

74ACT16374

16-BIT D-TYPE FLIP-FLOP WITH 3-STATE OUTPUTS (NON INVERTED)

- HIGH SPEED:
- $f_{MAX} = 270 MHz$ (TYP.) at $V_{CC} = 5V$
- LOW POWER DISSIPATION: $I_{CC} = 8\mu A(MAX.)$ at $T_A = 25^{\circ}C$
- COMPATIBLE WITH TTL OUTPUTS
 V_{IH} = 2V (MIN.), V_{IL} = 0.8V (MAX.)
- 50Ω TRANSMISSION LINE DRIVING CAPABILITY
- SYMMETRICAL OUTPUT IMPEDANCE:
 |I_{OH}| = I_{OL} = 24mA (MIN)
- OPERATING VOLTAGE RANGE: V_{CC} (OPR) = 4.5V to 5.5V
- IMPROVED LATCH-UP IMMUNITY

DESCRIPTION

The ACT16374 is an advanced high-speed CMOS 16-BIT D-TYPE FLIP-FLOP (3-STATE) fabricated with sub-micron silicon gate and double-layer metal wiring C²MOS tecnology.


This 16 bit D-Type Flip-Flop is controlled by two clock inputs (CK) and two output enable inputs (\overline{OE}) . The device can be used as two 8-bit flip-flops or one 16-bit flip-flop.

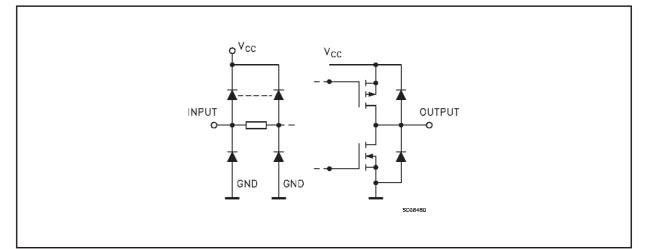
On the positive transition of the clock, the Q outputs will be set to the logic state that were setup at the <u>D</u> inputs.

While the (\overline{OE}) input is low, the outputs will be in a normal logic state (high or low logic level) and while high level the outputs will be in a high impedance state.

The output control does not affect the internal operation of flip-flops; that is, the old data can be retained or the new data can be entered even while the outputs are off.

All inputs and outputs are equipped with protection circuits against static discharge, giving them 2KV ESD immunity and transient excess voltage.

ORDER CODES


PACKAGE	TUBE	T & R
TSSOP		74ACT16374TTR

PIN CONNECTION

10E 1 [1CK
1 Q ₀ 2 [1 D ₀
1 Q ₁ 3 [45	1 D ₁
GND 4 [GND
1 Q ₂ 5 [] 44	1 D ₂
1 Q ₃ б[43	1 D ₃
V _{CC} 7[42	V _{cc}
1 Q ₄ в[41	
1 Q ₅ 9 [40	1 D ₅
GND 10	39	GND
1 Q ₆ 11 [38	1 D ₆
1 Q7 12 [37	1 D ₇
2Q ₀ 13 [36	2 D ₀
2 Q ₁ 14 [] 35	2 D 1
GND 15 [] 34	GND
2.Q ₂ 16 [33	2 D ₂
2Q ₃ 17	32	2 D 3
V _{CC} 18 [31	V _{cc}
2Q4 19	30	2 D ₄
2Q ₅ 20	29	2D ₅
GND 21 [28	GND
2 Q ₅ 22 [27	2 D ₆
2Q7 23 [26	2 D ₇
20E 24 [] 25	2CK
	PC12010	

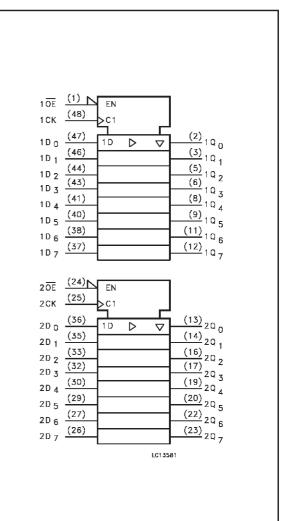
November 2000

INPUT AND OUTPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

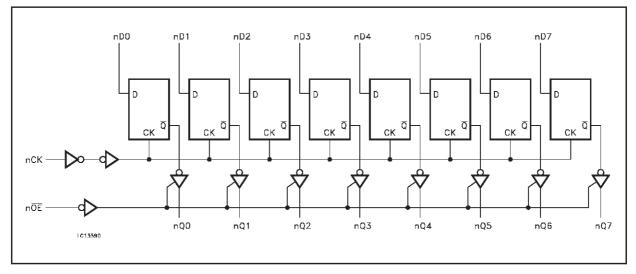
PIN No	SYMBOL	NAME AND FUNCTION
1	1 <mark>0</mark> E	3 State Output Enable Input (Active LOW)
2, 3, 5, 6, 8, 9, 11, 12	1Q0 to 1Q7	3-State Outputs
13, 14, 16, 17, 19, 20, 22, 23	2Q0 to 2Q7	3-State Outputs
24	2 <mark>0E</mark>	3 State Output Enable Input (Active LOW)
25	2CK	Clock Input (LOW-to-HIGH Edge Trigger)
36, 35, 33, 32, 30, 29, 27, 26	2D0 to 2D7	Data Inputs
47, 46, 44, 43, 41, 40, 38, 37	1D0 to 1D7	Data Inputs
48	1CK	Clock Input (LOW-to-HIGH Edge Trigger)
4, 10, 15, 21, 28, 34, 39, 45	GND	Ground (0V)
7, 18, 31, 42	V _{CC}	Positive Supply Voltage

TRUTH TABLE


	INPUTS		OUTPUTS
OE	СК	D	Q
Н	Х	Х	Z
L	1	Х	NO CHANGE*
L		L	L
L		Н	Н

X: "H" or "L"

Z: High Impedance


* Q outputs are latched at the time when the LE input is taken low logic level.

IEC LOGIC SYMBOLS

57

LOGIC DIAGRAM

This logic diagram has not to be used to estimate propagation delays

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.5 to +7	V
VI	DC Input Voltage	-0.5 to V _{CC} + 0.5	V
Vo	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current	± 20	mA
I _{ОК}	DC Output Diode Current	± 20	mA
Ι _Ο	DC Output Current	± 50	mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current	± 400	mA
T _{stg}	Storage Temperature	-65 to +150	°C
ΤL	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

57

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	4.5 to 5.5	V
VI	Input Voltage	0 to V _{CC}	V
Vo	Output Voltage	0 to V _{CC}	V
T _{op}	Operating Temperature	-40 to 85	°C
dt/dv	Input Rise and Fall Time V_{CC} = 4.5 to 5.5V (note 1)	8	ns/V
1) V _{IN} from 0.8	3V to 2.0V	•	

DC SPECIFICATION

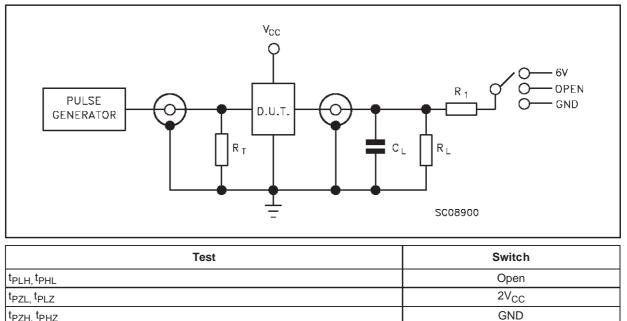
		7	Test Condition			Value			Unit
Symbol	Parameter	V _{cc}		T _A = 25 °C		°C	-40 to	85 °C	
		(V)		Min.	Тур.	Max.	Min.	Max.	
VIH	High Level Input Voltage	4.5	V _O = 0.1 V or	2.0			2.0		V
		5.5	V _{CC} -0.1V	2.0			2.0		v
V _{IL}	Low Level Input Voltage	4.5	$V_{O} = 0.1 \text{ V or}$			0.8		0.8	V
		5.5	V _{CC} -0.1V			0.8		0.8	v
V _{OH}	High Level Ouput Voltage	4.5	I _O =-50 μA	4.4	4.49		4.4		
		5.5	I _O =-50 μA	5.4	5.49		5.4		N
		4.5	I _O =-24 mA	3.94			3.8		V
		5.5	I _O =-24 mA	4.94			4.8		1
V _{OL}	Low Level Output Voltage	4.5	I _O =50 μA		0.001	0.1		0.1	
		5.5	I _O =50 μA		0.001	0.1		0.1	V
		4.5	I _O =24 mA			0.36		0.44	V
		5.5	I _O =24 mA			0.36		0.44	
l _l	Input Leakage Current	5.5	V _I = V _{CC} or GND			± 0.1		± 1	μA
I _{OZ}	High Impedance Output Leakage Current	5.5	$V_{I} = V_{IH} \text{ or } V_{IL}$ $V_{O} = V_{CC} \text{ or } GND$			± 0.5		± 5	μΑ
I _{CCT}	Max I _{CC} /Input	5.5	V _I = V _{CC} - 2.1V			0.5		1	mA
I _{CC}	Quiescent Supply Current	5.5	$V_{I} = V_{CC} \text{ or } GND$			8		80	μA
I _{OLD}	Dynamic Output Current	E E	V _{OLD} = 1.65 V max					75	mA
I _{OHD}	(note 1, 2)	5.5	V _{OHD} = 3.85 V min					-75	mA

1) Maximum test duration 2ms, one output loaded at time 2) Incident wave switching is guaranteed on transmission lines with impedances as low as 50Ω

		Test Condition							
Symbol	Parameter	v _{cc}		T _A = 25 °C			-40 to	85 °C	Unit
		(V)		Min.	Тур.	Max.	Min.	Max.	
t _{PLH}	Propagation Delay Time	5.0 ^(*)			4.3	6.3		7.6	2
t _{PHL}	CK to Q	5.0()			4.5	6.7		8.1	ns
t _{PZL}	Output Enable Time	5.0 ^(*)			5.7	8.5		10.3	ns
t _{PZH}		5.007		4.8	7.2		9.0	115	
t _{PLZ}	Output Disable Time	5.0 ^(*)			5.5	8.0		9.1	20
t _{PHZ}					4.7	6.7		8.1	ns
t _W	CLOCK Pulse Width HIGH or LOW	5.0 ^(*)		2.5	1.9		2.9		ns
t _s	Setup Time D to CK, HIGH or LOW	5.0 ^(*)		1.6	<1.0		1.8		ns
t _h	Hold Time D to CK, HIGH or LOW	5.0 ^(*)		0.3	-0.8		1.0		ns
f _{MAX}	Maximum Clock Frequency	5.0 ^(*)		100	120		60		MHz

AC ELECTRICAL CHARACTERISTICS (C_L = 50 pF, R_L = 500 Ω , Input t_r = t_f = 3ns)

(*) Voltage range is $5.0V\pm0.5V$

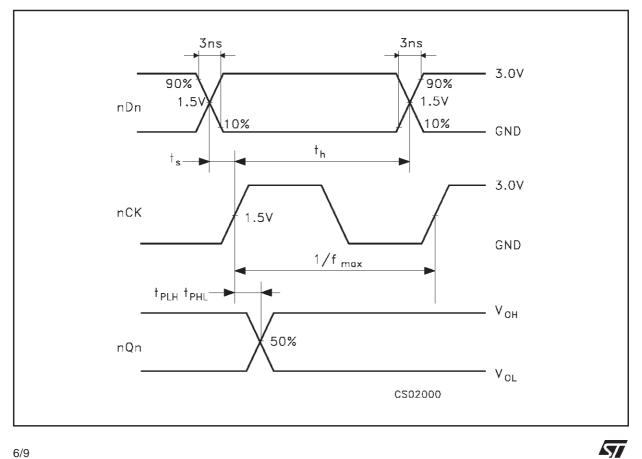

CAPACITANCE CHARACTERISTICS

		1	Test Condition			Value			
Symbol	Parameter	v _{cc}		Т	<mark>₄ = 25</mark> °	°C	-40 to	85 °C	Unit
		(V)		Min.	Тур.	Max.	Min.	Max.	
C _{IN}	Input Capacitance	5.0			3.6				pF
C _{OUT}	Output Capacitance	5.0			11				pF
C _{PD}	Power Dissipation Capaci- tance (note 1)	5.0			25				pF

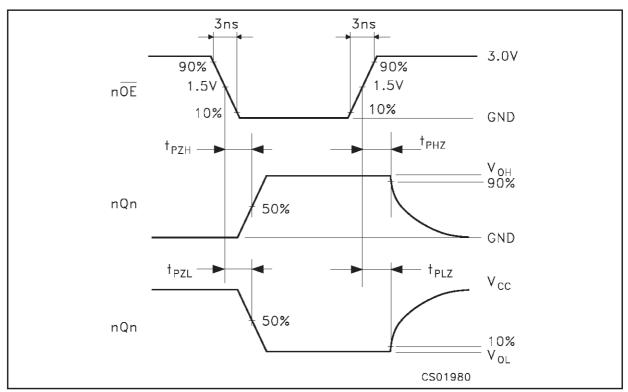
1) C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average current can be obtained by the following equation. $I_{CC(opr)} = C_{PD} \times V_{CC} \times f_{IN} + I_{CC}/16$ (per circuit)

74ACT16374

TEST CIRCUIT

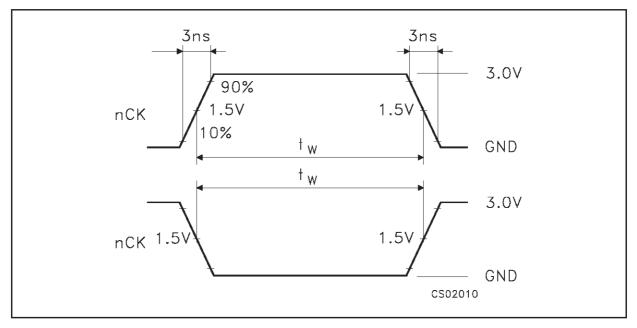


t_{PZH}, t_{PHZ}

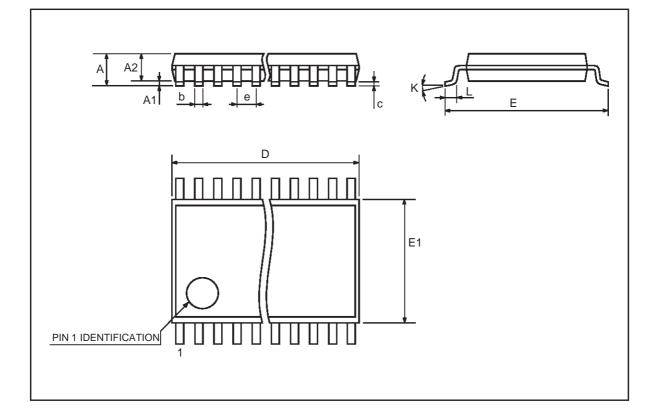

 C_L = 50pF or equivalent (includes jig and probe capacitance) R_L = R_1 = 500 Ω or equivalent

 $R_T = Z_{OUT}$ of pulse generator (typically 50 Ω)

WAVEFORM 1: PROPAGATION DELAYS, SETUP AND HOLD TIMES (f=1MHz; 50% duty cycle)



6/9


WAVEFORM 2: OUTPUT ENABLE AND DISABLE TIMES (f=1MHz; 50% duty cycle)

WAVEFORM 3: CLOCK PULSE WIDTHS (f=1MHz; 50% duty cycle)

DIM.		mm			inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
А			1.1			0.433		
A1	0.05	0.10	0.15	0.002	0.004	0.006		
A2	0.85	0.9	0.95	0.335	0.354	0.374		
b	0.17		0.27	0.0067		0.011		
С	0.09		0.20	0.0035		0.0079		
D	12.4	12.5	12.6	0.408	0.492	0.496		
E	7.95	8.1	8.25	0.313	0.319	0.325		
E1	6.0	6.1	6.2	0.236	0.240	0.244		
е		0.5 BSC			0.0197 BSC			
K	0°	4°	8°	0°	4°	8°		

57

8/9

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. © The ST logo is a registered trademark of STMicroelectronics

© 2000 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom © http://w ww.st.com

