clock information matches the alarm clock settings based on the match criteria defined by RPT5-RPT1, the AF (Alarm Flag) is set. If AFE (Alarm Flag Enable) is also set, the alarm condi-

tion activates the IRQ/FT/OUT/SQW pin. The IRQ/FT/OUT/SQW output is cleared by a read to the Flags register. This read of the Flags register will also reset the Alarm Flag (D6; Register 0Fh).


The IRQ/FT/OUT/SQW pin can also be activated in the battery back-up mode. The IRQ/FT/OUT/SQW will go low if an alarm occurs and both ABE (Alarm in Battery Back-up Mode Enable) and AFE are set. The ABE and AFE bits are reset during power-up, therefore an alarm generated during power-up will only set AF. The user can read the Flag Register at system boot-up to determine if an alarm was generated while the M41T81 was in the deselect mode during power-up. Figure 13, page 13 illustrates the back-up mode alarm timing.





477

Figure 14. Alarm Interrupt Reset Waveforms



**Table 4. Alarm Repeat Modes** 

| RPT5 | RPT4 | RPT3 | RPT2 | RPT1 | Alarm Setting   |
|------|------|------|------|------|-----------------|
| 1    | 1    | 1    | 1    | 1    | Once per Second |
| 1    | 1    | 1    | 1    | 0    | Once per Minute |
| 1    | 1    | 1    | 0    | 0    | Once per Hour   |
| 1    | 1    | 0    | 0    | 0    | Once per Day    |
| 1    | 0    | 0    | 0    | 0    | Once per Month  |
| 0    | 0    | 0    | 0    | 0    | Once per Year   |

### **Watchdog Timer**

The watchdog timer can be used to detect an out-of-control microprocessor. The user programs the watchdog timer by setting the desired amount of time-out into the Watchdog Register, address 09h. Bits BMB4-BMB0 store a binary multiplier and the two lower order bits RB1-RB0 select the resolution, where 00=1/16 second, 01=1/4 second, 10=1 second, and 11=4 seconds. The amount of time-out is then determined to be the multiplication of the five bit multiplier value with the resolution. (For example: writing 00001110 in the Watchdog Register = 3\*1 or 3 seconds). If the processor does not reset the timer within the specified period, the M41T81 sets the WDF (Watchdog Flag) and generates a watchdog interrupt.

**Note:** If the Square Wave function is enabled, the accuracy of the Watchdog Timer will be a function of the selected resolution.

The watchdog timer can be reset by having the microprocessor perform a write of the Watchdog Register. The time-out period then starts over.

Should the watchdog timer time-out, a value of 00h needs to be written to the Watchdog Register in order to clear the IRQ/FT/OUT/SQW pin. This will also disable the watchdog function until it is again programmed correctly. A read of the Flags Register will reset the Watchdog Flag (Bit D7; Register 0Fh).

The watchdog function is automatically disabled upon power-up and the Watchdog Register is cleared. If the watchdog function is set and the frequency test function is activated, the watchdog function prevails and the frequency test function is denied. The OUT function has the lowest priority and will only be enabled when the Watchdog Register (09h), AFE Bit, SQWE Bit, and FT Bit are '0'.

# **Square Wave Output**

The M41T81 offers the user a programmable square wave function which is output on the SQW pin. RS3-RS0 bits located in 13h establish the square wave output frequency. These frequencies are listed in Table 5. Once the selection of the

SQW frequency has been completed, the IRQ/FT/OUT/SQW pin can be turned on and off under software control with the Square Wave Enable Bit (SQWE) located in Register 0Ah.

**Table 5. Square Wave Output Frequency** 

|     | Square Wave Bits |     |     |           | e Wave |
|-----|------------------|-----|-----|-----------|--------|
| RS3 | RS2              | RS1 | RS0 | Frequency | Units  |
| 0   | 0                | 0   | 0   | None      | -      |
| 0   | 0                | 0   | 1   | 32.768    | kHz    |
| 0   | 0                | 1   | 0   | 8.192     | kHz    |
| 0   | 0                | 1   | 1   | 4.096     | kHz    |
| 0   | 1                | 0   | 0   | 2.048     | kHz    |
| 0   | 1                | 0   | 1   | 1.024     | kHz    |
| 0   | 1                | 1   | 0   | 512       | Hz     |
| 0   | 1                | 1   | 1   | 256       | Hz     |
| 1   | 0                | 0   | 0   | 128       | Hz     |
| 1   | 0                | 0   | 1   | 64        | Hz     |
| 1   | 0                | 1   | 0   | 32        | Hz     |
| 1   | 0                | 1   | 1   | 16        | Hz     |
| 1   | 1                | 0   | 0   | 8         | Hz     |
| 1   | 1                | 0   | 1   | 4         | Hz     |
| 1   | 1                | 1   | 0   | 2         | Hz     |
| 1   | 1                | 1   | 1   | 1         | Hz     |

### Calibrating the Clock

The M41T81 is driven by a quartz controlled oscillator with a nominal frequency of 32,768 Hz. The devices are tested not exceed +/-35 PPM (parts per million) oscillator frequency error at 25°C, which equates to about +/-1.53 minutes per month (see Figure 15, page 17). When the Calibration circuit is properly employed, accuracy improves to better than +1/-2 PPM at 25°C.

The oscillation rate of crystals changes with temperature. The M41T81 design employs periodic counter correction. The calibration circuit adds or subtracts counts from the oscillator divider circuit at the divide by 256 stage, as shown in Figure 16, page 17. The number of times pulses which are blanked (subtracted, negative calibration) or split (added, positive calibration) depends upon the value loaded into the five Calibration bits found in the Control Register. Adding counts speeds the clock up, subtracting counts slows the clock down.

The Calibration bits occupy the five lower order bits (D4-D0) in the Control Register 8h. These bits can be set to represent any value between 0 and 31 in binary form. Bit D5 is a Sign bit; '1' indicates positive calibration, '0' indicates negative calibration. Calibration occurs within a 64 minute cycle. The first 62 minutes in the cycle may, once per minute, have one second either shortened by 128 or lengthened by 256 oscillator cycles. If a binary '1' is loaded into the register, only the first 2 minutes in the 64 minute cycle will be modified; if a binary 6 is loaded, the first 12 will be affected, and so on.

Therefore, each calibration step has the effect of adding 512 or subtracting 256 oscillator cycles for every 125,829,120 actual oscillator cycles, that is +4.068 or -2.034 PPM of adjustment per calibration step in the calibration register. Assuming that the oscillator is running at exactly 32,768 Hz, each of the 31 increments in the Calibration byte would represent +10.7 or -5.35 seconds per month which corresponds to a total range of +5.5 or -2.75 minutes per month.

Two methods are available for ascertaining how much calibration a given M41T81 may require.

The first involves setting the clock, letting it run for a month and comparing it to a known accurate reference and recording deviation over a fixed period of time. Calibration values, including the number of seconds lost or gained in a given period, can be found in Application Note AN934: TIMEKEEPER CALIBRATION. This allows the designer to give the end user the ability to calibrate the clock as the environment requires, even if the final product is packaged in a non-user serviceable enclosure. The designer could provide a simple utility that accesses the Calibration byte.

The second approach is better suited to a manufacturing environment, and involves the use of the IRQ/FT/OUT/SQW pin. The pin will toggle at 512Hz, when the Stop bit (ST, D7 of 1h) is '0', the Frequency Test bit (FT, D6 of 8h) is '1', the Alarm Flag Enable bit (AFE, D7 of Ah) is '0', and the Square Wave Enable Bit (SQWE, D6 of 0Ah) is 0 and the Watchdog Register (9h=0) is reset.

Any deviation from 512 Hz indicates the degree and direction of oscillator frequency shift at the test temperature. For example, a reading of 512.010124 Hz would indicate a +20 PPM oscillator frequency error, requiring a -10 (XX001010) to be loaded into the Calibration Byte for correction. Note that setting or changing the Calibration Byte does not affect the Frequency Test output frequency.

The IRQ/FT/OUT/SQW pin is an open drain output which requires a pull-up resistor to Vcc for proper operation. A 500-10k resistor is recommended in order to control the rise time. The FT bit is cleared on power-down.

### **Output Driver Pin**

When the FT bit, AFE bit, SQWE bit, and watch-dog register are not set, the IRQ/FT/OUT/SQW pin becomes an output driver that reflects the contents of D7 of the Control Register. In other words, when D6 and D7 of locations 08h and 0Ah and the watchdog register are a '0,' then the IRQ/FT/OUT/SQW pin will be driven low.

**Note:** The RQ/FT/OUT/SQW pin is an open drain which requires an external pull-up resistor (unless the SQW function is enabled).

### **Initial Power-on Defaults**

Upon initial application of power to the device, the following register bits are set to a '0' state: Watchdog Register; AFE; ABE and SQWE. The following bits are set to a '1' state: ST; OUT; and HT.

### **Century Bit**

Bits D7 and D6 of Clock Register 03h contain the CENTURY ENABLE Bit (CEB) and the CENTURY Bit (CB). Setting CEB to a "1" will cause CB to toggle, either from a "0" to "1" or from "1" to "0" at the turn of the century (depending upon its initial state). If CEB is set to a "0", CB will not toggle.

Figure 15. Crystal Accuracy Across Temperature

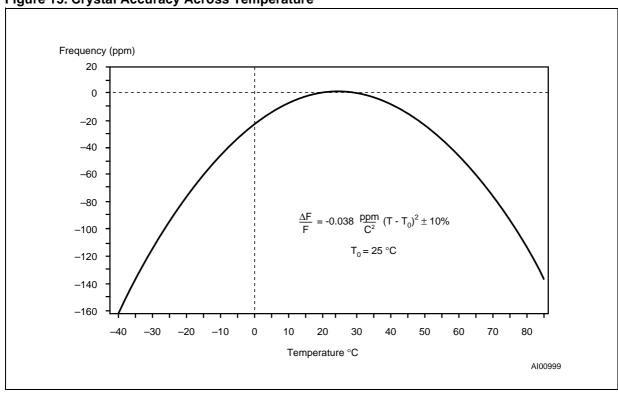
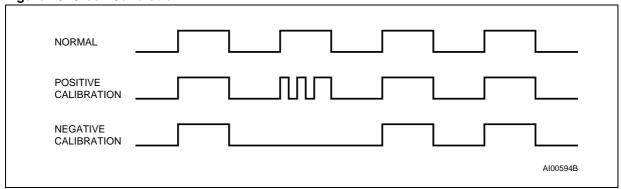




Figure 16. Clock Calibration



### **MAXIMUM RATING**

Stressing the device above the rating listed in the Absolute Maximum Ratings" table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not im-

plied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents.

**Table 6. Absolute Maximum Ratings** 

| Sym                             | Parameter                                                 |                 | Value      | Unit |
|---------------------------------|-----------------------------------------------------------|-----------------|------------|------|
| T <sub>STG</sub>                | Storage Temperature (V <sub>CC</sub> Off, Oscillator Off) |                 | -40 to 85  | °C   |
| 1816                            | Storage Temperature (VCC On, Oscillator On)               | SOIC            | -55 to 125 | °C   |
| T <sub>SLD</sub> <sup>(2)</sup> | Lead Solder Temperature for 10 Seconds                    | 260             | °C         |      |
| V <sub>IO</sub>                 | Input or Output Voltages                                  | -0.3 to Vcc+0.3 | V          |      |
| Io                              | Output Current                                            | 20              | mA         |      |
| P <sub>D</sub>                  | Power Dissipation                                         | 1               | W          |      |

Note: Soldering temperature not to exceed 260°C for 10 seconds (total thermal budget not to exceed 150°C for longer than 30 seconds).

CAUTION: Negative undershoots below -0.3 volts are not allowed on any pin while in the Battery Back-Up Mode

CAUTION: Do NOT wave solder SOIC to avoid damaging SNAPHAT socket.

### DC AND AC PARAMETERS

This section summarizes the operating and measurement conditions, as well as the DC and AC characteristics of the device. The parameters in the following DC and AC Characteristic tables are derived from tests performed under the Measure-

ment Conditions listed in the relevant tables. Designers should check that the operating conditions in their projects match the measurement conditions when using the quoted parameters.

**Table 7. Operating and AC Measurement Conditions** 

| Parameter                                       |                                           | Unit |
|-------------------------------------------------|-------------------------------------------|------|
| Supply Voltage (V <sub>CC</sub> )               | -0.3 to 7.0                               | V    |
| Ambient Operating Temperature (T <sub>A</sub> ) | -40 to 85                                 | °C   |
| Load Capacitance (C <sub>L</sub> )              | 100                                       | pF   |
| Input Rise and Fall Times                       | ≤ 50                                      | ns   |
| Input Pulse Voltages                            | 0.2V <sub>CC</sub> to 0.8 V <sub>CC</sub> | V    |
| Input and Output Timing Ref. Voltages           | 0.3V <sub>CC</sub> to 0.7 V <sub>CC</sub> | V    |

Note: Output Hi-Z is defined as the point where data is no longer driven.

Figure 17. AC Measurement I/O Waveform

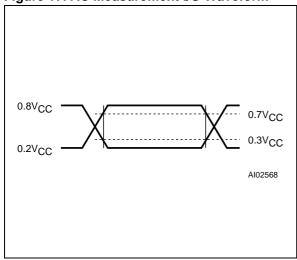



Figure 18. AC Measurement Load Circuit

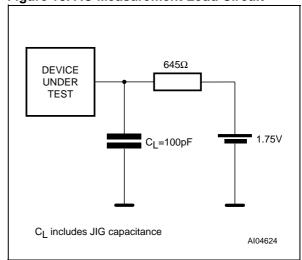



Table 8. Capacitance

| Symbol                          | Parameter                                         | Min | Max | Unit |
|---------------------------------|---------------------------------------------------|-----|-----|------|
| C <sub>IN</sub>                 | Input Capacitance                                 |     | 7   | pF   |
| C <sub>OUT</sub> <sup>(1)</sup> | Output Capacitance                                |     | 10  | pF   |
| t <sub>LP</sub>                 | Low-pass filter input time constant (SDA and SCL) |     | 50  | ns   |

Note: Effective capacitance measured with power supply at 5V . Sampled only, not 100% tested.

Outputs deselected.

**Table 9. DC Characteristics** 

| Symbol                          | Parameter                       | Test Condition                                                                      | Min                | Тур | Max                   | Unit |
|---------------------------------|---------------------------------|-------------------------------------------------------------------------------------|--------------------|-----|-----------------------|------|
| ILI                             | Input Leakage Current           | 0V ≤ V <sub>IN</sub> ≤ V <sub>CC</sub>                                              |                    |     | ±1                    | μА   |
| I <sub>LO</sub>                 | Output Leakage Current          | 0V ≤ V <sub>OUT</sub> ≤ V <sub>CC</sub>                                             |                    |     | ±1                    | μА   |
| I <sub>CC1</sub>                | Supply Current                  | Switch Freq = 100kHz                                                                |                    |     | 300                   | μА   |
| I <sub>CC2</sub>                | Supply Current (standby)        | SCL,SDA = V <sub>CC</sub> -0.3V                                                     |                    |     | 70                    | μА   |
| VIL                             | Input Low Voltage               |                                                                                     | -0.3               |     | 0.3V <sub>CC</sub>    | V    |
| VIH                             | Input High Voltage              |                                                                                     | 0.7V <sub>CC</sub> |     | V <sub>CC</sub> + 0.8 | V    |
|                                 | Output Low Voltage              | I <sub>OL</sub> = 3.0mA                                                             |                    |     | 0.4                   | V    |
| V <sub>OL</sub>                 | Output Low Voltage (Open Drain) | I <sub>OL</sub> = 10mA                                                              |                    |     | 0.4                   | V    |
| V <sub>OH</sub> <sup>(1)</sup>  | Output High Voltage             | I <sub>OH</sub> = -1.0mA                                                            | 2.4                |     |                       | V    |
| V <sub>BAT</sub> <sup>(2)</sup> | Battery Supply Voltage          |                                                                                     | 2                  | 3   | 3.5 <sup>(3)</sup>    | V    |
| I <sub>BAT</sub>                | Battery Supply Current          | T <sub>A</sub> = 25°C, V <sub>CC</sub> = 0V<br>Oscillator ON, V <sub>BAT</sub> = 3V |                    | 0.8 | 1                     | μА   |

**Table 10. Crystal Electrical Characteristics** 

| Sym            | Parameter          | Min | Тур    | Max | Units |
|----------------|--------------------|-----|--------|-----|-------|
| f <sub>O</sub> | Resonant Frequency |     | 32.768 |     | kHz   |
| R <sub>S</sub> | Series Resistance  |     |        | 60  | kΩ    |
| CL             | Load Capacitance   |     | 12.5   |     | pF    |

Note: Externally supplied if using the SO16 package.

Load capacitors are integrated within the M41T81. Circuit board layout considerations for the 32.768 kHz crystal of minimum trace lengths and isolation from RF generating signals should be taken into account.

STMicroelectronics recommends the KDS DT-38 Tuning Fork Type (thru-hole) or DMX-26 (SMD) quartz crystal for industrial temperature conditions.

KDS can be contacted at kouhou@kdsj.co.jp or http://www.kdsj.co.jp for further information on this crystal type.

All SNAPHAT battery/crystal tops meet these specifications.

Note: 1. For SQW output (only).
2. STMicroelectronics recommends the RAYOVAC BR1225 or BR1632 (or equivalent) as the battery supply.

<sup>3.</sup> For rechargeable back-up,  $V_{BAT}$  (max) may be considered  $V_{CC}-0.5V$ .

Figure 19. Power Down/Up Mode AC Waveforms

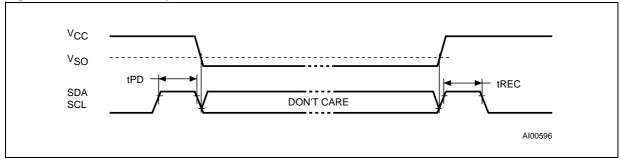
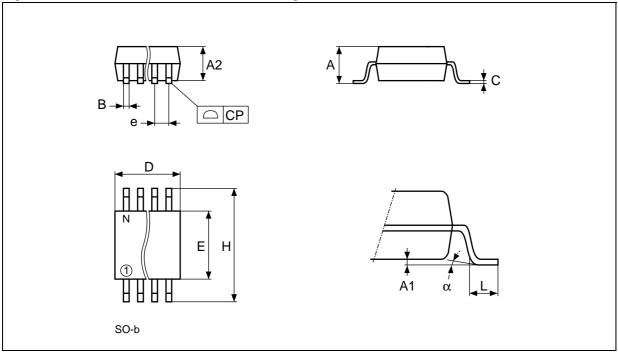



Table 11. Power Down/Up AC Characteristics

| Symbol          | Parameter                                        | Min | Тур | Max | Unit |
|-----------------|--------------------------------------------------|-----|-----|-----|------|
| t <sub>PD</sub> | SCL and SDA at V <sub>IH</sub> before Power Down | 0   |     |     | nS   |
| tREC            | SCL and SDA at V <sub>IH</sub> after Power Up    | 10  |     |     | μS   |

Note:  $V_{CC}$  fall time should not exceed 5mV/ $\mu$ s.

Table 12. Power Down/Up Trip Points DC Characteristics


| Sym            | Parameter                          | Min                     | Тур              | Max              | Unit |  |
|----------------|------------------------------------|-------------------------|------------------|------------------|------|--|
| $V_{SO}^{(1)}$ | Battery Back-up Switchover Voltage | V <sub>BAT</sub> – 0.70 | $V_{BAT} - 0.50$ | $V_{BAT} - 0.20$ | V    |  |

Note: All voltages referenced to V<sub>SS</sub>.

1. Switch-over and deselect point

# **PACKAGE MECHANICAL**

Figure 20. SO16 – 16-lead Plastic Small Package Outline



Note: Drawing is not to scale.

Table 13. SO16 – 16-lead Plastic Small Outline (150 mils body width), Package Mechanical Data

| Symb |       | mm   |       | inches |       |       |
|------|-------|------|-------|--------|-------|-------|
| Symb | Тур   | Min  | Max   | Тур    | Min   | Max   |
| A    |       |      | 1.75  |        |       | 0.069 |
| A1   |       | 0.10 | 0.25  |        | 0.004 | 0.010 |
| A2   |       |      | 1.60  |        |       | 0.063 |
| В    |       | 0.35 | 0.46  |        | 0.014 | 0.018 |
| С    |       | 0.19 | 0.25  |        | 0.007 | 0.010 |
| D    |       | 9.80 | 10.00 |        | 0.386 | 0.394 |
| E    |       | 3.30 | 4.00  |        | 0.150 | 0.158 |
| е    | 1.27  | _    | _     | 0.050  | _     | _     |
| Н    |       | 5.80 | 6.20  |        | 0.228 | 0.244 |
| L    |       | 0.40 | 1.27  |        | 0.016 | 0.050 |
| а    |       | 0°   | 8°    |        | 0°    | 8°    |
| N    | 16 16 |      |       |        |       |       |
| СР   |       |      | 0.10  |        |       | 0.004 |

23/28

Figure 21. SO28 – 28-lead Plastic Small Package Outline

Note: Drawing is not to scale.

Table 14. SO28 – 28-lead Plastic Small Outline, Package Mechanical Data

| Symb |       | mm    |       | inches |       |       |
|------|-------|-------|-------|--------|-------|-------|
| Symb | Тур   | Min   | Max   | Тур    | Min   | Max   |
| A    |       |       | 3.05  |        |       | 0.120 |
| A1   |       | 0.05  | 0.36  |        | 0.002 | 0.014 |
| A2   |       | 2.34  | 2.69  |        | 0.092 | 0.106 |
| В    |       | 0.36  | 0.51  |        | 0.014 | 0.020 |
| С    |       | 0.15  | 0.32  |        | 0.006 | 0.012 |
| D    |       | 17.71 | 18.49 |        | 0.697 | 0.728 |
| E    |       | 8.23  | 8.89  |        | 0.324 | 0.350 |
| е    | 1.27  | _     | _     | 0.050  | _     | _     |
| eB   |       | 3.20  | 3.61  |        | 0.126 | 0.142 |
| Н    |       | 11.51 | 12.70 |        | 0.453 | 0.500 |
| L    |       | 0.41  | 1.27  |        | 0.016 | 0.050 |
| a    |       | 0°    | 8°    |        | 0°    | 8°    |
| N    | 28 28 |       |       |        |       |       |
| СР   |       |       | 0.10  |        |       | 0.004 |

Figure 22. SH – 4-pin SNAPHAT Housing for 48 mAh Battery and Crystal, Package Outline

Note: Drawing is not to scale.

Table 15. SH – 4-pin SNAPHAT Housing for 48 mAh Battery and Crystal, Package Mechanical Data

| Symb |     | mm    |       | inches |       |       |
|------|-----|-------|-------|--------|-------|-------|
|      | Тур | Min   | Max   | Тур    | Min   | Max   |
| A    |     |       | 9.78  |        | 0     | 0.385 |
| A1   |     | 6.73  | 7.24  |        | 0.265 | 0.285 |
| A2   |     | 6.48  | 6.99  |        | 0.255 | 0.275 |
| А3   |     |       | 0.38  |        | 0     | 0.015 |
| В    |     | 0.46  | 0.56  |        | 0.018 | 0.022 |
| D    |     | 21.21 | 21.84 |        | 0.835 | 0.860 |
| E    |     | 14.22 | 14.99 |        | 0.560 | 0.590 |
| eA   |     |       |       |        |       |       |
| eB   |     | 3.20  | 3.61  |        | 0.126 | 0.142 |
| L    |     | 2.03  | 2.29  |        | 0.080 | 0.090 |

Figure 23. SH – 4-pin SNAPHAT Housing for 120 mAh Battery and Crystal, Package Outline

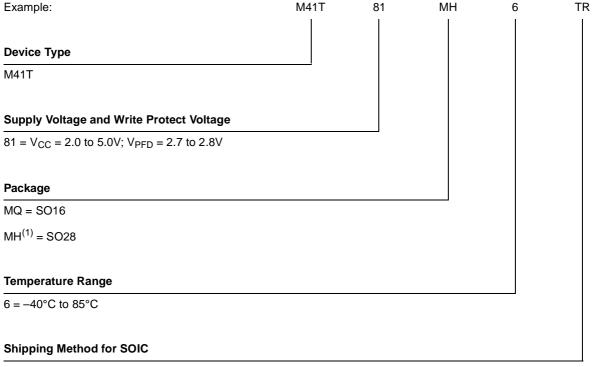

Note: Drawing is not to scale.

Table 16. SH – 4-pin SNAPHAT Housing for 120 mAh Battery and Crystal, Package Mechanical Data

|      | _   |       | -         | -   | _     |       |  |
|------|-----|-------|-----------|-----|-------|-------|--|
| Symb |     | mm    | nm inches |     |       |       |  |
| Symb | Тур | Min   | Max       | Тур | Min   | Max   |  |
| А    |     |       | 10.54     |     | 0     | 0.415 |  |
| A1   |     | 8.00  | 8.51      |     | 0.315 | 0.335 |  |
| A2   |     | 7.24  | 8.00      |     | 0.285 | 0.315 |  |
| A3   |     |       | 0.38      |     | 0     | 0.015 |  |
| В    |     | 0.46  | 0.56      |     | 0.018 | 0.022 |  |
| D    |     | 21.21 | 21.84     |     | 0.835 | 0.860 |  |
| E    |     | 17.27 | 18.03     |     | 0.680 | 0.710 |  |
| eB   |     | 3.20  | 3.61      |     | 0.126 | 0.142 |  |
| L    |     | 2.03  | 2.29      |     | 0.080 | 0.090 |  |

### **PART NUMBERING**

## **Table 17. Ordering Information Scheme**



blank = Tubes

TR = Tape & Reel

Note: 1. The 28-pin SOIC package (SOH28) requires the battery/crystal package (SNAPHAT) which is ordered separately under the part number "M4TXX-BR12SHX" in plastic tube or "M4TXX-BR12SHXTR" in Tape & Reel form.

Caution: Do not place the SNAPHAT battery package "M4TXX-BR12SH" in conductive foam since will drain the lithium button-cell battery.

For a list of available options (e.g., Speed, Package) or for further information on any aspect of this device, please contact the ST Sales Office nearest to you.

Table 18. SNAPHAT Battery/Crystal Table

| Part Number Description                              |                                          | Package |
|------------------------------------------------------|------------------------------------------|---------|
| M4T28-BR12SH Lithium Battery (48mAh)/Crystal SNAPHAT |                                          | SH      |
| M4T32-BR12SH                                         | Lithium Battery (120mAh)/Crystal SNAPHAT | SH      |

# **REVISION HISTORY**

# **Table 19. Document Revision History**

| Date         | Revision Details                   |  |
|--------------|------------------------------------|--|
| October 2000 | First Issue                        |  |
| 10/9/00      | Markups received October 6 entered |  |
| 12/27/00     | Reformatted                        |  |

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is registered trademark of STMicroelectronics All other names are the property of their respective owners.

© 2001 STMicroelectronics - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

www.st.com