IS74

AN1204
APPLICATION NOTE

®
Software Drivers for the M58BF008 Flash Memory
CONTENTS INTRODUCTION
= INTRODUCTION This application note provides library source code in C for the

THE M58BF008
PROGRAMMING MODEL

WRITING C CODE FOR
THE M58BF008

C LIBRARY FUNCTIONS
PROVIDED

PORTING THE DRIVERS
TO THE TARGET SYSTEM

LIMITATIONS OF THE
SOFTWARE

CONCLUSION
c1204_32.h LISTING
€c1204_32.c LISTING

December 2000

M58BF008 Flash Memory. The M58BF008 supports both
Asynchronous and Synchronous Burst bus interfaces. The C
code drivers work on a layer above the hardware and can be
used successfully over either bus interface.

Listings of the source code can be found at the end of this doc-
ument. The source code is also available in file form from the
internet site http://www.st.com or from your STMicroelectronics
distributor. The c1204_32.c and c1204_32.h files contain librar-
ies for accessing the M58BF008 Flash Memories.

Also included in this application note is an overview of the pro-
gramming model for the M58BF008. This will familiarize the
reader with the operation of the memory devices and provide a
basis for understanding and modifying the accompanying
source code.

The source code is written to be as platform independent as
possible and requires minimal changes by the user in order to
compile and run. The application note explains how the user
should modify the source code for their individual target hard-
ware. All of the source code is backed up by comments explain-
ing how it is used and why it has been written as it has.

This application note does not replace the M58BF008
datasheet. It refers to the datasheet throughout and it is neces-
sary to have a copy in order to follow some of the explanations.

The software and accompanying documentation has been fully
tested on a target platform. It is small in size and can be applied
to any target hardware.

THE M58BF008 PROGRAMMING MODEL

The M58BF008 is an 8Mb (256Kb x32) Flash Memory which
can be electrically erased and programmed through special
coded command sequences on most standard microprocessor
buses. The device is broken down into 32 blocks, each 32
Kbytes in size. Each block can be erased individually, or the
whole chip can be erased at once, erasing all 8Mb. An addition-
al 32 Kbyte Overlay Block is provided to hold the boot code for
the microprocessor; once booted the microprocessor can hide
the Overlay Block and access Block 0.

The M58BF008 is a smart voltage device. It differs from first
generation dual voltage devices which require a 12V supply to

1/27

AN1204 - APPLICATION NOTE

program or erase. The M58BF008 is therefore easier to use since the hardware does not need to cater for
special bus signal levels. The voltages needed to erase the device are generated by charge pumps inside
the device. Three power supply pins are used to give the optimal supply voltage conditions. In normal op-
eration the core is supplied with 5V, the 1/O buffers are supplied with 3.3V and the Vpp Supply pin is sup-
plied with OV (all bicks protected) or 5V (no blocks protected). The program/erase section can be supplied
with 12V through Vpp pin to speed up programming in the factory; this mode is not to be used as a per-
manent solution.

Included in the device is a Program/Erase Controller. With first generation Flash Memory devices the soft-
ware had to manually program all of the words to 0000h before erasing to FFFFh using special program-
ming sequences. The Program/Erase Controller in the M58BFO008 allows a simpler programming model
to be used, by taking care of all the necessary steps required to erase and program the memory. This has
led to improved reliability so that in excess of 10,000 program/erase cycles are guaranteed per block on
the device.

Bus Operations and Commands

Most of the functionality of the M58BF008 is available via the two standard bus operations: read and write.
Read operations retrieve data or status information from the device. Write operations are interpreted by
the device as commands, which modify the data stored or the behavior of the device. Only certain special
sequences of write operations are recognized as commands by the M58BF008. The various commands
recognized by the M58BF008 are listed in the Instructions Table of the datasheet; the main commands
can be grouped as follows:

1. Read

2. Read Electronic Signature

3. Erase

4. Program

5. Program/Erase Suspend

6. Enable/Disable Overlay Block

7. Asynchronous/Synchronous bus interface toggle.

The Read command returns the M58BF008 to Read mode where it behaves as a ROM. In this state, a
read operation outputs onto the data bus the data stored at the specified address of the device.

The Read Electronic Signature command places the device in a mode which allows the user to read the
Manufacturer, Device Code and Version Code of the device. In the library of software drivers this mode is
known as the Auto Select mode to make the M58BF008 compatible with the M29 series Flash Memories.

The Erase command is used to set all the bits to ‘1’ in every memory location in the selected block. All
data previously stored in the erased block will be lost. The erase command takes longer to execute than
the other commands, because an entire block is erased at once. Attempts to erase or program a block
while the memory is protected (i.e. Vpp = VL) generate an error and do not modify the contents of the
memory. A special command is used to erase the Overlay Block, providing additional security for the data
in the Overlay Block.

The Program command is used to modify the data stored at the specified address of the device. Note that
programming can only change bits from ‘1’ to ‘0’. Attempting to change a ‘0’ to a ‘1’ using the Program
command will fail, though the Status Register may not indicate the failure. It may therefore be necessary
to erase the block before programming to addresses within it. Programming modifies a single word at a
time. Programming larger amounts of data must be done one word at a time, by issuing a Program com-
mand, waiting for the command to complete, then issuing the next Program command, and so on. A spe-
cial command is used to program the Overlay Block, providing additional security for the data in the
Overlay Block.

2127 573

AN1204 - APPLICATION NOTE

Issuing the Program/Erase Suspend command during a Program or Erase operation will temporarily place
the M58BF008 in Program/Erase Suspend mode. While an Erase operation is being suspended the
blocks not being erased may be read or programmed as if in the reset state of the device. While a Program
operation is being suspended the rest of the device may be read. This allows the user to access informa-
tion stored in the device immediately rather than waiting until the Program or Erase operation completes,
typically 10us for programming and 0.33s for erasing on the M58BF008. The Program or Erase operation
is resumed when the device receives the Program/Erase Resume command.

The Overlay Block is read in the same address space as Block 0. The Overlay Block Toggle command is
used to switch between reading the Overlay Block and reading Block 0. Special commands are used to
program or erase the Overlay Block and are independent of the block selected for Read mode.

The Bus interface on read operations can be toggled between asynchronous and synchronous modes.
However write operations will be either asynchronous or synchronous depending on the factory configu-
ration of the device. The C code does not include this function as it would typically be performed as part
of the hardware initialisation.

The Status Register

While the M58BF008 is programming or erasing, a read from the device will output the Status Register of
the Program/Erase Controller. The Status Register, which can also be accessed by issuing the Read Sta-
tus Register command, provides valuable information about the most recent Program or Erase command.
The Status Register bits are described in the Status Register Bits Table of the M58BF008 datasheet. Their
main use is to determine when programming or erasing is complete and whether it is successful or not.

Completion of the Program or Erase operation is indicated by the Program/Erase Controller Status bit
(Status Register bit DQ7) becoming ‘1’. Programming or erasing errors are then indicated by one or more
of the various error bits (Status Register bits DQ3, DQ4 and DQ5) being ‘1’. If a failure occurs the Status
Register error bits will remain set until a Clear Status Register command is issued to the device. This
should be done before performing any further operations or it will not be possible to determine whether
the following operation resulted in an error or not.

A Detailed Example

The Instructions Table of the M58BF008 datasheet describes the sequences of write operations that will
be recognized by the Program/Erase Controller as valid commands. For example programming
3F819465h to the address 03E2h requires the user to write the following sequence (in C):

(unsi gned | ong) (0x0000) = 0x00000040;
(unsigned | ong)(0x03E2) = Ox3F819465;

The first of the two addresses (0000h) is arbitrary, so long as it is inside the Flash address space. This
example assumes that address 0000h of the M58BFO008 is mapped to address 0000h in the microproces-
sor address space. In practice it is likely that the Flash will have a base offset which needs to be added to
the address.

While the device is programming the specified address, read operations will access the Status Register
bits. Status Register bit DQ7 will be ‘0’ while programming is on-going and will become ‘1’ on completion.
If Status Register bits DQ3 or DQ4 are set on completion then the Program command will have failed. The
Status Register bits do not indicate an error when an attempt to change a ‘0’ to a ‘1’ has been made; it is
recommended that the value in the memory after programming is compared to the desired value to trap
this error.

WRITING C CODE FOR THE M58BF008

The low-level functions (drivers) described in this application note have been provided to simplify the pro-
cess of developing application code in C for the STMicroelectronics Flash Memories (M58BF008). This
enables users to concentrate on writing the high level functions required for their particular applications.

‘ﬁ 3/27

AN1204 - APPLICATION NOTE

These high level functions can access the Flash Memories by calling the low level drivers, hence keeping
details of special command sequences away from the users’ high level code: this will result in source code
both simpler and easier to maintain.

Code developed using the drivers provided can be decomposed into three layers:
1. the hardware specific bus operations

2. the low-level drivers

3. the high level functions written by the user

The implementation in C of the hardware specific read and write bus operations is required by the low-
level drivers in order to communicate with the M58BF008. This implementation is hardware platform de-
pendent as it is affected by which microprocessor the C code runs on and by where in the microproces-
sor’'s address space the memory device is located. The user will have to write the C functions appropriate
to his hardware platform (see Fl ashRead() and Fl ashWite() in the next section).

The low-level drivers take care of issuing the correct sequences of write operations for each command
and of interpreting the information received from the device during programming or erasing. These drivers
encode all the specific details of how to issue commands and how to interpret the Status Register bits.

The high level functions written by the user will access the memory device by calling the low-level func-
tions. By keeping the specific details of how to access the M58BF008 away from the high level functions,
the user is left with code which is simple and easier to maintain. It also makes the user’s high level func-
tions easier to apply to other STMicroelectronics Flash Memories.

When developing an application, the user is advised to proceed as follows:

— first write a simple program to test the low level drivers provided and verify that these operate as ex-
pected on the user's target hardware and software environments.

— then the user should write the high level code for his application, which will access the Flash Memories
by calling the low level drivers provided.

— finally test the complete application source code thoroughly.

C LIBRARY FUNCTIONS PROVIDED

The software library provided with this application note provides the user with source code for the following
functions:

Fl ashReadReset () is used to reset the device into the Read Array mode. Note that there should be no
need to call this function under normal operation as all of the other software library functions leave the
device in this mode.

FI ashAut oSel ect () is used to identify the Manufacturer Code, Device Code and Version Code of the
device. The function uses the Read Electronic Signature mode of the device. The function is called
Fl ashAut 0Sel ect () to make it compatible with the M29 series Flash Memories.

Fl ashBl ockErase() is used to erase a block in the device. The blocks cannot be erased when Vpp is
invalid: attempting to do so generates an error and leaves the Flash in an indeterminate state.

Fl ashChi pEr ase() is used to erase the entire chip. The chip cannot be erased when Vpp is invalid: at-
tempting to do so generates an error and leaves the Flash in an indeterminate state.

Fl ashProgram() is used to program data arrays into the Flash. Only previously erased double words
can be programmed reliably. Again, programming cannot take place when Vpp is invalid.

Fl ashOver | ayBl ockEnabl e() is used to enable the Overlay Block and disable Block 0 for future calls
to Fl ashRead() .

Fl ashOver | ayBl ockDi sabl e() is used to disable the Overlay Block and enable Block 0 for future calls
to Fl ashRead() .

a2z 573

AN1204 - APPLICATION NOTE

Fl ashOver | ayBl ockRead() is used to read a double word from the Overlay Block and then disable the
Overlay Block. It is useful to retrieve single values, for multiple reads enable the Overlay Block, read the
values required and disable it again.

Fl ashOver | ayBl ockEr ase() is used to erase the Overlay Block. The Overlay Block cannot be erased
when Vpp is invalid: attempting to do so generates an error and leaves the Flash in an indeterminate state.

Fl ashOver | ayProgran() is used to program data arrays into the Flash. Only previously erased words
can be programmed reliably. Again, the Overlay Block cannot be programmed when Vpp is invalid.

The functions provided in the software library rely on the user implementing the hardware specific bus op-
erations. This is to be done by writing two functions as follows:

— Fl ashRead() must be written to read a value from the Flash.
— Fl ashWit e() must be written to write a value to the Flash.
An example of these functions is provided in the source code.

In many instances these functions can be written as macros and therefore will not incur the function call
time overhead. The two functions which perform the basic I/O to the device have been provided for users
who have awkward systems. For example where the addressing system is peculiar or the data bus has
DO0..D15 of the device on D16..D31 of the microprocessor. They allow any user to quickly adapt the code
to virtually any target system.

Throughout the functions assumptions have been made on the data types. These are:

A char is 8 bits (1 byte). This is not the case in all microcontrollers. Where it is not it will be necessary to
mask the unused bits of the word.

Ani nt is 16 bits (2 bytes). Again, like the char , if this is not the case it will be necessary to use a variable
type which is 16 bits or longer and mask bits above 16 bits (particularly in the user’'s Fl ashRead() func-
tion).

Al ong is 32 bits (4 bytes). It is necessary to have arithmetic greater than 16 bits in order to address the
entire device.

Two approaches to the addressing are available: the desired address in the Flash can be specified by a
32 bit linear pointer or a 32 bit offset into the device could be provided by the user. The FI ashRead()
functions in each case would declared as:

unsi gned | ong Fl ashRead(unsigned | ong *Addr);
unsi gned | ong Fl ashRead(unsigned |ong ul Off);

The pointer option has the advantage that it runs faster. The 32 bit offset needs to be changed to an ad-
dress for each access and this involves 32 bit arithmetic. Using a 32 bit offset is, however, more portable
since the resulting software can easily be changed to run on microprocessors with segmented memory
spaces (such as the 8086). For maximum portability all the functions in this application note use a 32 bit
unsigned long offset, rather than a pointer.

PORTING THE DRIVERS TO THE TARGET SYSTEM

Before using the software in the Target System the user needs to write FIl ashRead() and Fl ash-
Wite() functions appropriate to the Target Hardware. The example Fl ashRead() and Fl ash-
Wit e() functions provided in the source code should give the user a good idea of what is required and
can be used in many instances without much modification.

To test the source code in the Target System start by simply reading from the M58BFO008. If it is erased
then only FFFFFFFFh data should be read. Next read the Manufacturer and Device codes and check they
are correct. If these functions work then it is likely that all of the functions will work but they should all be
tested thoroughly.

ﬁ 5/27

AN1204 - APPLICATION NOTE

The programmer needs to take extra care when the device is accessed during an interrupt service routine.
Two situations exist which must be considered:

When the device is in Read mode interrupts can freely read from the device.
Interrupts which do not access the device may be used during all the functions.

The programmer should also take care when a Reset is applied during Program or Erase operations. The
Flash will be left in an indeterminate state and data could be lost.

LIMITATIONS OF THE SOFTWARE

The software provided does not implement a full set of the M58BF008’s functionality. It is left to the user
to implement the Program/Erase Suspend command of the device. The Standby mode is a hardware fea-
ture of the device and cannot be controlled through software. It is left to the user to implement to Asyn-
chronous/Synchronous Read Toggle command, this is considered a hardware feature that is outside the
scope of these C code drivers.

Care should be taken in some of the whi | e() loops. No time-outs have been implemented. Software ex-
ecution may stop in one of the loops due to a hardware error. A/* Ti meQut! */ comment has been
put at these places and the user can add a timer to them to prevent the software failing.

The software only caters for one device in the system. To add software for more devices a mechanism for
selecting the devices will be required.

When an error occurs the software simply returns the error message. It is left to the user to decide what
to do. Either the command can be tried again or, if necessary the device may need to be replaced.

CONCLUSION

The M58BF008 single voltage Flash Memory is an ideal product for 32 bit embedded and other computer
systems, able to be easily interfaced to microprocessors and driven with simple software drivers written
in the C language.

J

6/27

AN1204 - APPLICATION NOTE

/**** C1204 32h Fbader Flle for Fl ash '\bn‘ory khkkhkhkhkhkhhhkhhhhhhhhhhhhhhddhrdhrhdirsx

F | enane: c1204 32. h
Description: Header file for c1204_32.c¢ V1.02. Consult the Cfile for details

Gopyright (c) 2000 STM cr oel ect roni cs.

THIS PROGRAM IS PROVIDED “AS IS"WITHOUT WARRANTY OF ANY KIND,EITHER
EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTY

OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK
AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

1

/
Commands for the various functions

/¥ Read Signature values */

#define FLASH_READ MANUFACTURER (-3)
#define FLASH_READ DEVICE_CODE (-2)
#define FLASH_READ _VERSION_CODE (-1)

/
Error Conditions and return values.

See end of C file for explanations and help

#define FLASH_SUCCESS 1)

#define FLASH_BLOCK_INVALID ~ (5)

#define FLASH_PROGRAM_FAIL (6
#define FLASH_OFFSET_OUT OF RANGE (-7)
#define FLASH_WRONG_TYPE 9
#define FLASH_BLOCK_FAILED ERASE (-9)
#define FLASH_UNPROTECTED (10)
#define FLASH_PROTECTED (11)

#define FLASH_FUNCTION_NOT_SUPPORTED (-12)
#define FLASH_VPP_INVALID (13)

#define FLASH_ERASE_FAIL (14)

#define FLASH_UNPROTECT FAIL (-16)
#define FLASH_PROTECT FAIL (-18)
#define FLASH_OVERLAY FAL (-19)
#define FLASH_OVERLAY DISABLED (-20)
#define FLASH_OVERLAY ENABLED (-21)

1/
Function Prototypes

extern unsigned long FlashRead(unsigned long ulOff);

extern void FlashReadReset(void);

extern int FlashAutoSelect(int iFunc);

extern int FlashBlockErase(unsigned char ucBlock);

extern int FlashChipErase(int *iResults);

extern int FlashProgram(unsigned long ulOff, size_t NumWords, void *Array);
extern int FlashOverlayBlockDisable(void);

extern int FlashOverlayBlockEnable(void);

extern unsigned long FlashOverlayBlockRead(unsigned long ulOff, int *iRetval);
extern int FlashOverlayBlockErase(void);

extern int FlashOverlayBlockProgram(unsigned long ulOff

ﬁ 7/27

AN1204 - APPLICATION NOTE

, Size_t NumWrds, void *Array);
extern char *FlashBErrorSr(int i ErrNum);

8/27

J

AN1204 - APPLICATION NOTE

/**** C1204 32C MSBFXXX FI aSh '\krmry D-Iver khkkkhkkkhkhkkhkhkhhkhkhhhkhhhdhhhhhhhhhhxxk

F | enane: c1204 32.c
Description: Library routines for the Ms8BFxxx F ash Menory.

\er si on: 1.02 Initial release.
Dat e: 08/ 11/ 2000
Aut hor : TimWbster, Xford Techni cal Sol utions (ww ots. ndirect. co. uk)

Gopyright (c) 2000 STM cr oel ect roni cs.

THIS PROGRAM IS PROVIDED “AS IS"WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTY

OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK
AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE

PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,

REPAIR OR CORRECTION.

Version History.
Ver. Date Comments

1.00 03/10/2000 Initial creation

1.01 07/11/2000 Add programming failure on attempt to programa‘0’'toa
‘1’ in functions FlashProgram and FlashOverayProgram

1.02 08/11/2000 Add Program Verification to functions FlashProgram and
FashOverlayBlockProgram

1.03 11/12/2000 Changed BASE_ADDR to be “long*” not ‘int*’

This source file provides library C code for using the M28WxxxC devices.
The following devices are supported in the code:
M58BF008

The following functions are available in this library:

HashRead() to read from the flash

HashReadReset() to reset the flash for normal memory access

HashAutoSelect() to get information about the device

HashBlockErase() to erase a single block

HashChipErase() to erase the whole chip

HashProgram() to program a double-word or an array

HashOverlayBlockDisable() to enable main block reads

HashOverlayBlockEnable() to enable overlay block reads

HashOverayBlockRead() to read a double-word from the overay block

HashOverayBlockErase() to erase the entire overlay block

HashOverayBlockProgram() to program a double-word/array to the overlay
block

HashErrorStr() to retum the error string of an error

For further information consult the Data Sheet and the Application Note.
The Application Note gives information about how to modify this code for

a specific application.

The hardware specific functions which need to be modified by the user are:

HashWrite() for writing a double-word to the flash

573

9/27

AN1204 - APPLICATION NOTE

FlashRead() for reading a doubl e-word fromthe flash

Alist of the error conditions is at the end of the code.

There are no timeouts inplenented in the Ioops in the code. At each point

where an infinite loop is inplenented a conment /# TinmeQut! # has been

placed. It is up to the user to inplenent these to avoid the code hangi ng

instead of timng out.

The source code assunes that the conpiler inplenents the nunerical types as

unsi gned char 8 bits

unsi gned i nt 16 bits

unsi gned | ong 32 hits

Additional changes to the code will be necessary if these are not correct.
***/
#i ncl ude <stdlib. h>
#include “c1204_32.n" /*Header file with global prototypes */

#define USE_M58BF008

!
Constants

!
#define MANUFACTURER_ST (0x00000020L) /* ST RSIG for manufacturer is 0x20 *
#define BASE_ADDR ((volatile unsigned long*)0x00000000L)
FBASE_ADDR is the base address of the flash, see the functions FlashRead
and FlashWiite(). Some applications which require a more complicated
HashRead() or FlashWiite() may not use BASE_ADDR */

#define CMD_ADDR (0x00000000L) /* Address to write to P/EC */

#ifdef USE_M58BF008

#define EXPECTED_DEVICE (0x000000F0L) /* Device code for the M58BF008 */
#define FLASH_SIZE (0x00040000L) / Total device size */

#define OVERLAY_SIZE (0x00002000L) /* Overlay block size */

static const unsigned long BlockOffset]] =

{
0x00000000L, /* Start offset of block 0 */
0x00002000L, /* Start offset of block 1 */
0x00004000L, /* Start offset of block 2 */
0x00006000L, /* Start offset of block 3 */
0x00008000L, /* Start offset of block 4 */
OxO000AQOOL, /* Start offset of block 5 */
0x0000CO0Q0L, /* Start offset of block 6 */
OxO000EQOOL, /* Start offset of block 7 */
0x00010000L, /* Start offset of block 8 */
0x00012000L, /* Start offset of block 9 */
0x00014000L, /* Start offset of block 10 */
0x00016000L, /* Start offset of block 11 */
0x00018000L, /* Start offset of block 12 */
0x0001AQ000L, /* Start offset of block 13 */
0x0001CO0Q0L, /* Start offset of block 14 */
Ox0001EQO0OL, /* Start offset of block 15 */

10/27

J

AN1204 - APPLICATION NOTE

0x00020000L, /* Sart offset of block 16 */
0x00022000L, /* Sart offset of block 17 */
0x00024000L, /* Sart offset of block 18 */
0x00026000L, /* Sart offset of block 19 */
0x00028000L, /* Sart offset of block 20 */
0x0002A000L, /* Sart offset of block 21 */
0x0002Q000L, /* Sart offset of block 22 */
0x0002E000L, /* Sart offset of block 23 */
0x00030000L, /* Sart offset of block 24 */
0x00032000L, /* Sart offset of block 25 */
0x00034000L, /* Sart offset of block 26 */
0x00036000L, /* Sart offset of block 27 */
0x00038000L, /* Sart offset of block 28 */
0x0003A000L, /* Sart offset of block 29 */
0x0003Q000L, /* Sart offset of block 30 */
Ox0003E000L /* Sart offset of block 31 */

1
#endi f /* USE_M58BFO08 */
#def i ne NUM BLOCKS (si zeof (Bl ockCi f set)/ si zeof (Bl ockCi fset[0]))

/***

Satic Prototypes

The following function is only needed in this nodul e.

***/

stati c unsigned | ong Fl ashWite(unsigned long uldf, unsigned | ong uval);

/***

Functi on: unsigned int HashWite(unsigned long ul Of, unsigned int uval)

Argunent s: ul Cff is double-word offset inthe flash to wite to.
uval is the value to be witten

Ret ur ns: uval

Description: This function is used to wite a doubl e-word to the flash. Oh many
m croprocessor systens a nmacro can be used instead, increasing the speed of
the flash routines. For exanpl e:

#define HashWwite(ulf, uval) (BASE ADDRul OFf] = (unsigned int) uval)

A function is used here instead to allowthe user to expand it if necessary.
The function is nade to return uVal so that it is conpatible wth the nacro.

Pseudo Code:
Sep 1: Wite uval to the doubl e-word offset in the flash
Sep 2: return uval

***/

stati c unsigned | ong Fl ashwite(unsigned long ul &f, unsigned | ong uval)

/* Stepl, 2. Wite uval to the double-word offset in flash and return it */
return BASE ADDR ul Cff] = uval;

}
/***
Functi on: unsi gned int H ashRead(unsigned long ul O f)

Argunent s: ulcff is the doubl e-word offset into the flash to read from

Ret ur ns: The unsigned int at the doubl e-word of f set

Description: This function is used to read a doubl e-word fromthe flash. Oh many
m croprocessor systens a nmacro can be used instead, increasing the speed of
the flash routines. For exanpl e:

573

11/27

AN1204 - APPLICATION NOTE

#define FlashRead(ul Of) (BASE ADDRul G f])
A function is used here instead to allowthe user to expand it if necessary.

Pseudo Code:
Sep 1. Return the value at doubl e-word of fset ul Of

***/

unsi gned | ong H ashRead(unsigned long ul Of)

/* Sep 1 Return the value at doubl e-word offset ul OFf */
return BASE ADDR ul Cff];

/***
Functi on: voi d H ashReadReset (void)
Argunent s: none

Return Val ue: none
Descri pti on: This function places the flash in the Read Array node descri bed
inthe Data Sheet. In this node the flash can be read as normal nenory.

Al of the other functions | eave the flash in the Read Array node so this is
not strictly necessary. It is provided for conpl eteness.

Pseudo Code:
Sep 1. wite command sequence (see Instructions Table of the Data Sheet)

***/

voi d Fl ashReadReset (void)

/* Step 1. wite command sequence */
Hashwite(OMD ACDR OxFFFFFFFFL) ;

}
/***
Functi on: int FlashAutoSel ect(int iFunc)

Argunent s: i Func shoul d be set to one of the Read Signature val ues. The

header file defines the values for reading the S gnature.
Return Value: Wen i Func is FLASH READ MANUFACTURER (-3) the function returns
the manufacturer’s code. The Manufacturer code for ST is 00000020h.
WheniFunc is FLASH_READ_DEVICE_CODE (-2) the function retums the Device
Code. The device codes for the parts are:

M58BF008 0x000000F0

If iFunc is FLASH_READ_VERSION_CODE (-1) a value from Oto 7 is reported to
indicate the version of the flash.

When iFunc is invalid the function returns FLASH_FUNCTION_NOT_SUPPORTED (-12)
Description: This function can be used to read the electronic signature of the
device or the manufacturer code.

Pseudo Code:
Step 1: Send the Auto Select Instruction to the device or RSIG instruction
Step 2: Read the required function from the device
Step 3: Return the device to Read Array mode

int FlashAutoSelect(intiFunc)

intiRetVal; /*Holds the retum value */

J

12/27

AN1204 - APPLICATION NOTE

/* Sep 1. Send the Read Hectronic Signature instruction */
H ashWite(CMD ADDR 0x00000090L);

/* Sep 22 Read the required function */
F Note Only AO and Al are valid read addresses A2-17 Don't care */

if(iFunc == FLASH_READ_MANUFACTURER)
iRetVal = FlashRead(0x00000000L); * A0 =A1=0%

else if(iFunc == FLASH_READ_DEVICE_CODE)
iRetVal = FlashRead(0x00000001L); A0 =1,A1=0%

else if(iFunc == FLASH_READ_VERSION_CODE)
iRetVal = FlashRead(0x00000002L); * A0 =0, AL = 1%

else
iRetVal = FLASH_FUNCTION _NOT_SUPPORTED;

P Step 3: Return to Read Array mode */
FlashwWiite(CMD_ADDR, OXO00000FFL);

retum iRetVal;
}

1/

Function: int FlashBlockErase(unsigned char ucBlock)

Arguments: ucBlock is the number of the Block to be erased.

Return Value: The function returns the following conditions:
FLASH_SUCCESS D
FLASH_WRONG_TYPE (-8)

FLASH_BLOCK_INVALID (5)
FLASH_VPP_INVALID (-13)
FLASH_BLOCK_FAILED_ERASE (-9)

Description: This function can be used to erase the Block specified in ucBlock.
The function checks that the block is valid before issuing the erase
command. Once the erase has completed the function checks the Status
Register for emrors. Any errors are retumed, otherwise FLASH_SUCCESS
is returned.

Pseudo Code:
Step 1: Check for correct flash type
Step 2: Check that the block is valid
Step 3: Issue Erase Command
Step 4: Wait until Program/Erase Controller is ready
Step 5: Check for any errors
Step 6: Return to Read Array mode
Step 7: Return error condition

int FlashBlockErase(unsigned char ucBlock)

intiRetVal = FLASH_SUCCESS; /* Holds return value: optimistic initially! */
unsigned long ulStatus; /* Holds the Status Register reads */

F* Step 1. Check for correct flash type */

if(!(FHashAutoSelect{ FLASH_READ MANUFACTURER) = MANUFACTURER_ST)

|| ((FlashAutoSelect{ FLASH_READ_DEVICE_CODE) == EXPECTED DEVICE))
retumn FLASH_WRONG_TYPE;

ﬁ 13/27

AN1204 - APPLICATION NOTE

/* Step 2. Check that the block is valid */
i f(ucB ock >= NUM BLOCKS)
return FLASH BLOCK | NVALI D,

/* Step 3. Issue Erase Gommand */
Fl ashWwite(CMD ADDR O0x00000050L); /* Qear Satus Register */

/* NOTE! CSR also clears bl BPS as well as b3,4 and 5 */

H ashWite(CGMD ADDR 0x00000020L); /* 1st cycle */
F ashWite(B ock(fset[ucB ock], 0x0000000L); /* 2nd cycle */

/* Sep 4 Wit until ProgramiErase Controller is ready */
/* TimeQut! */
do
ul Status = H ashRead(QVD | AD]Q)
vhi [e((ul Stat us&x00000080L) == 0x00000000L);

/* Sep 5. Check for any errors */
if(ul Sat us&)xOOOOOOOBL)
i RetVal = FLASH VPP_| N\VALI D
el se if(ul & atus&x00000020L)
i RetVal = FLASH BLOK FAI LED ERASE;

/* Sep 6: Return to Read Array node */
F ashwite(CMD_ACDR 0x00000050L); /[* AQear Status Register */

/* NOTE! CSR also clears bl BPS as well as b3,4 and 5 */
H ashWwite(QvD ADDR 0x000000FFL); /* Read Array Conmand */

/* Step 7: Return error condition */
return i Ret Val ;

}
/******************~k**
Functi on: int FlashChi perase(int *i Results)

Argunent s: iResults is a pointer to an array where the results wll be

stored. If iResults == NULL then no results are stored.

Return Val ue: The function returns the foll owi ng conditions:
FLASH SUGCESS (-1
FLASH WVRONG TYPE (-8)

FLASH BERASE FAIL (-14)

If FLASH SUXCESS is returned then Results is | eft unchanged.

If FLASH ERASE FAIL is returned then Results will be filled with the error
conditions for each bl ock. The possible error conditions are:

FLASH SUGQCESS (-1)

FLASH VPP_INVALID (-13)

FLASH ERASE FAIL (-14)

Description: The function can be used to erase the whol e flash chip. Each B ock
is erased in turn. The function only returns when all of the B ocks have
been erased or have generated an error, except if the FLASH VPP INVALID is
encountered, in which case the function aborts and reports all remaining
bl ocks as having FLASH WP I NVALID. If Vpp is invalid for one block then it
follows that it will be invalid for subsequent bl ocks (battery failure?).

Pseudo Code:
Sep 1. Check for correct flash type

J

14/27

AN1204 - APPLICATION NOTE

Sep 2: For each bl ock

Sep 3: Send Bl ock Erase Command

Sep 4. Register the errors in the array

Sep 5 If FLASH WP INVALID returned fill rest of results array & abort
Sep 6: Return error condition

***/

int FlashChipErase(int *i Results)

{
unsi gned char ucQur Bl ock; /* Wsed to track the current block in a range */
int iRetVal = FLASH SUCCESS, /* Return value: Initially optinmstic */
int iEror; /* Hbolds the latest error */
/* Sep 1. Check for correct flash type */
if(!'(HA ashAut oSel ect (FLASH READ MANUFACTURER) == MANUFACTURER ST)
[| '(H ashAut oSel ect (FLASH READ DEVI CE OCDE) == EXPECTED DEMI CE))
return FLASH WRONG TYPE
/* Sep 2. For each bl ock */
for(ucQurBl ock = 0; ucQurB ock < NUMBLAXKS, ucCQurBl ock++)
{
/* Sep 3: Send Bl ock Erase Command */
i Error = Fl ashB ockErase(ucQurBl ock);
if(iBror !'= FLASH SUOCESS)
i Ret Val = FLASH ERASE FAI L;
/* Step 4. Register the errors in the array */
if(iResults !'= NULL)
i Resul ts[ucQurB ock] = iError;
/* Step 5. If FLASH WP INVALID returned fill rest of results array
& abort */
if(iBror = FLASH VPP_INVALID)
if(iResults !'= NULL)
whil e(++ucQurB ock < NUM BLACKS) /* on renai ni ng bl ocks */
i Results[ucQurB ock] = iEror; [/* fill in Vpp error */
/* the for() loop will nowtermnate since ucQurBl ock == NUM BLOCKS */
}
/* Step 6: Return error condition */
return i Ret Val ;
}
/***
Functi on: int FlashProgran{ unsigned long ul Ff, size t NumMrds,
void *Array)
Argunent s: ul cff is the doubl e-word offset into the flash to be programred

Numyér ds hol ds the nunber of doubl e-words in the array.
Array is a pointer to the array to be programmed.

Return Value: n success the function returns FLASH SUCCESS (-1).
If Wpisinvalid then the function returns FLASH VPP_| NVALI D (-13)
Oh failure the function returns FLASH PROGRAM FAI L (-6).
If the address range to be programmed exceeds the address range of the H ash
Device the function returns FLASH ADDRESS QUT_(F RANCE (-7) and nothing is
pr ogr amred.
If the wong type of flash is detected then FLASH WRONG TYPE (-8) is
returned and not hing i s programred.

Description: This function is used to programan array into the flash. It does

ﬁ 15/27

AN1204 - APPLICATION NOTE

not erase the flash first and will fail if the block(s) are not erased first.

Pseudo Code:

Sep 1. Check for correct flash type
Sep 2: Check the offset range is valid
Sep 3: Wile there is nore to be programed

Step 4: Check for changes from ‘0" to ‘1’

Step 5: Program the next double-word

Step 6: Wait until the ProgranvErase Controller is ready

Step 7: Check for any emors

Step 8: Verify program operation

Step 9: Update pointers

Step 10:Clear status register and return to read array mode

Step 11:Retun the emror condition

y
int FlashProgram(unsigned long ulOff, size_t NumWords, void *Array)

unsigned long *ulArrayPointer; / Use an unsigned long to access the array */
unsigned long ulLastOff, / Holds the last offset to be programmed */
unsigned long ulStatus; / Holds the Status Register reads */

intiRetVal = FLASH_SUCCESS; /* Retumn Value: Initially optimistic */

P Step 1. Check that the flash is of the correct type */

if(!(FHashAutoSelect{ FLASH_READ MANUFACTURER) = MANUFACTURER_ST)

| {(FlashAutoSelect{ FLASH_READ_DEVICE_CODE) ==EXPECTED _DEVICE))
retun FLASH_WRONG_TYPE;

P Step 2: Check the offset range is valid */
ulLastOff = ulOff + NumWords - 1;
if(ulLastOff >= FLASH_SIZE)

return FLASH_OFFSET_OUT_OF_RANGE;

F Step 3: While there is more to be programmed */
ulArayPainter = (unsigned long ¥)Array;
while(ulOff <= ulLastOff && iRetVal == FLASH_SUCCESS)

* Step 4: Check for changes from ‘0'to ‘1" */
if ~HashRead(ulOff) & *ulArrayPointer)
return FLASH_PROGRAM_FAIL;

F* Step 5: Program the next double-word */

HashWrite(CMD_ADDR, 0x00000050L); / Clear Status Register */
HashWrite(CMD_ADDR, 0x00000040L); /* Program Set-up */
HashWrite(ulOff, *ulArrayPointer); / Program value */

F* Step 6: Wait until Program/Erase Controller is ready */
F TimeOut! */
do
ulStatus = HashRead(CMD_ADDR);
while((UIStatus&0x00000080L) == 0x00000000L);

F Step 7: Check for any errors */
if(ulStatus&0x00000008L)
iRetVal = FLASH_VPP_INVALID;
else if(ulStatus&0x00000010L)
iRetVal = FLASH_PROGRAM_FAIL;

HashWrite(CMD_ADDR, 0x000000FFL); * Read Array Command */

16/27

J

AN1204 - APPLICATION NOTE

/* Step 8 Verify programoperation */
if (HashRead(ul Cf) !'=*ul ArrayPointer)
{

i Ret Val =FLASH PROGRAM FAI L;

br eak;
}
/* Sep 9: Wdate pointers */
ul O f ++; /* next doubl e-word of fset */

ul ArrayPoi nter++, /* next double-word in array */

}

/* Step 10: Qear status register and return to read array node */
Fl ashwite(CMD ADDR O0x00000050L); /* Qear Satus Register */
H ashwite(OVMD ADDR O0xO000000FFL); /* Read Array Command */

/* Step 11: return the error condition */
return i Ret Val ;

}
/***
Functi on: int FlashQverl ayBl ockD sabl e(void);

Argunent s: none

Return Value: On success this function returns FLASH SUGCESS (-1) or if the
flash overlay block is already disabled it returns FLASH OVERLAY D SABLED
If the toggle command was unsuccessful and the flash overlay bl ock will not
di sabl e the function returns FLASH O/ERLAY _FA L.

Description: This function gets the flash into nornal bl ock read node.

Pseudo Code:
Sep 1. Check for correct flash type
Sep 2. Read Status Register
Sep 3: If the Overlay bl ock is al ready disabl ed do nothing and i nformthe
user of that fact
Sep 4. Disable the Orerlay Bl ock
Sep 5 Read Status Register
Sep 6: Test to see that the D sable Qverlay toggl e was successf ul
Sep 7: Return success

***/

int FlashQverl ayBl ockD sabl e(void)
{

unsi gned | ong ul Stat us; /* Wsed to store status regi ster value */

/* Sep 1. Check that the flash is of the correct type */

i f(!(H ashAut 0Sel ect (FLASH READ MANUFACTURER) == MANUFACTURER ST)

|| ! (H ashAut oSel ect(FLASH READ DEVICE ODE) == EXPECTED DEM CE))
return FLASH WRONG TYPE;

/* Sep 22 Read Status Register */
H ashWi t e(QvD_ADDR 0x00000070L) ;
ul Status = H ashRead(OVD ACDR) ;

/* Step 3. Test to see is its already disabled */
if (!(ul Satus & 0x00000001L))
{

H ashwite(OVD ADDR OxO00000FFL);

return FLASH OVERLAY_ DI SABLED,
}

573

17/27

AN1204 - APPLICATION NOTE

/* Step 4. Dsable Overlay Bl ock */
H ashWi t e(QvD_ADDR 0x00000006L) ;

/* Sep 5. Read Status Register */
H ashWi t e(QvD_ADDR 0x00000070L) ;
ul Status = H ashRead(OVD ACDR);

H ashwite(OVD ADDR OxO00000FFL); /* Read Array Command */

/* Step 6: Test to see if the operation failed */
if (ul Satus & 0x00000001L) return FLASH OVERLAY_FAl L;

/* Sep 7. Return Success */
return FLASH SUCCESS,

/***

Functi on: int FlashQverl ayBl ockEnabl e(void);

Argunent s: none

Return Val ue: n success the function returns FLASH SUCCESS (-1) or if the flash
overlay block is already enabled it returns FLASH O/ERLAY ENABLED |f the
toggl e conmand i s unsuccessful and the flash overlay block will not enable
the function returns FLASH O/ERLAY FA L.

Description: This function gets the flash into overlay bl ock read node.

Pseudo Code:
Sep 1. Ensure that we have the correct flash
Sep 2. Read Status Register
Sep 3: If the Overlay bl ock is al ready enabl ed do nothing and i nformthe
user of that fact
Sep 4: Enable the Qverlay Bl ock
Sep 5 Read Status Register
Sep 6: Test to see that the Enabl e Qverlay toggl e was successf ul
Sep 7: Return success

***/

int FlashQverl ayBl ockEnabl e(void)
{

unsi gned | ong ul Stat us; /* Wsed to store status regi ster value */

/* Step 1. Check that the flash is of the correct type */

i f(!(H ashAut 0Sel ect (FLASH READ MANUFACTURER) == MANUFACTURER ST)

|| ! (H ashAut oSel ect (FLASH READ DEVICE ODE) == EXPECTED DEM CE))
return FLASH WRONG TYPE;

/* Sep 22 Read Status Register */
H ashWi t e(QvD_ADDR 0x00000070L) ;
ul Status = H ashRead(OVD ACDR);

/* Step 3. Test to see is its already enabl ed */
if (ul Satus & 0x00000001L)
{

H ashwite(CVMD ADDR 0x000000FFL);

return FLASH O/ERLAY_ENABLED,

}

/* Sep 4. Enable Overlay B ock */
H ashWi t e(QvD_ADDR 0x00000006L) ;

/* Sep 5. Read Status Register */
H ashWi t e(QvD_ADDR 0x00000070L) ;

J

18/27

AN1204 - APPLICATION NOTE

ul Status = H ashRead(OVD ACDR);

H ashwite(OVMD ADDR O0xO000000FFL); /* Read Array Command */
/* Step 6: Test to see if the operation failed */
if (!(ul Satus & 0x00000001L)) return FLASH OVERLAY FAlL;

/* Sep 7. Return Success */
return FLASH SUCCESS;

}
/***
Functi on: unsi gned | ong H ashQverl ayBl ockRead(unsi gned | ong ul Cf,

int *i RetVal);
Argunent s: ul Cff stores the address offset to read. i RetVal points to the
return val ue integer.
Return Value: (iRetVal) A successful read will return FLASH SUCCESS (-1). Error
condi tions possible are:
FLASH CFFSET_QUT_CF_RANCE (-7) when the address passed to this function is
out si de the address space of the overlay bl ock.
FLASH WRONG TYPE (-8) if the part Autosel ected was not as expect ed.
Description: This function autonmatically enables the overlay bl ock then reads
the value at address offset ulCff, then resets the flash into nornal bl ock
read node.
Pseudo Code:
Sep 1. Ensure that the address is a valid overlay bl ock address
Sep 2. Enable the overlay block so that it can be read
Sep 3: Read the value at the address of fset ul Of
Sep 4. Disable the overlay block return val ue read
***/

unsi gned | ong H ashOver| ayB ockRead(unsigned long ul Cff, int *i RetVal)
{

unsi gned | ong ul Tnp; /* Wsed to store read val ue fromoverlay bl ock */

/* Sep 1. Is the address valid ? */
if (udf >= O/ERLAY_SIZE) *i Ret Val =FLASH CFFSET_QUT_CF_RANGE;
el se

/* Step 2. If the overlay bl ock read enabl e was not successf ul
return error*/

if (((*i RetVal =Fl ashQver| ayBl ockEnabl e()) == FLASH SUCCESS) ||
(*i RetVal == FLASH OVERLAY_ENABLED))

/* Step 3; Read the value fromthe overlay bl ock */
ul Tnp = HashRead(ulf);

el se return O;

/* Sep 4 Return the value read fromthe overlay bl ock */
*i Ret Val =H ashQrver| ayBl ockD sabl e();
return ul Tnp;

}

return O;

}

/***

Functi on: int FlashQverl ayBl ockErase(void);

Argunent s: none

Return Value: This function returns FLASH SUCCESS (-1) if the overlay bl ock has
been successfully erased or FLASH BLOXK FA LED ERASE (-9) if the operation

ﬁ 19/27

AN1204 - APPLICATION NOTE

failed. Failure return codes are:
FLASH WVRNG TYPE (-8)
FLASH VPP INVALID (-13)
Description: This function erases the overlay bl ock.
Pseudo Code:
Sep 1. Check for correct flash type
Sep 2: Issue the overlay bl ock erase command
Sep 3: Wit for the PE Cto conplete
Sep 4: Check for errors
Sep 5 Reset the device in read array node
Sep 6: Return i RetVal

***/

int FlashQverl ayBl ockErase(void)

{
int iRetVal = FLASH SUCCESS, /* Holds return value: optimstic initially! */
unsi gned | ong ul Stat us; /* Holds the Status Register reads */
/* Sep 1. Check for correct flash type */
if(!'(HA ashAut oSel ect (FLASH READ MANUFACTURER) == MANUFACTURER ST)
[| !'(H ashAut oSel ect (FLASH READ DEVICE OQCDE) = E><PECTEDIIVICE))
return FLASH WRONG TYPE
/* Step 2. Issue Erase Gommand */
Fl ashwite(CMD ADDR O0x00000050L); /* Qear Satus Register */
H ashWite(COMD ADDR 0x00000002L); /* 1st cycle */
F ashwite(B ockCfset[0], Ox00000000L); /* 2nd cycle */
/* Sep 3 Wit until Programi Erase Controller is ready */
/* TimeQut! */
do
ul Status = H ashRead(QVD | AD]Q)
vhi I e((ul Stat us&x00000080L) == 0x00000000L);
/* Sep 4. Check for any errors */
i f(ul S atus&x00000008L)
i RetVal = FLASH VPP_| N\VALI D
elseif(ul St at us&0x00000020L)
i RetVal = FLASH BLOK FAI LED ERASE;
/* Sep 5. Return to Read Array node */
F ashwite(CMD_ADDR 0x00000050L); /[* AQear Status Register */
H ashWite(CMD ADDR 0xO000000FFL); /* Read Array Cormmand */
/* Step 6: Return error condition */
return i Ret Val ;
}
/***
Functi on: int FlashQverl ayBl ockProgran{ unsigned long ul Of,
size t Numdrds, void *Array)
Argunent s: ul cff is the doubl e-word offset into the flash to be programred

Numyér ds hol ds the nunber of doubl e-words in the array.
Array is a pointer to the array to be programed.
Return Value: n success the function returns FLASH SUCCESS (-1).
If WP is invalid then the function returns FLASH VPP | NVALI D (- 13)
Oh failure the function returns FLASH PROGRAM FAI L (-6).
If the address range to be programed exceeds the address range of the Flash

J

20/27

AN1204 - APPLICATION NOTE

Device the function returns FLASH ADDRESS QUT_CF RANCE (-7) and nothing is
pr ogr amred.
If the wong type of flash is detected then FLASH WRONG TYPE (-8) is
returned and not hing i s programred.

Description: This function is used to programan array into the flash. It does
not erase the flash first and will fail if the block(s) are not erased first.

Pseudo Code:
Sep 1. Check for correct flash type
Sep 2: Check the offset range is valid
Sep 3: Enable the overlay bl ock
Sep 4. Wiile there is nore to be programed
Step 5: Check for changes from ‘0" to ‘1’
Step 6: Program the next double-word
Step 7: Wait until the ProgranvErase Controller is ready
Step 8: Check for any emors
Step 9: Verify program operation
Step 10:Update pointers
Step 11:Disable the overlay block
Step 12:.Clear status register and return to read array mode
Step 13:Retun the error condition

1
int FlashOverlayBlockProgram(unsigned long ulOff, size_t NumWords,
void *Array)

unsigned long *ulArrayPointer; /* Use an unsigned int to access the array */
unsigned long ulLastOff, / Holds the last offset to be programmed */
unsigned long ulStatus; / Holds the Status Register reads */

intiRetVal = FLASH_SUCCESS; /* Retumn Value: Initially optimistic */

F* Step 1. Check that the flash is of the correct type */

if(!(FHashAutoSelect{ FLASH_READ MANUFACTURER) = MANUFACTURER_ST)

| {(FlashAutoSelect{ FLASH_READ_DEVICE_CODE) ==EXPECTED_DEVICE))
retun FLASH_WRONG_TYPE;

F Step 2: Check the offset range is valid */
ulLastOff = ulOff + NumWords - 1;
if(ulLastOff >= OVERLAY_SIZE)

return FLASH_OFFSET_OUT_OF_RANGE;

F* Step 3: Enable the Overlay Block */
if ((FashOverlayBlockEnable()) = FLASH_OVERLAY_FAIL)
return FLASH_OVERLAY_FAIL;

F* Step 4: While there is more to be programmed */
ulArayPainter = (unsigned long ¥)Array;
while(ulOff <= ulLastOff && iRetVal == FLASH_SUCCESS)

{
F* Step 5: Check for changes from ‘0’ to ‘1" */
if ~HashRead(ulOff) & *ulArrayPointer)
{

FlashOverayBlockDisable();
return FLASH_PROGRAM_FAIL;

}

* Step 6: Program the next double-word */

HashWrite(CMD_ADDR, 0x00000050L); /* Clear Status Register */
HashWrite(CMD_ADDR, 0x00000004L); / Program Set-up*/
HashWrite(ulOff, *ulArrayPointer); /* Program value */

ﬁ 21/27

AN1204 - APPLICATION NOTE

/* Step 7: Vit until PrograniErase Controller is ready */
/* TinmeQut! */
do
ul Satus = H ashRead(OVD ALDR) ;
vhi [e((ul Stat us&x00000080L) == 0x00000000L);

/* Sep 8 Check for any errors */
i f(ul Stat us&0x00000008L)

i Ret Val = FLASH VPP_| N\VALI D
el se if(ul & atus&x00000010L)

i Ret Val = FLASH PROGRAM FAI L;

H ashwite(OVD ADDR OxO00000FFL); /* Read Array Command */

/* Step 9: Verify programoperation */
if (HashRead(ul Cf) !'=*ul ArrayPointer)
{

i Ret Val =FLASH PROGRAM FAI L;

br eak;
}
/* Sep 10: Update pointers */
ul O f ++; /* next doubl e-word of fset */

ul ArrayPoi nter++, /* next double-word in array */

}

/* Sep 11: D sable the Overlay B ock */
if ((HashQverl ayB ockDi sabl e()) == FLASH OVERLAY FAI L)
i RetVal = FLASH O/ERLAY FAIL;

/* Step 12: Qear status register and return to read array node */
Fl ashwite(CMD ADDR 0x00000050L); /* Qear Satus Register */
H ashwite(OVMD ADDR O0xO000000FFL); /* Read Array Command */

/* Step 13: return the error condition */
return i Ret Val ;

}
/***
Functi on: char *HashErrorStr(int iBErNum);

Argunent s: i ErrNumis the error nunber returned fromanother H ash Routine

Return Value: A pointer to a string with the error nessage
Description: This function is used to generate a text string describing the
error fromthe flash. Call with the return value fromanother flash routine.

Pseudo Code:
Sep 1. Check the error nessage range.
Sep 2. Return the correct string.

***/

char *HashErorStr(int i BErNum)

static char *str]] ={ “Flash Success”,
“Hash Poll Failure”,
“FHash Too Many Blocks”,
“MPU is too slow to erase all the blocks”,
“Hash Block selected is invalid”,
“FHlash Program Failure”,
“FHlash Address Offset Out Of Range”,

J

22/27

AN1204 - APPLICATION NOTE

“Hash is Wrong Type”,

“Hash Block Failed Erase”,

“Hash is Unprotected”,

“Flash is Protected”,

“Flash function not supported”,
“Hash Vpp Invalid”,

“Hash Erase Fail",

“Hash Toggle How Chart Failure”,
“FHash Unprotect failed”,

“Hash Bank Invalid”,

“Hash Protect Failed”,

“FHash Overlay Command Failed”,
“FHash Overlay Disabled already”,
“FHash Overlay Enabled already”

3

F* Step 1: Check the error message range */
iIEmNum=-ErNum-1; / All errors are negative: make +ve & adjust */

if(iIEMNum < 0 || iErrfNum >= sizeof(str)/sizeof(str[0])) /* Check range */
return “Unknown Erronin™;

P Step 2: Return the correct string */
else
retun strfiErNum];
}

1/
List of Errors and Retum values, Explanations and Help.

Retum Name: FLASH_SUCCESS

Return Value: -1

Description: This value indicates that the flash command has executed
correctly.

Ermror Name: FLASH_POLL_FAIL
Notes: Applies to M29 series FLASH only. This error condition should not
occur when using this library.
Return Value: -2
Description: The Program/Erase Controller algorithm has not managed to complete
the command operation successfully. This may be because the device is damaged
Solution: Try the command again. If it fails a second time then it is
likely that the device will need to be replaced.

Error Name: FLASH_TOO_MANY_BLOCKS

Notes: Applies to M29 series FLASH only. This error condition should not
occur when using this library.

Return Value: -3

Description: The user has chosen to erase more blocks than the device has.
This may be because the array of blocks to erase contains the same block
more than once.

Solutions: Check that the program is trying to erase valid blocks. The device
will only have NUM_BLOCKS blocks (defined at the top of the file). Also check
that the same block has not been added twice or more to the array.

573

23/27

AN1204 - APPLICATION NOTE

Eror Nane: FLASH MPU TOO SLOWV
Nbt es: Applies to M9 series FLASH only. This error condition shoul d not
occur when using this library.
Return Value: -4
Description: The MPU has not managed to wite all of the selected bl ocks to the
device before the tineout period expired. See BLOXK ERASE COMVAND
section of the Data Sheet for details.
Sol uti ons: If this occurs occasionally then it may be because an interrupt is
occuring between writing the blocks to be erased. Search for “DSI! in
the code and disable interrupts during the time critical sections.
If this error condition always occurs then it may be time for a faster
microprocessor, a better optimising C compiler or, worse still, learn
assembly. The immediate solution is to only erase one block at a time.
Disable the test (by #define'ing out the code) and always call the function
with one block at a time.

Error Name: FLASH_BLOCK_INVALID

Return Value: -5

Description: A request for an invalid block has been made. Valid blocks number
from 0to NUM_BLOCKS-1.

Solution: Check that the block is in the valid range.

Error Name: FLASH_PROGRAM_FAIL

Return Value: -6

Description: The programmed value has not been programmed correctly.

Solutions: Make sure that the block containing the value was erased before
programming. Try erasing the block and re-programming the value. If it fails
again then the device may have blocks protected. It is also possible for the
block to be locked but is unlikely if WP pin is kept high.
If the program fail still results it is likely that the flash is suspect.

Error Name: FLASH_OFFSET_OUT_OF RANGE

Return Value: -7

Description: The address offset given is out of the range of the device.
Solution: Check the address offset is in the valid range.

Error Name: FLASH_WRONG_TYPE

Return Value: -8

Description: The source code has been used to access the wrong type of flash.

Solutions: Use a different flash chip with the target hardware or contact
STMicroelectronics for a different source code library.

Error Name: FLASH_BLOCK_FAILED_ERASE

Return Value: -9

Description: The previous erase to this block has not managed to successfully
erase the block.

Solution: The block may be protectediocked or the flash is suspect.

Retumn Name: FLASH_UNPROTECTED

Return Value: -10

Description: The user has requested to unprotect a block that is already
unprotected. This is just a warning to the user that their operation
did not make any changes and was not necessary.

J

24/27

AN1204 - APPLICATION NOTE

khkkhkhhkhkhhkhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhdhdhddhhdhdhhdhdhhdhhhdhhdhdhrrdhdddhrdrrddrs

Eror Nanme: FLASH PROTECTED

Return Val ue: -11

Description: The user has attenpted to erase, programor protect a bl ock of
the flash that is protected. The operation failed because the bl ock was
pr ot ect ed.

Sol uti ons: Choose anot her (unprotected) bl ock for erasing or progranmm ng.
Aternatively change the bl ock protection status of the current bl ock.
(see Datasheet for nore details). In the case of the user protecting a bl ock
that is already protected, this warning notifies the user that the command
had no effect.

khkkkhhkhhhkhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhdhdhddhhdhdhhdhdhhdhhdhdhdhrhdhdddhdddrddirs

Return Nanme: FLASH FUNCTI ON_NOT_SUPPCRTED

Return Val ue: -12

Description: The user has attenpted to nake use of functionality not
avail abl e on this flash device (and thus not provided by the software
drivers). This is sinply a warning to the user.

khkkhkkhhkhkhhkhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhdhddhhdhdhhdhdhhdhhdhhdhdhrhhdhdddhrdrrddrsk

Eror Nane: FLASH VPP_| NVALI D

Nbt es: Applies to M8 series Flash only.

Return Val ue: -13

Description: A Programor a B ock B ase has been attenpted with the Vpp supply
vol tage outside the all oned ranges. This comrand had no effect since an
invalid Vop has the effect of protecting the whole of the flash devi ce.

Sol uti on: The (hardware) configuration of Vpp will need to be nodified to
nmake programming or erasi ng the device possi bl e.

khkkhkkhhkhkhhkhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhdhdhddhhhdhhdhdhhdhhdhhdhrhdhdrdhrdrrddirs

Eror Nane: FLASH ERASE FAl L

Return Val ue: -14

Description: This indicates that the previous erasure of the whol e devi ce has
failed.

Sol uti on: Investigate this failure further by attenpting to erase each bl ock
individual ly. If erasing a single block still causes failure, then the H ash
sadly needs repl aci ng.

LR R Rk R R o R R R R R R

Error Nane: Fl ash_TO3A.E FAI L

Return Val ue: -15

Nbt es: Applies to M9 series Flash only. This error condition shoul d not
occur when using this library.

Description: The Program BErase Gontroller al gorithmhas not nanaged to conpl ete
the comrand operation successfully. This nmay be because the device is
darmaged.

Sol uti on: Try the coomand again. If it fails a second time thenit is
likely that the device will need to be repl aced.

EE R R R kR R R R R R R R R R R

Error Nane: Fl ash_UNPROTECT_FAI L

Return Val ue: -16

Description: This error return value indicates that a bl ock unprotect command
was unsuccessful .

Sol uti on: Try the coomand again. If it fails a second time thenit is
likely that the device is either locked or will need to be repl aced.
(Part is unlocked but protected on power-up with /WP pin at V_high).

khkkhkkhhkhhhkhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhdhdhddhhdhdhhdhdhhdhhdhhdhdhrhdhdddhrddrddirsk

ﬁ 25/27

AN1204 - APPLICATION NOTE

Error Nane: Fl ash_BANK | NVALI D

Return Val ue: -17

Nbt es: This applies to MODRxxx series Hash only.

Description: This error return value indicates that a bank does not exist.

khkkkhhkhhhkhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhdhdhddhhdhdhhdhdhhdhhdhhdhdhrrdhdddhrdrrddirsd

Error Nane: F ash_PROTECT _FAl L

Return Val ue: -18

Description: This error return value indicates that a bl ock protect command
was unsuccessf ul .

Sol uti on: Try the coomand again. If it fails a second time thenit is
likely that the device is either locked or will need to be repl aced.
(Part is unlocked but protected on power-up with /WP pin at V_high).

khkkkhhkhhhkhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhdhdhddhhdhdhhdhdhhdhhdhrdhdhrhdhdrdrrddrddirs

Error Nane: F ash_OVERLAY FAl L

Return Val ue: -19

Description: This error indicates that any Overlay B ock associated function
has fail ed.

EE R R Rk R R o R R R R R R

Error Nane: F ash_OvERLAY_ D SABLED

Return Val ue: -20

Description: This error inforns the user that a Overl ayBl ockD sabl e cormand
was not neccesary because the Overlay Bl ock was al ready di sabl ed.

EE R R R kR R R R R R R R

Error Nane: F ash_OVERLAY_ENABLED

Return Val ue: -21

Description: This error inforns the user that a Overl ayBl ockEnabl e command
was not neccesary because the Overlay Bl ock was al ready enabl ed.

***/

26/27

J

AN1204 - APPLICATION NOTE

If you have any questions or suggestion concerning the matters raised in this document please send them
to the following electronic mail address:

ask.memory@st.com (for general enquiries)

Please remember to include your name, company, location, telephone number and fax number.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is registered trademark of STMicroelectronics
All other names are the property of their respective owners

© 2000 STMicroelectronics - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco -
Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

www.st.com

ﬁ 27127

