
AN1084/1100 1/93

AN1084
APPLICATION NOTE

GETTING STARTED WITH THE ST92141 SOFTWARE
LIBRARY VERSION 1.0

by V. Onde/Microcontroller Division Applications

INTRODUCTION

This Application Note describes the software library developed for the ST92141 MCU. This 8/
16-bit microcontroller contains a cell dedicated to 3-phase sine wave generation, making it
suitable for standard single- and three-phase AC motor drives and uninterruptible power sup-
plies (UPS).

The current library consists of several C modules that contain a set of convenient functions for
the scalar control of AC motors.

It will allow users to quickly evaluate both MCUs and available tools, and to have a motor run-
ning in less than a week using a standard 3-phase power inverter. It also eliminates the need
for developing time consuming sine wave generation software by providing ready-to-use func-
tions that let the user concentrate on his application layer.

A basic knowledge of C programming, AC motor drives and power inverter hardware is re-
quired. In-depth know-how of ST92141 functions is only required for customizing delivered
modules and when adding new ones (grey modules in Figure 1.) for a complete application
platform.

The Version 1.0 Software Package can be obtained from an ST Sales Office. In regards to
Version 2.0, most of modules, tools and MCU issues described below remain valid. Enhance-
ment and upgrade issues related to Version 2.0 are described in application note AN1277.

1

2/93

Table of Contents

93

1

INTRODUCTION . 1

1 GETTING STARTED WITH TOOLS . 7

1.1 INSTALLATION . 7

1.1.1 Toolchain . 7

1.1.2 EPROMer . 7

1.1.3 Technical Literature . 8

1.2 COMPILING THE LIBRARY . 9

1.3 CUSTOMIZING THE MAKEFILE . 11

1.3.1 Important Information . 11

1.3.2 Adding Source Files to your Project . 11

1.3.3 Modifying Compile Options . 11

1.3.4 Dependencies . 11

2 ST9+ CORE SPECIFICS . 12

2.1 MEMORY AND REGISTER FILE MAPPING . 12

2.1.1 ACMOTOR.SCR . 12

2.1.2 RAM: Variables & User Stack . 12

2.1.3 REGISTER FILE . 13

2.1.3.1 Mapping . 13
2.1.3.2 Customization . 13

2.2 DEFINE.H . 14

2.3 CRT9.ASM FILE . 14

3 PRESENTATION OF MODULES AND LIBRARY FUNCTIONS 15

3.1 LIBRARY REFERENCES . 15

3.2 IMC MODULE . 16

3.2.1 Description . 16

3.2.2 Interrupts . 16

3.2.2.1 ADT_IT . 16
3.2.2.2 ZPC_IT . 17
3.2.2.3 CPT_IT . 17
3.2.2.4 OTC_IT . 18

3.2.3 List of Available Functions . 18

3.2.4 Detailed Explanations and Customization . 33

3/93

Table of Contents

3.2.4.1 ST92141 Library Main Timebase . 33
3.2.4.2 Software Timebase . 34
3.2.4.3 IMC Software Watchdog . 35
3.2.4.4 IMC_GetRotorFreq . 35
3.2.4.5 Customizing Rotor Frequency Acquisition 37
3.2.4.6 Tacho Compare Event Issues . 38

3.3 ACMOTOR MODULE . 38

3.3.1 Description . 38

3.3.2 List of Available Functions . 39

3.3.3 Detailed Explanations and Customization . 56

3.3.3.1 ACM_VoltageMaxAllowed . 56
3.3.3.2 ACM_GetOptimumSlip . 57
3.3.3.3 ACM_SlipRegulation . 58
3.3.3.4 ACM_SoftStart . 59
3.3.3.5 Using P Pole Motors . 60
3.3.3.6 Stator Frequencies above 340 Hz . 61

3.4 ADC MODULE . 62

3.4.1 Purpose . 62

3.4.2 Description . 62

3.4.3 Synopsis . 62

3.4.4 Memory Use . 63
3.4.5 Timings . 63

3.4.6 Software Watchdog . 63

3.4.7 Caution . 64

3.4.7.1 ADC Register Declaration File Version . 64
3.4.7.2 Sampling Issues . 64
3.4.7.3 Value Availability Time . 64
3.4.7.4 Interrupts . 64
3.4.7.5 Port Initialization . 64

3.4.8 Customizing the ADC Module . 64

3.5 FUZZY LOGIC REGULATION . 66

3.5.1 Description . 66

3.5.2 Fuzzy Engine Technical Characteristics . 67

3.5.3 Customization . 67

3.5.3.1 Updating the ftc8.l Fuzzy Kernel Library 67
3.5.3.2 Modifying the Fuzzy Engine . 68

4/93

Table of Contents

93

3.6 I/O MODULE . 69

3.6.1 Description . 69

3.6.2 I/O Access . 69

3.7 RCCU MODULE . 69

3.7.1 Description . 69

3.7.2 Customization . 69

3.8 CORE MODULE . 70

3.8.1 Description . 70

3.8.2 Available Functions . 70

3.8.3 Customization . 70

3.8.3.1 DIV_Zero_Trap . 70
3.8.3.2 External Interrupts . 70
3.8.3.3 NMI Interrupt . 70

3.8.4 UART Module . 71

3.8.5 Description . 71

3.8.6 ST92141 Characteristics . 71

3.8.7 PC Characteristics . 72

3.8.8 Customization . 72

3.8.9 Important Notice for Hardware Implementation . 72

3.9 CODE EXAMPLE . 73

3.9.1 Open Loop: Voltage and Frequency are individually adjustable 73
3.9.2 Closed Loop . 73

3.10DESIGNING WITH 92141LIB: LIBRARY INTEGRATION 75

4 APPENDIX . 77

4.1 IMC MODULE FLOWCHARTS . 77

4.1.1 Automatic Data Transfer Interrupt (ADT) . 77

4.1.2 Zero of PWM Counter Interrupt (ZPC) . 79

4.1.3 Tacho Capture Interrupt (CPT) . 80

4.1.4 IMC_GetRotorFreq . 81

4.2 ACMOTOR MODULE FLOWCHARTS . 82

4.2.1 ACM_SoftStart . 82

4.2.2 ACM_RampUp . 83

4.2.3 ACM_Update_Sine_Tables . 84
4.2.4 ACM_SlipRegulation . 85

5/93

Table of Contents

4.3 TOOL OPTION SUMMARY . 86

4.3.1 Linker . 86

4.3.2 Assembler . 87
4.3.3 C Compiler (GCC9) . 88

4.4 CREATE YOUR OWN FTC8.L FILE . 91

6/93

Getting Started with the ST92141 Software Library Version 1.0

Figure 1. Overall Software Architecture

ST92141 Library Version 1.0 Characteristics (CPU running at 25 MHz):

– Stator Frequency Range: From 1.0 Hz up to 680.0 Hz with resolution greater than 0.5 Hz,

– Voltage Resolution: 8-bit modulation index,

– 10-bit PWM Generation

– PWM Frequency: Greater than or equal to 12.2 kHz, variable above 27.5 Hz, centred mode,

– CPU Load (sine wave generation only) less than 15%, depending on the output frequency.
(Due to IMC’s ADT interrupt, the CPU load will be proportional to the output frequency. For
information, it will only be 3% @ 60 Hz, 6% @127 Hz, 13% @254 Hz and < 15% above 254
Hz.)

– Required ROM: < 5.5 Ko including fuzzy regulation code,

– Required RAM: 370 octets.

Note : These figures are for information only; this software library may be subject to changes to improve
performances depending on the use of the final application and peripheral resources. It was build
using robustness-oriented structures as much as possible, therefore preventing the speed or density
from being optimized.

The 12.2 kHz switching frequency is used to take advantage of all IMC compare register ca-
pabilities, thus providing a real 10-bit PWM with a 25-MHz CPU clock. In addition, this fre-
quency is a good compromise between the reduction of switching losses and acoustic noise
(rejected in the inaudible range due to centred mode PWM patterns).

RCCU I/OsCORE ADCWDG
SW

UART
EFTIMC

SPI
I C

6 PWM outputs NMI

SPEED SENSOR

AC MOTOR DRIVE
3-PHASE SINE WAVE GENERATION

SLIP COMMUNICATION

PROTOCOLREGULATION

APPLICATION LAYER

2

7/93

Getting Started with the ST92141 Software Library Version 1.0

1 GETTING STARTED WITH TOOLS

1.1 INSTALLATION

1.1.1 Toolchain

This library has been compiled using the January 2000, 4.3.3 release of the ST9+ Software
Toolchain, which can be found on the MCU CD-ROM or downloaded from the ST website
(http://www.st.com, in the Microcontroller section, then in ST9/Development Tools/Free Soft-
ware).

It consists of the GNU C Compiler (GCC9) interfaced with the TR9 Macro-expander, the GAS9
Assembler and the LD9 Linker, plus other tools and utilities. A valid license is required to use
the GNU C Compiler. A GDB9 Debugger, coupled with a Windows graphical interface
(WGDB9) is also provided for working with the ST92141 hardware emulator.

All components must be installed, with the exception of ST Visual Make.

When installed, the ST92141 Library can be copied locally (i.e. in c:\code\st92141). To com-
plete the set-up routine, the user must then change the properties of the “Toolchain DOS Ses-
sion” short-cut found in the “ST9+ Toolchain-Jan. 2000” folder of the start menu. The working
directory name must be changed from \toolst9p\Examples\st92r195\ to the path name of the li-
brary (i.e. \code\st92141\ using the previous example). Before starting, make sure that:

– a c:\temp directory exists on the hard disk, otherwise it must be created (required for the C
compiler),

– the \toolst9p\include.st9\ file contains release 3.0 of the imc.h file (IMC peripheral register
declaration), or else the version included in the library (in the “include” directory).

1.1.2 EPROMer

In order to burn an EPROM with the generated hexadecimal file (Intel .hex format), the user
should also install the STVP (ST Visual Programmer).

The ST Visual Programmer is the common standard EPROMer interface used for ST Micro-
controller Programming Systems (EPROM Programming Boards - EPBs). This tool is used to
read, program, verify and check ST92E141(EPROM) or ST92T141(OTP) MCUs.

8/93

Getting Started with the ST92141 Software Library Version 1.0

Figure 2. ST Visual EPROMer

1.1.3 Technical Literature

Technical literature is also available on the ST website in the Microcontroller section. These
documents are useful for better understanding ST9+ MCUs.

ST9+ Software Library/User Guide Companion Software is also available on the ST website
under ST9 / Development Tools / Free Software.

The ST9+ User Guide is located under ST9 / Technical Documents / User Guide.

9/93

Getting Started with the ST92141 Software Library Version 1.0

1.2 COMPILING THE LIBRARY

Compiling is achieved using the GMAKE utility tool. This tool is executed in the Toolchain
DOS session window. All options and file declarations are defined inside a makefile file in-
cluded in the library.

The first step is to regenerate dependencies which are listed in a makedep file. This is done by
typing the following instruction at the DOS prompt (following the previous example):

c:\code\st92141> gmake -k dep

Note that the original makedep file is delivered empty (required for the GMAKE utility).

Dependencies will be listed in the makedep file generated in the working directory.

Once this is done, the next step is to re-compile the source files by typing:
c:\code\st92141> gmake

When the compilation flow is achieved successfully, a .u extension file (acmotor.u in the cur-
rent example) is generated. If unsuccessful, an error message will be displayed on the last line
and an .u file will not be present. If this occurs using the delivered source, make sure that a
c:\temp directory exists on the hard disk (required for the C compiler).

This acmotor.u file can be directly used by the debugger (it contains all necessary debugging
information).

The last step is to generate an executable file used for burning an EPROM or OTP, type:
c:\code\st92141> gmake intel

This will produce an executable file (.hex intel format) from the previous .u file.

To clean-up your working directory (i.e. delete all files except source and initialization files),
type:

c:\code\st92141> gmake clean

Some of these command lines are summarized in Figure 3.. Please note that the Verbose op-
tion of the linker was disabled in order to obtain a screen shot that includes three different
commands (gmake -k dep, gmake and gmake intel).

10/93

Getting Started with the ST92141 Software Library Version 1.0

Figure 3. DOS Toolchain Session Interface

11/93

Getting Started with the ST92141 Software Library Version 1.0

1.3 CUSTOMIZING THE MAKEFILE

1.3.1 Important Information

Some code editors may replace tabulations with spaces when editing the makefile. Therefore,
the makefile must be edited within the DOS session using the EDIT utility, or otherwise the
GMAKE utility will fail.

1.3.2 Adding Source Files to your Project

C sources are listed after the Clist_SRC symbol in the makefile and are space-separated. As-
sembly files are listed after ASMlist_SRC, with the exception of the crt9.asm file, which must
be linked at the beginning of the ROM area (contains reset vector, etc.).

1.3.3 Modifying Compile Options

Options are applied to the tools launched during the make process: the GCC9 is used for pre-
processing, compiling and assembling, the LD9 is used for linking.

They are listed in the makefile and defined as CFLAGS, ASMFLAGS and LDFLAGS.

Further details on selected options can be found in the appendix.

1.3.4 Dependencies

The makedep file containing the dependencies must be re-generated each time they are mod-
ified. This is done by typing gmake -k dep in the Toolchain DOS session.

12/93

Getting Started with the ST92141 Software Library Version 1.0

2 ST9+ CORE SPECIFICS

2.1 MEMORY AND REGISTER FILE MAPPING

Since the addressed memory area in the ST92141 MCU is less than 64 Kbytes, the Memory
Management Unit (MMU) registers (initialized in crt9.asm) do not need to be changed during
run-time.

Variables located in RAM are handled by the compiler, but the user must manually manage
the register file to use this useful feature.

2.1.1 ACMOTOR.SCR

The acmotor.scr scriptfile is used to map the memory of the modules. This scriptfile redirects
the sections defined in the object files at link time (see Figure 4.):

– code (.text section), constants and values of initialized variables in ROM,

– variables and user stack (.data and .bss section) in RAM.

Figure 4. ST92141 Memory Mapping

2.1.2 RAM: Variables & User Stack

The user stack is handled by the C compiler in order to pass parameters through functions, to
save context when entering interrupt routines, etc.

The user stack pointer is set to the end of the RAM section in order to obtain the maximum
available memory for the stack (for information, the current library needs 35 bytes when using
the closed loop demo program). The user must be aware that no tests are performed during
compile time at the stack location (i.e. it could overlap the run-time required for areas reserved
for variables).

SEGMENT 0
64 Kbytes

00FFFFh

00C000h
00BFFFh

008000h
007FFFh

004000h

000000h

003FFFh
PAGE 0

PAGE 1

PAGE 2

PAGE 3

SEGMENT 20h
64 Kbytes

200000h

20C000h
20BFFF h

208000h
207FFFh

204000h
203FFFh

PAGE 80

PAGE 81

PAGE 82

PAGE 83

200000h

200200h

RAM
512 bytes

Internal

20FFFFh
210000h

Reserved

Reserved

Reserved

000000h

004000h
ROM/EPROM

16 Kbytes

003FFFh

Reserved

Reserved

Reserved

Reserved

Reserved

User stack pointer
(Reset state)

13/93

Getting Started with the ST92141 Software Library Version 1.0

2.1.3 REGISTER FILE

This concerns the C Reserved Area, System Stack and User Free Registers.

2.1.3.1 Mapping

Other than the system registers (R224 to R239) and paged registers (R240 to R255) reserved
for peripherals, register files are mapped as shown below:

– The lower part of the register file (Group 0), using the shortest addressing mode (working
register mode) is used as the working area for the C-compiler.

– Registers R16 to R99 are reserved for the ST92141 Library.

– The higher part is reserved for the system stack (return addresses, etc.). For reference, 24
bytes are required for library version 1.0 (i.e. from R223 to R199).

Note : This mapping has been modified for Version 2.0. Please refer to application note AN1277 for more
details.

2.1.3.2 Customization

The rest of the register files are user free. Using register file locations as variables provides a
higher execution speed and improves code density. In any case, since available free space is
limited, registers should only be allocated for the most frequently used variables.

Registers must be declared in the reg_file.h header file and obtain a global variable status (i.e.
accessible by any module). Some restrictions exist nevertheless:

– A pointer cannot be used for register file variables.

– At compile time, registers that are declared using the asm statement cannot be checked for
overwriting.

14/93

Getting Started with the ST92141 Software Library Version 1.0

Figure 5. Register File Map

2.2 DEFINE.H

The purpose of this file is to declare objects which will be used throughout the entire library.

– Re-definition of data types using the following convention: a first letter indicating if a variable
is signed (s) or unsigned (u), plus a number indicating the number of available bits (example:
u8, s16, etc.).

– Defines for assembly mnemonics used in C source code.

– Common macros used to set a page pointer (spp[page]) or to obtain the dimension of an
array (DIM[x]).

2.3 CRT9.ASM FILE

The Crt9.asm file is known as the start-up file. It must be linked prior to use to ensure the
proper location of resets, NMIs, divide-by-zero traps and other interrupt vectors (imposed by
hardware).

It is also used for the following:

– initializing certain system registers (stack pointers, etc.),

– clearing RAM and register files,

– copying the initial values of initialized variables from ROM to RAM.

F

E

D

C

B

A

9

8

7

6

5

4

3

PAGED REGISTERS

SYSTEM REGISTERS

2

1

0
15

255
240
239
224
223

UP TO
64 PAGES

GENERAL

REGISTERS
PURPOSE

224

Peripherals (Ex: pages 48 & 51 for IMC)

ST9+ CORE Registers

System Stack

User Free

ST92141 Lib. Reserved

C Compiler Working Area

99

15/93

Getting Started with the ST92141 Software Library Version 1.0

3 PRESENTATION OF MODULES AND LIBRARY FUNCTIONS

3.1 LIBRARY REFERENCES

Functions are described in the format given below:

Synopsis This section lists the referenced include files and prototype declarations.

Description The functions are specifically described with a brief explanation of how
they are executed.

Input In few lines, the format and units are given.

Returns Gives the value returned by the function, including when an input value
is out of range or an error code is returned.

Caution Indicates the limits of the function or specific requirements that must be
taken into account before implementation.

Warning Indicates important points that must be taken into account to prevent
hardware failures.

Functions called Used to prevent conflicts due to the simultaneous use of resources.

Duration The approximate duration of the routine with measurement conditions.
This is usually performed using the maximum CPU clock periods
(25 MHz) without interrupts, unless the duration is a parameter of the
function.

Code example Indicates the proper way to use the function if there are certain prereq-
uisites (interrupt enabled, etc.).

Some of these sections may not be included if not applicable (no parameters, obvious use,
etc.).

16/93

Getting Started with the ST92141 Software Library Version 1.0

3.2 IMC MODULE

3.2.1 Description

The “IMCModul.c” module is the part of the hardware layer that is used as an interface be-
tween the application layer and the physical world (switches, drivers, speed sensor).

It provides:

– basic setup / control functions for the Induction Motor Controller (IMC),

– PWM interrupt processing,

– speed acquisition related interrupts and functions,

– several functions used to periodically execute various tasks (4 in the current library version)
that may need to be asynchronous, in a way that is user-friendly,

The prototype functions are located in the “IMCModul.h” header file.

3.2.2 Interrupts

All available interrupts are declared in this file. Four of the eight interrupts are enabled and de-
scribed below. The other interrupts must be simply entered.

The ADT_IT and ZPC_IT interrupts are related to the PWM, and the CPT_IT and OTC_IT in-
terrupts are used to handle speed feedback related events. The IMC interrupt priority has
been set to 0 (highest priority), if several interrupts occur at the same time, the conflict will be
resolved by an internal hardware daisy chain.

3.2.2.1 ADT_IT

An Automatic Data Transfer (ADT) occurs when the values stored in the preload registers are
loaded into the active registers.

Note : ADT_IT routines are processed differently in Version 2.0. Please refer to application note AN1277
for more details.

Several tasks are also performed by the software. During this routine, the PWM values that
describe the sine wave are loaded from the RAM tables into the IMC peripheral registers.
Pointers to the RAM tables are usually increased, unless one of the following events occurs:

– the end of the tables is reached,

– the direction is changed,

– the brake function is enabled,

– one of the active RAM tables is changed (i.e. either the voltage or stator frequency values
are changed).

This interrupt occurs at the end of a “step” (several PWM periods having the same duty cycle)
when the repetition counter is at zero (a complete sine being described in 48 or 12 steps de-
pending on output frequency). Using preload registers (automatic hardware loading), there

17/93

Getting Started with the ST92141 Software Library Version 1.0

are no real time constraints, but the values loaded will be used for the next step while the cur-
rent step is already in progress using the values from previous ADT interrupts.

Duration: 12 µs (average), 25 µs (maximum, when both the frequency and amplitude of output
sine waves are modified).

Also, refer to the corresponding flowcharts in the appendix (Figure 18. and Figure 19. in Sec-
tion 4.1.1).

3.2.2.2 ZPC_IT

The Zero of PWM Counter (ZPC) interrupt occurs with every PWM cycle. It provides a soft-
ware timebase by increasing several software timers every ms, with each timer being dedi-
cated to a particular task.

Note : ZPC_IT routines are processed differently in Version 2.0. Please refer to application note AN1277
for more details.

In order to optimize the CPU load, this timebase function can be replaced by other timer re-
sources (the Extended Function Timer or the Standard Timer if not used for the UART) which
will only generate one interrupt every 1 ms period.

Duration: Average: 4.5 µs, Maximum: 10 µs

Also, refer to Section 3.2.4.3 (IMC Software Watchdog) and the interrupt flowchart that de-
scribes the software timebase handling: Figure 19. in Section 4.1.3.

3.2.2.3 CPT_IT

CPT stands for ”Capture Tacho counter”.

This interrupt is triggered after every active transition of the Tacho input pin. The time interval
since the last event is captured in the Tacho Capture register and the Tacho counter are reset
(automatically by hardware).

The purpose of this interrupt is first to store this period, which will be used later to compute
speed feedback with the correct unit (0.1Hz). The last four values are actually stored in a soft-
ware stack (FIFO) and will be used later to average the raw results and thus reduce errors due
to noise, tachogenerator dissymmetry, etc. The interrupt then performs a “self-setting” routine
to maintain accurate speed acquisition throughout the entire speed range.

Duration: Average 7 µs, Maximum 11 µs

Also, refer to the corresponding flowchart: Figure 20. in Section 4.1.3.

18/93

Getting Started with the ST92141 Software Library Version 1.0

3.2.2.4 OTC_IT

OTC stands for “Overflow of Tacho Counter”.

This interrupt occurs if the tacho counter rolls over, meaning that either the electrical connec-
tion to speed sensor was broken or that the speed has dramatically changed since the pre-
vious acquisition (mechanical failure, broken belt, motor in stalled condition, etc.).

A flag is set by this interrupt that is polled by the IMC_GetRotorFreq function. If TRUE, the re-
turned speed will be 0. This flag is systematically reset in CPT_IT.

Useful Tip: In Open Loop control mode (no speed feedback), this interrupt can be used to pro-
vide a convenient timebase.

3.2.3 List of Available Functions

The following is a list of available functions as listed in the acmotor.h header file.

IMC_Init (refer to the In-line comments)

IMC_Start_PWM_Generation .page 20

IMC_Output_PWM_Enabled .page 20

IMC_Output_Fixed_Pattern_Enabled .page 20

IMC_Output_Enabled_for_Datatransfer .page 21

IMC_Output_High_Impedance .page 21

IMC_NMI_Action_Enabled .page 22

IMC_NMI_Action_Disabled .page 22

IMC_Reset_IMCIVR_NMI_Bit .page 23

IMC_SetCompare0Value .page 24

IMC_GetCompare0 .page 24

IMC_GetPWMFrequency .page 24

IMC_Brake_Enable .page 25

IMC_Brake_Disable .page 25

IMC_Brake .page 25

IMC_Toggle_Direction. .page 26

IMC_Set_ClockWise_Direction .page 25

IMC_Set_CounterClockWise_Direction .page 26

IIMC_Get_WDT_Counter (refer to the introduction to the IMC Module)

IMC_Clear_WDT_Counter (refer to the introduction to the IMC Module)

IMC_Load_Reg_LoopTime .page 27

IMC_Load_Sequence_Duration .page 27

IMC_Load_ms_Counter .page 27

IMC_Reg_LoopTime_Elapsed .page 28

IMC_Upload_time_Elapsed. .page 28

19/93

Getting Started with the ST92141 Software Library Version 1.0

IMC_Sequence_Elapsed. .page 28

IMC_ms_Counter_Elapsed .page 28

IMC_Wait_ms .page 29

IMC_InitTachoMeasure .page 30

IMC_StartTachoFiltering .page 30

IMC_ValidSpeedInfo .page 31

IMC_GetRotorFreq .page 32

Note : Four new functions have been added to cover the functionalities of Version 2.0. Please refer to ap-
plication note AN1277 for more details.

20/93

Getting Started with the ST92141 Software Library Version 1.0

IMC_Start_PWM_Generation
IMC_Output_PWM_Enabled
IMC_Output_Fixed_Pattern_Enabled

Synopsis #include ”IMCModul.h”

void IMC_Start_PWM_Generation (void);

void IMC_Output_PWM_Enabled (void);

void IMC_Output_Fixed_Pattern_Enabled (void);

Description The purpose of these three functions is to modify the IMC peripheral bits
dedicated to PWM generation without directly accessing the corre-
sponding registers (hidden variables).

IMC_Start_PWM_Generation

This function starts the PWM counter and therefore the PWM interrupt
generation, without modifying the status of the output buffer.

IMC_Output_PWM_Enabled

IMC_Output_Fixed_Pattern_Enabled

These functions act on the IMC peripheral output buffer, enabling either
the PWM (out of deadtime generators) for normal operation or a fixed
predefined pattern for each of the six PWM outputs. (Inverter off state for
example, by imposing a low level on each input of the L6386D level-
shifter drivers).

Duration 1.2 µs for the three routines (CPU running at 25 MHz, without interrupt)

See also ST92141 Datasheet: IMC chapter.

Code example
...

IMC_Init (); /* These 3 first functions are mandatory before

any call of IMC_Output_XXX_Enabled functions */

CORE_Enable_Interrupts ();

IMC_StartPWM_Generation (); /* Start IMC interrupts generation*/

...

IMC_Output_PWM_Enabled (); /* Supply motor */

...

IMC_Output_Fixed_Pattern_Enabled (); /* Deflux motor windings */

21/93

Getting Started with the ST92141 Software Library Version 1.0

IMC_Output_Enabled_for_Datatransfer
IMC_Output_High_Impedance

Synopsis #include ”IMCModul.h”

void IMC_Output_Enabled_for_Datatransfer (void);

void IMC_Output_High_Impedance (void);

Description The purpose of these two functions is to modify the IMC peripheral bit
acting on the PWM dedicated output ports without directly accessing the
corresponding registers (hidden variables).

IMC_Output_Enabled_for_Datatransfer.

This function sets the OPE (Output Port Enable) bit of the OPR register.
It allows data (either PWM or a fixed pattern) to be transferred to the
port.

IMC_Output_High_Impedance

This function resets the OPE, thus causing the port to be floating (i.e. the
logical level may be forced by an external component: pull up/down re-
sistor, level shifter, etc.).

Duration Maximum: 1.2 µs (CPU running at 25 MHz, without interrupt)

See also ST92141 Datasheet: IMC chapter.

22/93

Getting Started with the ST92141 Software Library Version 1.0

IMC_NMI_Action_Enabled
IMC_NMI_Action_Disabled

Synopsis #include ”IMCModul.h”

void IMC_NMI_Action_Enabled (void);

void IMC_NMI_Action_Disabled (void);

Description The purpose of these two functions is to modify the IMC peripheral bit
dedicated to NMI functions without directly accessing the corresponding
registers (hidden variables).

IMC_NMI_Action_Enabled

This function sets the NMIE (Non Maskable Interrupt Enable) bit. It al-
lows the NMI input signal to act on the IMC controller, putting PWM ports
in high impedance (if the NMIL bit is set accordingly).

IMC_NMI_Action_Disabled

This function resets the NMIE, thus causing the NMI signal to be directly
sent to the core without acting on the IMC controller.

Duration Maximum: 1.2 µs (CPU running at 25 MHz, without interrupt).

Note Neither function will affect the action of the NMI on the ST9 core.

See also ST92141 Datasheet: IMC chapter.

23/93

Getting Started with the ST92141 Software Library Version 1.0

IMC_Reset_IMCIVR_NMI_Bit

Synopsis #include ”IMCModul.h”

void IMC_Reset_IMCIVR_NMI_Bit (void);

Description The purpose of this function is to clear the NMI pending bit of the IM-
CIVR register that is dedicated to the IMC peripheral (which is different
from the ST9’s core NMI flag located in the IVR system register) without
directly accessing the corresponding registers (hidden variables).

This function also performs a test on NMI bit status immediately after its
tentative reset. This is required since this reset will not be effective if the
NMI input signal is still active (hardware protection).

Returns Boolean parameter, TRUE if the NMI bit has been successfully cleared,
FALSE otherwise.

Duration Maximum: 1.9 µs (CPU running at 25 MHz, without interrupt).

See also ST92141 Datasheet (IMC section, NMI management chapter).

24/93

Getting Started with the ST92141 Software Library Version 1.0

IMC_SetCompare0Value
IMC_GetCompare0
IMC_GetPWMFrequency

Synopsis #include ”IMCModul.h”

void IMC_SetCompare0Value (void);

void IMC_GetCompare0 (void);

void IMC_GetPWMFrequency (void);

Description The purpose of these three functions is to read and/or modify the IMC
peripheral Compare0 register that is dedicated to PWM generation
without directly accessing the corresponding registers (hidden variable).

IMC_GetCompare0

This function is used to read the value of the Compare0 register.

IMC_SetCompare0Value

This function is used to write in the Compare0 register. Since this reg-
ister has a width of 10-bits, the input parameter (16-bit) will be clamped
if its value exceeds 1023.

IMC_GetPWMFrequency

This function returns the PWM frequency needed to calculate the output
signal frequency (see ACM_GetCurrentStatorFreq).

Duration Values measured with CPU running at 25 MHz, without interrupt.

IMC_GetCompare0: 1.5 µs.

IMC_SetCompare0Value: 2.4 µs

IMC_GetPWMFrequency: 125 µs

See also ST92141 Datasheet: IMC chapter.

25/93

Getting Started with the ST92141 Software Library Version 1.0

IMC_Brake_Enable
IMC_Brake_Disable
IMC_Brake

Synopsis #include “IMCModul.h”

void IMC_Brake_Enable (u16 DutyCycle_10bit);

void IMC_Brake_Disable (void);

void IMC_Brake (u16 DutyCycle_10bit, u16 Time_in_ms);

Description IMC_Brake_Enable

This function switches on the active brake of the motor. This is achieved
by sinking the DC current in a one-phase winding, the others being
maintained to ground. Furthermore, a PWM is systematically switched
on to enable the braking function even when the motor is stopped (static
braking torque).

IMC_Brake_Disable

This function switches ON/OFF the active braking and returns to normal
PWM generation (output signals are continued from the point where
they were previously stopped).

IMC_Brake

This function enables the active brake for a given time and then auto-
matically returns to normal PWM generation at the end of this period.

Inputs Time is given in milli-seconds (ms).

The PWM duty cycle is a u16 variable, but with 10-bit resolution.

Due to the position of the significant bits in the compare registers dedi-
cated to PWM generation in the IMC peripheral, the duty cycle cannot be
expressed directly: only b15..b5 will be used. The desired duty cycle
must be multiplied by a factor of 32 before being passed to the function.

Example:

Desired duty = 1 / 1024 gives Duty-Cycle_10_bit = 32.

Desired duty = 100 / 1024 gives Duty-Cycle_10_bit = 3200.

Desired duty = 100% gives Duty-Cycle_10_bit = 32768.

Duration IMC_Brake_Enable: 167 µs (CPU running at 25 MHz, without interrupt)

IMC_Brake_Disable: 2.2 µs (CPU running at 25 MHz, without interrupt)

Warning Since limitations are not implemented on the PWM duty cycle range, the
DC current may grow very quickly when this duty is increasing, de-
pending on the motor winding characteristics.

IMC_Set_ClockWise_Direction

26/93

Getting Started with the ST92141 Software Library Version 1.0

IMC_Set_CounterClockWise_Direction
IMC_Toggle_Direction

Synopsis #include “IMCModul.h”

void IMC_Set_ClockWise_Direction ();

void IMC_Set_CounterClockWise_Direction ();

void IMC_Toggle_Direction ();

Description These functions are used to set and/or modify the rotating field direction.
This is achieved by swapping 2 phase pointers.

The clockwise direction is set randomly. The real direction will only de-
pend on the physical connection of the motor.

Duration 1.1 µs for the three routines (CPU running at 25 MHz, without interrupt)

Warning No tests are performed on motor status (running or stopped) inside
these functions.

The user must therefore be sure that motor is stopped before calling any
of these three routines, otherwise the operation quadrant could sud-
denly be changed to generator, thus sinking the reactive current in the
high voltage DC bus and re-charging the bulk capacitor over its max-
imum voltage rating.

27/93

Getting Started with the ST92141 Software Library Version 1.0

IMC_Load_Reg_LoopTime
IMC_Load_ms_Counter
IMC_Load_Sequence_Duration

Synopsis #include “IMCModul.h”

void IMC_Load_Reg_LoopTime (u8 ms);

void IMC_Load_Sequence_Duration (u16 ms);

void IMC_Load_ms_Counter (u16 ms);

Description These functions are used to setup the duration or intervals of the related
processes:
– Regulation Loop time,
– Frequency modification along ramps (sequence of steps)
– User free process (ms_counter)

These functions must be called before the following functions are used:
IMC_Reg_LoopTime_Elapsed, IMC_Sequence_Elapsed or
IMC_ms_Counter_Elapsed.

Inputs The inputs are the desired duration / time intervals.

Note: The time base is 1 ms. This unit can be modified in the imc.c de-
fine section.

Duration 1.5 µs (CPU running at 25 MHz, without interrupt)

See also IMC_Reg_LoopTime_Elapsed, IMC_Sequence_Elapsed,
MC_ms_Counter_Elapsed in section 3.2.4.2 on page 34

28/93

Getting Started with the ST92141 Software Library Version 1.0

IMC_Reg_LoopTime_Elapsed
IMC_Upload_time_Elapsed
IMC_Sequence_Elapsed
IMC_ms_Counter_Elapsed

Synopsis #include “IMCModul.h”

BOOL IMC_Reg_LoopTime_Elapsed (void);

BOOL IMC_Upload_time_Elapsed (void);

BOOL IMC_Sequence_Elapsed (void);

BOOL IMC_ms_Counter_Elapsed (void);

Description These functions are used for polling if one of the related periods / dura-
tions has elapsed:

- Regulation loop time,

- Upload period for data transmission to a terminal (PC, etc.) (The up-
load timebase value cannot be modified during the runtime (constant)
since it is usually terminal-dependant. The value is set to 10ms, in IM-
CParam.h (_UploadPeriod)),

- Frequency step before frequency increase/decrease,

- User free sequence.

Caution Before calling the above functions, the user must have properly setup
the duration with the following functions: IMC_Load_Reg_LoopTime (),
IMC_Load_Sequence_Duration (), IMC_Load_ms_Counter ().

Returns Boolean variable, TRUE only the first time the function is called after
programmed duration is elapsed, FALSE otherwise.

Duration 1.5 µs (CPU running at 25 MHz, without interrupt)

Code example IMC_Init (); /* These 3 first functions are mandatory
before
any call of timing functions */

CORE_Enable_Interrupts ();

IMC_StartPWM_Generation ();

...

IMC_Load_ms_Counter (TimeOut);

while (! (IMC_ms_Counter_Elapsed ())

{

DoTheJob(); /* Until TimeOut elapsed */

}

See also section 3.2.4.2 on page 34

29/93

Getting Started with the ST92141 Software Library Version 1.0

IMC_Wait_ms

Synopsis #include “IMCModul.h”

void IMC_Wait_ms (u16 Time_in_ms);

Description This function provides a basic timing function. When entered, it returns
only once the Time Duration has elapsed and does not perform any ac-
tions during this period.

Inputs The input is the duration of the routine in ms.

Functions called IMC_Load_ms_Counter

IMC_ms_Counter_Elapsed

Caution This function uses the ms_Counter variable and the 2 above functions
for timing. These resources must therefore not be used when calling the
IMC_Wait_ms function.

30/93

Getting Started with the ST92141 Software Library Version 1.0

IMC_InitTachoMeasure
IMC_StartTachoFiltering

Synopsis #include “IMCModul.h”

void IMC_InitTachoMeasure ();

void IMC_StartTachoFiltering ();

Description IMC_InitTachoMeasure

The purpose of this function is to initialize the flags and variables asso-
ciated with speed acquisition: the SW stack where the last 4 speed ac-
quisitions are stored, the Tacho clock prescaler for the low speed range
and the flag disabling rolling average. The IMC_GetRotorFreq function
will return a speed calculated from the last acquisition.

IMC_StartTachoFiltering

Once called, this function enables the IMC_GetRotorFreq to return a
speed corresponding to the average of the last values.

Duration Values measured with CPU running at 25 MHz, without interrupt.

IMC_InitTachoMeasure: 3.6 µs

IMC_StartTachoFiltering: 1.3 µs

Code example
...

...

IMC_InitTachoMeasure();/*Must be called when motor is stopped*/

...

if (IMC_ValidSpeedInfo (MinRotorFreq))

{

IMC_StartTachoFiltering (); /* Must be called once we

} are sure that we have reliable speed information */

See also IMC_GetRotorFreq, IMC_ValidSpeedInfo.

31/93

Getting Started with the ST92141 Software Library Version 1.0

IMC_ValidSpeedInfo

Synopsis #include ”IMCModul.h”

BOOL IMC_ValidSpeedInfo (u16 MinRotorPeriod);

Description The purpose of this function is to know if the rotor shaft turns at the cor-
rect speed.

This means:

- there were at least 3 speed values (i.e. 3 active edges on the Tacho
input pin),

- the acceleration is positive (i.e. time between edges is decreasing),

- Rotor speed has reached the desired value to enable further operation:
regulation, ramp-up, etc. The rotor speed has entered the intrinsically
stable tile of the torque versus frequency characteristic.

Note : Acceleration detection is used to distinguish reliable values from
the very first ones when the time between tacho edges was greater than
the Tacho counter roll-over period. Acceleration sensitivity may be ad-
justed in the IMCParam.h file (DeltaMin value): the higher the value, the
higher the acceleration detection threshold.

Input The input parameter is the minimum rotor speed at which the motor is
considered as really being started.

Returns Boolean parameter, TRUE if the three above conditions are verified, un-
less a function has been called with the MinRotorPeriod equal to 0. This
is known as Open Loop mode and will disable the tests listed above and
cause the function to return FALSE.

Duration Maximum: 104 µs (CPU running at 25 MHz, without interrupt)

Caution 1. There is no way to differentiate rotation directions using a tachogen-
erator. The user must be aware that this routine may return TRUE in cer-
tain conditions, even if the motor is not started in the right direction. In
this case, the user should manage a minimum amount of time before re-
starting (i.e. high inertia load). Obviously, this function may be ineffective
if the start-up duration is far shorter than time needed to have 3 consec-
utive speed values.

2. Be careful when setting the DeltaMin value in the IMCParam.h file.
This value is given using the tacho timer time unit (i.e. depending on the
prescaler). Refer to Section 3.2.4.5.

32/93

Getting Started with the ST92141 Software Library Version 1.0

IMC_GetRotorFreq

Synopsis #include ”IMCModul.h”

u16 IMC_GetRotorFreq (void);

Description The purpose of this function is to provide the rotor frequency with an ac-
curacy that is equivalent to the sine wave generator function.

The frequency is calculated using two parameters: the acquired speed
sensor signal period and the tacho counter prescaler.

Depending on previous calls to the IMC_InitTachoMeasure and
IMC_StartTachoFiltering functions, the acquired period could be used
raw or as an average of the last 4 periods.

Returns Rotor frequency with [0.1Hz] unit.

If the calculated speed is less than the minimum measurable speed or if
a tacho counter overflow has occurred, the returned value will be 0.

Note : The user must properly handle the case when a tacho overflow
occurs inside the OTC_IT interrupt (stop the motor, re-initialize tacho ac-
quisition, etc.). In any case, the user can rely on the 0 value returned by
this function to detect any speed feedback error conditions, as the tacho
overflow flag is cleared each time the Tacho capture interrupt is trig-
gered.

Duration Maximum: 110 µs (CPU running at 25 MHz, without interrupt)

Caution The rolling average is effective only if the number of tacho captures be-
tween two IMC_GetRotorFreq calls is less than or equal to one.

At high speed, the tacho capture period is usually much lower than the
period between two calls of the IMC_GetRotorFreq. In this case, the
rolling average becomes a standard average of the last four acquired
speed values.

See also Customization issues in Section 3.2.4.4. and Section 3.3.3.5.

Flowchart in Section 4.1.4: Figure 21.

33/93

Getting Started with the ST92141 Software Library Version 1.0

3.2.4 Detailed Explanations and Customization

3.2.4.1 ST92141 Library Main Timebase

Most of the control task periods or durations are setup using the software timebases previ-
ously described (see also Section 3.2.4.2).

The basic unit for this time setting is 1 ms. It is achieved using the ZPC_IT resource (see Sec-
tion 3.2.2.2). Since this interrupt occurs at every PWM cycle (82 µs period), 12 interrupts will
correspond roughly to 1 ms (982 µs). The ZPC_IT interrupts are counted in a PWM Tick-
Counter variable up to the TIMEBASE constant value (currently set to 12) before modifying
the various software timers, etc. (see Section 3.2.2.2).

The constant TIMEBASE value is set in the IMCParam.h define section.

Note : Since this 1 ms timebase is coupled with the PWM frequency, if a PWM frequency change occurs,
the SW timebase will be modified accordingly.

The current sine wave generation slightly modifies the PWM frequency at high speeds. The
worst case for timebase errors is:

– 5% for a maximum stator frequency of 339.4 Hz,
– 10% for a maximum stator frequency of 680 Hz.

Note : This remark no longer applies to Version 2.0 sine wave generation. In this case, the timebase error
remains constant at 1.8% (982 µs, instead of 1 ms).

If a high precision timebase is required for the application (i.e. better than 10%) or if it must
work without a running IMC peripheral, other timer resources must be considered (extended
function timer, standard timer if not used for UART).

34/93

Getting Started with the ST92141 Software Library Version 1.0

3.2.4.2 Software Timebase

Several software timebases have been set for the periodical and asynchronous sequencing of
various tasks (regulation loop time, serial link data exchanges rate, etc.) which may have dif-
ferent periods.

These timebases were designed to be used in Poll ing mode and take advantage of the
ZPC_IT interrupts issued by the IMC cell. Obviously, time data will be lost if:

– the IMC_xxxxx_Elapsed functions are not polled frequently enough,

– the timebase duration was not entered (functions IMC_Load_xxxx) correctly.

Figure 6., shown below, presents how the IMC_ms_Counter_Elapsed function works.

Figure 6. Software Timebase Principle

From this figure, it is clear that IMC_ms_Counter_Elapsed will return TRUE if the predefined
duration has been completed, but without any information on the time elapsed since this event
occurred. A while structure will therefore minimize jittering:

while (! (IMC_ms_Counter_Elapsed ())

{

DoTheJob(); /* while duration is not elapsed */

}

ms_counter

Related flag

calls
IMC_ms_Counter_Elapsed

Returned value (Boolean)TRUE TRUE TRUE

not accessible
Variables

35/93

Getting Started with the ST92141 Software Library Version 1.0

3.2.4.3 IMC Software Watchdog

The IMC_WDT_Counter variable is increased every ms (up to 255, without roll-over) in the
ZPC_IT routine.

The purpose is to monitor, in the main program, the number of interrupts that have been is-
sued between 2 main loop scan periods (assuming that this period is roughly constant and
known).

If this number exceeds a predefined range, an error has occurred (i.e. the PWM has been
stopped, external interrupts have overloaded the CPU, etc.). The user is then free either to
correct the error or to let the hardware watchdog reset the MCU.

This IMC_WDT_Counter variable can only be accessed by function calls to have a Read-only
like variable which cannot be accidentally modified by other modules.

Further explanations may be found either in the routine documentation in the software library
or with the module’s in-line comments.

3.2.4.4 IMC_GetRotorFreq

In order to obtain speed feedback, the IMC peripheral contains a dedicated timer. The method
used to determine the rotor frequency is shown in Figure 7. (Tacho refers to the tacho-gener-
ator, an usually low-cost speed sensor). Several parameters must be taken into account:

– The number of pulses per rotor revolution will depend on the sensor (either the position sen-
sor: hall, etc. or the velocity sensor: tacho generator with n number of poles, etc.).

– To obtain the required accuracy (0.1 Hz) throughout the entire speed range, the dynamic
range of a 16-bit capture register is not enough. The tacho counter input clock must be pres-
caled according to the rotor frequency that is to be measured.

Figure 7. Tacho Signal and Rotor Frequency Calculation

TTACHO = (TPRS + 1) x TCPU x Capture gives FTACHO = FCPU / ((TPRS + 1) x Capture)

Finally, the following is calculated:

FROTOR[0.1 Hz] = (10 x FCPU[Hz]) / (N x (TPRS + 1) x Capture

Where:

TPRS is the Tacho Prescaler value

Tacho pin input signal

T1

(after amplification)
TTACHO

36/93

Getting Started with the ST92141 Software Library Version 1.0

Capture is the Tacho counter captured value

FCPU is the CPU clock frequency

N is the number of pulses per rotor revolution.

Note : (TPRS + 1) represents the real division factor. When TPRS = 0, there is no prescaling.

The TPRS value will change during the run-time in CPT_IT, assuming the following:

– IMC_GetRotorFreq must be called after IMC_InitTachoMeasure when the motor is stopped,
in order to make sure that TPRS value is pre-set for the low speed domain,

– There will not be any sudden frequency changes implying changing the TPRS from the min-
imum to the maximum value (see Figure 8.).

Figure 8. TPRS Setting according to Rotor Frequency

Table 1. Tacho Counter Captured Values (Accuracy given for worst-case only)

FROTOR (Hz) 20 40 100 130 670

Prescaling Clock / 64 2440 1220
(± 0.01 Hz)

Prescaling Clock / 8 19530 9765 3906 3004
(± 0.02 Hz)

Prescaling Clock / None 31251 24038 4644
(± 0.07 Hz)

FROTOR [Hz]

TPRS

HIGH_DIVIDING (63)

20 40 100 130

HIGH_DIV_HIGH_LIMIT

MEDIUM_DIVIDING (7)

NO_DIVIDING (0)

0.75

MED_DIV_LOW_LIMIT

MED_DIV_HIGH_LIMIT

NO_DIV_LOW_LIMIT

(Arbitrary scale)

37/93

Getting Started with the ST92141 Software Library Version 1.0

The accuracy can be easily calculated using the equations given below. For example: accu-
racy when rotor frequency is 670 Hz (i.e. a speed of 20,000 RPM with a 4-pole motor and a 16-
pole tacho giving 8 pulses / turn)

4644 gives FROTOR[0.1 Hz] ≅ 6729.11

4643 gives FROTOR[0.1 Hz] ≅ 6730.56 (i.e. a delta of 1.45 giving ± 0.07 Hz)

Assuming that:

N = 8

TPRS = 0

CPU Clock = 25 MHz

3.2.4.5 Customizing Rotor Frequency Acquisition

Depending on the system parameters (sensor characteristics, etc.), the user must modify the
following defines in the IMCParam.h header file:

#define NO_DIVIDING ((u16)0) /* WARNING: this values are cast to */

#define MEDIUM_DIVIDING ((u16)7) /* u8 in CPT interrupt */

#define HIGH_DIVIDING ((u16)63)

#define HIGH_DIV_HIGH_LIMIT ((u16)1220)

#define MED_DIV_LOW_LIMIT ((u16)19530)

#define MED_DIV_HIGH_LIMIT ((u16)3004)

#define NO_DIV_LOW_LIMIT ((u16)31251)

#define PULSES_PER_TURN ((u8)8)

The basic idea is to adapt dividing ratios and domain limits to maintain a sufficient accu-
racy.Certain points must be carefully verified:

– dividing ratios are cast in CPT_IT; if greater than 255, the corresponding code and associ-
ated variable “PreviousTPRS” must be modified.

– if capture limits (HIGH_DIV_HIGH_LIMIT,MED_DIV_LOW_LIMIT,...) are not properly
setup, Tacho counter overflows may occur, causing IMC_GetRotorFreq to return 0 (see Sec-
tion 3.2.4.6)

– PULSES_PER_TURN is the number of logical pulses issued (directly or after amplification)
by the speed sensor after each mechanical revolution of the rotor.

See also flowchart in Section 4.1.4 (Figure 21.)

Capture
31250000

6700
------------------------ 4644≅=

38/93

Getting Started with the ST92141 Software Library Version 1.0

3.2.4.6 Tacho Compare Event Issues

The IMC cell contains a compare register dedicated to abnormal speed signal detection. Since
the comparison is only performed on the highest bits of the tacho counter, the maximum value
that can be captured cannot be 0xFFFF.

As an example, if the compare register is set to FF, the related OTC interrupt will be issued
when the tacho counter reaches 0xFF00 and the maximum period that can be captured
without the OTC_IT interrupt will be 0xFEFF. The corresponding minimum frequency which
can be measured will then depend on the Tacho counter clock prescaler (see Table 2).
Table 2. Minimum Measurable Frequency

Note : Theoretical values, except for TPRS = 63.

3.3 ACMOTOR MODULE

3.3.1 Description

The purpose of this module is to provide the basic drivers used for generating 3-phase sine
waves and controlling AC motors. The selected control method is scalar which is more suit-
able for low-cost drive systems.

Among the set of functions described below, the following can be distinguished:

– ACM_SoftStart, ACM_SoftStart_OpenLoop, ACM_RampUp, ACM_SustainSpeed are used
here as an example, their structure may be modified to implement a state machine in the
main program (for example, to avoid spending the complete speed ramp duration inside the
related routine and to return periodically in the main routine to refresh the watchdog).

– ACM_StopInverter, ACM_Update_Sine_Tables, ACM_VoltageMaxAllowed,
ACM_GetCurrentStatorFreq, ACM_GetCurrentVoltage, ACM_GetCurrentSlip,
ACM_InitSlipFreqReg, ACM_SlipRegulation, ACM_GetOptimumSlip, which are ready-to-
use functions (duration is already set to minimum).

The rest are listed here for information and are used to facilitate in-depth customization.

Note : Two assembly routines are also declared in the acmotor.h header file1. This makes them available
for C functions. See “sine.asm” in-line comments for more information.

TPRS 63 7 0
FROTOR (Hz) 0.75 6 50

39/93

Getting Started with the ST92141 Software Library Version 1.0

3.3.2 List of Available Functions

As listed in the acmotor.h header file.

ACM_Init (refer to in-line comments)

ACM_SoftStart .page 40

ACM_SoftStart_OpenLoop .page 41
ACM_RampUp .page 42

ACM_SustainSpeed .page 43

ACM_StopInverter. .page 44

ACM_Update_Sine_Tables2 .page 45

ACM_FreqToPeriod1 .page 46

ACM_SetNewPWMFreq1 .page 47

ACM_VoltageMaxAllowed. .page 48
ACM_GetCurrentStatorFreq .page 49

ACM_GetCurrentVoltage .page 49

ACM_GetCurrentSlip. .page 49

ACM_InitSlipFreqReg .page 50

ACM_SlipRegulation .page 51

ACM_GetOptimumSlip .page 52

ACM_GetFuzzyError .page 53
ACM_SmoothSlip32 .page 54

ACM_SmoothTrend4. .page 55

Note 1: These routines are obsolete when using Version 2.0. Please refer to application note AN1277 for
more details.

Note 2 : The prototype of this function has changed in Version 2.0. Please refer to application note AN1277
for more details.

40/93

Getting Started with the ST92141 Software Library Version 1.0

ACM_SoftStart
Synopsis #include “acmotor.h”

BOOL ACM_SoftStart (u16 StatorFreq, u16 MinRotorFreq);

Description This function provides the soft start used to limit the inrush current in the
motor, while monitoring the speed feedback in order to stop the voltage
increase when the starting torque is reached.

Open loop (i.e. MinRotorFreq = 0)

The function increases the stator voltage linearly up to its maximum
value (giving the maximum available torque / maximum current in the
windings as defined in ACM_VoltageMaxAllowed function), with the
stator frequency remaining constant, during SOFTSTART_TIMEOUT
(constant given in ms).

Closed loop (i.e. MinRotorFreq != 0)

The function increases the stator voltage linearly, with the stator fre-
quency remaining constant.

The ramp ends when one of the following conditions occurs:

– the SOFTSTART_TIMEOUT is elapsed,

– the motor starts and the rotor speed reaches MinRotorFreq.

At the end of the ramp, if the rotor speed is too low, the tacho is moni-
tored for an additional set time (user defined OPTIONAL_TIMEOUT
constant) to take into account large inertia loads. At the end of this time
period, if the rotor speed is still not high enough, the motor is stopped
and the function returns FALSE.

Helpful Tip : The comparison between the maximum available voltage
and the current voltage at the end of ACM_SoftStart can be used as an
indicator of the motor load.

Inputs StatorFreq is given with [0.1Hz] unit.

MinRotorFreq is given with [0.1Hz] unit.

Returns Boolean: always TRUE in open loop, otherwise based on speed sensor
feedback.

The function returns FALSE if MinRotorFreq is higher than StatorFreq or
if the soft start procedure has failed.

Functions called ACM_VoltageMaxAllowed, ACM_InitTachoMeasure,
ACM_Update_Sine_Tables, IMC_Output_PWM_Enabled,
IMC_Load_Sequence_Duration, IMC_Sequence_Elapsed,
IMC_ValidSpeedInfo, IMC_StartTachoFiltering, ACM_StopMotor.

See also See “IMC_ValidSpeedInfo” on page 31., Customization issues in Sec-
tion 3.3.3.4.

Flowchart: Figure 22. in Section 4.2.1.

41/93

Getting Started with the ST92141 Software Library Version 1.0

ACM_SoftStart_OpenLoop

Synopsis #include “acmotor.h”

void ACM_SoftStart_OpenLoop(u16 StatorFrequency, u16 Duration);

Description This function provides a Soft Start used to limit the starting torque and
the inrush current in the motor. The voltage on the stator windings is in-
creased until it reaches its maximum allowed value (set in the
ACM_VoltageMaxAllowed function).

The duration of the Soft Start can be adjusted; its acceleration rate will
depend on voltage value returned by the ACM_VoltageMaxAllowed
function.

This function is more compact than the ACM_SoftStart function used for
software that does not use sensors to obtain feedback speed data.

Inputs StatorFreq is given with [0.1Hz] unit.

Duration in ms.

Functions called ACM_VoltageMaxAllowed, ACM_Update_Sine_Tables,
IMC_Output_PWM_Enabled, IMC_Load_Sequence_Duration,
IMC_Sequence_Elapsed.

42/93

Getting Started with the ST92141 Software Library Version 1.0

ACM_RampUp

Synopsis #include”acmotor.h”

void ACM_RampUp (u16 EndFrequency, u16 RampTime);

Description The purpose of this function is to increase the speed of the motor, from
its current speed to the desired one, within the predefined time limit.

This speed ramp is achieved using a closed loop slip control. It means
that the stator frequency is increased by the acceleration rate calculated
from the two inputs, while the voltage is controlled by the regulator to
maintain a constant slip during the ramp. The rotor speed will therefore
follow the stator frequency ramp with a constant offset that corresponds
to the optimum slip. To avoid breakdown conditions, the slip is moni-
tored during the ramp. If a predefined limit is exceeded (SLIP_LIMIT
constant, set in acmparam.h header file), the stator frequency will be
maintained until a given value in the allowed range is recovered (i.e.
from 0 to SLIP_LIMIT).

This may occur in the following cases:
– The desired acceleration exceeds the gain / bandwidth capabilities of the reg-

ulation algorithm,

– The torque exceeds motor ratings.

In such conditions, the priority is given to speed rather than time: End-
Frequency will finally be reached (if slip recovers its nominal value), but
after the programmed time.

Inputs EndFrequency is the final stator frequency given with [0.1Hz] unit.

RampTime is given in ms.

Functions called ACM_GetCurrentStatorFreq, IMC_Load_Sequence_Duration,
IMC_Sequence_Elapsed, ACM_GetCurrentSlip,
ACM_GetOptimumSlip, ACM_Update_Sine_Tables,
IMC_Reg_LoopTime_Elapsed, ACM_SlipRegulation.

Caution Before calling this function, the user must have properly setup the regu-
lation loop time in the IMC_Load_Reg_LoopTime function.

See also Flowchart (Figure 23. in Section 4.2.2).

43/93

Getting Started with the ST92141 Software Library Version 1.0

ACM_SustainSpeed

Synopsis #include ”acmotor.h”

void ACM_SustainSpeed(u16 Time);

Description This function simply maintains the current speed on the motor for a de-
sired time. This is achieved using a closed loop slip control that main-
tains the optimum voltage level in steady state conditions.

Inputs Time is given in ms.

Functions called IMC_Load_ms_Counter

IMC_ms_Counter_Elapsed

IMC_Reg_LoopTime_Elapsed

ACM_GetCurrentStatorFreq

ACM_GetOptimumSlip

ACM_SlipRegulation

ACM_Update_Sine_Tables.

Caution Before calling this function, the user must have properly setup the regu-
lation loop time in the IMC_Load_Reg_LoopTime function.

44/93

Getting Started with the ST92141 Software Library Version 1.0

ACM_StopInverter

Synopsis #include “acmotor.h”

void ACM_StopInverter (void);

Description The purpose of this function is to switch off all power switches and to de-
gauss stator windings. This causes the motor to ”coast”.

Inputs Time is given in ms.

Duration 2 µs (CPU running at 25 MHz, without interrupt).

Functions called IMC_Output_Fixed_Pattern_Enabled

Caution The inverter switch-off state must have been properly entered in the
dedicated IMC OPR register (R252, page 48).

Stopping the inverter does not mean that motor will stop immediately.
The user must make sure that speed really reaches zero before at-
tempting to restart the motor, especially when driving a very inertial load.

45/93

Getting Started with the ST92141 Software Library Version 1.0

ACM_Update_Sine_Tables
Synopsis #include “acmotor.h”

BOOL ACM_Update_Sine_Tables (u8 NewVoltage, u16 NewStatorFre-
quency);

Description This function is called each time a new 3-phase sine wave is required
(i.e. if either the voltage or output frequency must be changed). It is used
to set flags and to call related routines for updating sine wave tables.

This routine will limit the frequency within the range defined in the con-
stants section of the acmotor.h file (i.e. between the
LOWEST_FREQUENCY and the HIGHEST_FREQUENCY frequen-
cies).

Then, the Calc_sin and Calc_rpt_tab assembly routines are called to fill
in the RAM tables containing the sine wave coefficients (PWM duty cy-
cles and step lengths).

Inputs NewStatorFrequency is given with [0.1Hz] unit.

NewVoltage is the value of the modulation index, in 8-bit format. The 0 to
100% modulation index corresponds to the 0 to 255 range.

Returns Boolean type variable:

FALSE, if RAM tables are not yet updated after last call of the UpdateS-
ineTables. This is required for very low speeds where the duration of
every step (and therefore the time needed to refresh PWM pointers in
ADT_IT) may be longer in comparison to other tasks. For example, if the
output sine is 5 Hz, every step lasts about 200 ms/48 = 4 ms.

Duration 890 µs (CPU running at 25 MHz, without interrupt)

Functions called – Calc_sin (assembly routine),

– Calc_rpt_tab (assembly routine),

– ACM_GetCurrentStatorFreq

– ACM_FreqToPeriod

– ACM_SetNewPWMFreq

Caution No tests are performed in this function on the input parameters, except
for the frequency range. The following conditions must therefore be ver-
ified by the user before making any calls:

– compliance with the maximum voltage and frequency characteristics
for the motor,

– correct torque or current transients (i.e. their values do not vary too
quickly when motor is running).

See also Flowchart (Figure 24. in Section 4.2.3).
Note : The prototype of this function has changed in Version 2.0. Please refer to application note AN1277

for more details.

46/93

Getting Started with the ST92141 Software Library Version 1.0

ACM_FreqToPeriod

Synopsis #include “acmotor.h”

u16 ACM_FreqToPeriod(u16 StatorFrequency);

Description The purpose of this function is to determine the most suitable “period” for
a given sine wave output frequency. This variable contains the total
number of PWM cycles needed to describe a sine wave period; this
number is therefore an integer, given without a time unit.

The method used to calculate the “period” value will depend on the
output frequency range and the PWM operating frequency.

At low frequency, PWM switching is kept constant.

At high speed, it will be variable to maintain a good resolution of the
stator frequency and must be paired to balance both half-waves of the
sine wave and to prevent any parasitic DC current injections.

Inputs StatorFrequency is given with [0.1Hz] unit.

Returns Period value as a number of PWM cycles.

Duration 117 µs (CPU running at 25 MHz, without interrupt).

See also ACM_SetNewPWMFreq.

Note : This routine is obsolete when using Version 2.0. Please refer to application note AN1277 for more
details.

47/93

Getting Started with the ST92141 Software Library Version 1.0

ACM_SetNewPWMFreq

Synopsis #include ”acmotor.h”

void ACM_SetNewPWMFreq (u16 NewStatorFrequency, u16 NewPe-
riod);

Description This function modifies the IMC compare register that defines the PWM
frequency based on the new stator frequency and new Period settings.
Adjusting PWM frequency slightly modifies the frequency of the output
sine wave signal.

Inputs NewStatorFrequency is given with [0.1Hz] unit.

NewPeriod is the number of PWM cycles in a sine wave period.

Duration Maximum: 140 µs (CPU running at 25 MHz, without interrupt).

Functions called IMC_GetPWMFrequency

IMC_SetCompare0Value

Caution This function must be called with the period returned from
ACM_FreqToPeriod.

The functions must be called in the following order:

1. ACM_FreqToPeriod,

2. Calc_sin (assembly routine),

3. ACM_SetNewPWMFreq.

Note : This routine is obsolete when using Version 2.0. Please refer to application note AN1277 for more
details.

48/93

Getting Started with the ST92141 Software Library Version 1.0

ACM_VoltageMaxAllowed

Synopsis #include “acmotor.h”

u8 ACM_VoltageMaxAllowed (u16 StatorFrequency);

Description This function is used to maintain a constant voltage versus a frequency
ratio throughout the entire speed range. The characteristic points of the
corresponding curve are represented in the figure below and can be set
in the acmotor.h file. (See customization chapter of ACMOTOR module
for cautions.)

Figure 9. Standard Voltage/Frequency Characteristics and Setpoints

This is considered as the maximum value since the voltage applied to
static windings can be decreased when running a load that is below the
maximum motor torque, in order to obtain the required torque and to limit
ohmic losses, in Closed Loop operation (i.e. below the rated flux opera-
tion).

Therefore, the voltage vs frequency curve must be set for the maximum
acceptable current (given by the motor manufacturer) in Closed Loop
mode or set for nominal current in Open Loop mode.

Inputs StatorFrequency is given with [0.1Hz] unit.

Duration Maximum: 7.5 µs (CPU running at 25 MHz, without interrupt)

Returns Modulation index voltage (u8 variable).

If the Frequency parameter is outside the available domain, the returned
value will be VOLTAGE_MIN / VOLTAGE_MAX (no error code re-
turned).

Voltage (8-bit modulation index)

Frequency (Hz)

VF_LOWFREQ_LIMIT VF_HIGHFREQ_LIMIT

V_MIN

V_MAX

49/93

Getting Started with the ST92141 Software Library Version 1.0

ACM_GetCurrentStatorFreq
ACM_GetCurrentVoltage
ACM_GetCurrentSlip

Synopsis #include ”acmotor.h”

u16 ACM_GetCurrentStatorFreq(void);

u16 ACM_GetCurrentSlip(void);

u8 ACM_GetCurrentVoltage(void);

Description ACM_GetCurrentStatorFreq

This function returns the current Stator frequency, calculated from the
current number of PWM cycles during the ramp (i.e. the Period variable)
and the PWM switching frequency.

ACM_GetCurrentVoltage

This function returns the current modulation index.

ACM_GetCurrentSlip

This function returns the difference between the stator and rotor fre-
quencies. This value will always be positive (unsigned variable) as-
suming that negative slip operations (i.e. motor used as a generator) are
not designed for this software library. Nonetheless, if the slip is negative,
the returned value will be zero.

Returns Stator and slip frequencies are given in [0.1Hz] unit using 16-bit format.
Voltage is a 8-bit value; 0 to 100% modulation index is described within
the 0 to 255 range.

Duration Values are measured with the CPU running at 25 MHz, without interrupt.

ACM_GetCurrentStatorFreq: 100 µs.

ACM_GetCurrentVoltage: 1 µs.

ACM_GetCurrentSlip: 203 µs.

Functions called ACM_GetCurrentStatorFreq, ACM_GetCurrentVoltage,
ACM_GetCurrentSlip, ACM_GetCurrentStatorFreq,
IMC_GetCompare0, ACM_GetCurrentSlip,
ACM_GetCurrentStatorFreq, IMC_GetRotorFreq.

50/93

Getting Started with the ST92141 Software Library Version 1.0

ACM_InitSlipFreqReg

Synopsis #include “acmotor.h”

void ACM_InitSlipFreqReg(u8 OptimumSlip);

Description This function must be called before starting the regulation routine (typi-
cally after ACM_SoftStart).

This function is used mainly to initialize the VoltageIntegralTerm routine,
which is designed to smooth the transition from open loop operation
(typically the end of start routine) to closed loop operations.

It can also initialize the following routines (conditional compilation): Sli-
pArray() and TrendArray().

Inputs OptimumSlip with [0.1Hz] unit.

Duration Values measured with CPU running at 25 MHz, without interrupt.

Maximum: 1.05 ms (USE_SMOOTHED_TREND switch off).

Maximum: 1.12 ms (USE_SMOOTHED_TREND switch on).

Functions called ACM_GetCurrentSlip, ACM_GetFuzzyError,
ACM_GetCurrentStatorFreq, ACM_GetCurrentVoltage, slip_reg.

Caution Since OptimumSlip has an u8 format, its value must be within the 0 to
25.5 Hz range.

51/93

Getting Started with the ST92141 Software Library Version 1.0

ACM_SlipRegulation

Synopsis #include “acmotor.h”

u8 ACM_SlipRegulation(u8 OptimumSlip);

Description This function performs a closed loop slip control to maintain the optimum
voltage on stator windings.

It can be shown that the overall AC motor drive efficiency is roughly a
function of the slip frequency, having a maximum between zero and
processed slip values.

This function uses a fuzzy algorithm to compute the best voltage value
using current and previous slip values (proportional and integral terms
using standard naming conventions).

Inputs OptimumSlip with [0.1Hz] unit, in u8 format.

Returns Modulation index voltage (u8 variable).

Duration Values measured with CPU running at 25 MHz, without interrupt.

Maximum: 1.4 ms (USE_SMOOTHED_TREND switch off).

Maximum: 1.5 ms (USE_SMOOTHED_TREND switch on).

Functions called ACM_GetCurrentSlip, ACM_GetFuzzyError,
ACM_GetCurrentStatorFreq, slip_reg, ACM_VoltageMaxAllowed, plus
ACM_SmoothSlip32 and ACM_SmoothTrend4 depending on condi-
tional compilation (USE_SMOOTHED_TREND switch, see section
3.3.3.3 on page 58)

Caution Since the OptimumSlip has an u8 format, its value must be within the 0
to 25.5 Hz range.

Code example See “ACM_SlipRegulation” on page 58.

See also See “Fuzzy Logic Regulation” on page 66.

Flowchart (Figure 25. in Section 4.2.4).

52/93

Getting Started with the ST92141 Software Library Version 1.0

ACM_GetOptimumSlip

Synopsis #include “acmotor.h”

u8 ACM_GetOptimumSlip(u16 StatorFrequency);

Description The purpose of this function is to return the most appropriate slip fre-
quency, based on the stator frequency, if this value changes within the
motor operating range. Setpoints for this curve may be obtained either
from the motor manufacturer or from empirical trials.

Figure 10. Optimum Slip Frequency

Inputs StatorFrequency with [0.1Hz] unit.

Returns OptimumSlip with [0.1Hz] unit, in u8 format.

Duration Maximum: 7.5 µs (CPU running at 25 MHz, without interrupt).

Caution See ACM_VoltageMaxAllowed (same remarks on coefficients and data
format).

Slip Frequency (Hz)

Stator Frequency (Hz)

OPT_SLIP_LOWFREQ_LIMIT OPT_SLIP_HIGHFREQ_LIMIT

OPT_SLIP_HIGHFREQ

OPT_SLIP_LOWFREQ

53/93

Getting Started with the ST92141 Software Library Version 1.0

ACM_GetFuzzyError

Synopsis #include “acmotor.h”

u8 ACM_GetFuzzyError (u16 SlipFreq, u8 OptimumSlip);

Description This function is used to first compute the difference between the current
and the optimum (desired) slip frequencies and then to convert this
signed result into Fuzzytech tool variable format, as follows:

– Minimum value (negative) is 0,

– Neutral value (no error) is 127,

– Maximum value (positive) is 255.

This value is returned in the format to be used by the
ACM_SlipRegulation function.

Inputs Current and optimum slip frequencies with [0.1Hz] format.

Returns Unsigned variable which can be used by C fuzzy routines generated by
the FuzzyTech tool.

Duration Maximum: 2.8 µs (CPU running at 25 MHz, without interrupt).

54/93

Getting Started with the ST92141 Software Library Version 1.0

ACM_SmoothSlip32

Synopsis #include “acmotor.h”

u16 ACM_SmoothSlip32 (u16 SlipFrequency);

Description This routine calculates the rolling average of 32 consecutive values of
the Slip frequency and can be used to cancel the high frequency compo-
nent of the speed feedback (sensor dissymmetry, etc.).

This will cutoff frequencies higher than Fs/32. Fs is the Sampling fre-
quency (i.e. the number of calls to this function per second) and must be
stable.

Inputs SlipFrequency with [0.1Hz] unit.

Returns Rolling average is returned with [0.1/32] Hz (i.e. raw sum of the 32 pre-
vious inputs).

Duration Maximum: 68 µs (CPU running at 25 MHz, without interrupt).

Note Using [0.1/32] Hz has the advantage of preventing definition losses.

The returned value can either be used as an input for the
ACM_SmoothTrend4 function or divided by 32 to obtain a smoothed slip
frequency with [0.1Hz] unit.

This function will only be available if the USE_SMOOTHED_TREND
switch is ON (conditional compilation) see Section 3.3.3.3.

Code example ACM_InitSlipFreqReg and ACM_SlipRegulation function can be con-
sulted for the practical implementation of the ACM_SmoothSlip32 func-
tion.

55/93

Getting Started with the ST92141 Software Library Version 1.0

ACM_SmoothTrend4

Synopsis #include “acmotor.h”

s8 ACM_SmoothTrend4 (u16 PreviousSmoothedSlip, u16 Smoothed-
Slip);

Description This routine calculates the rolling average of 4 consecutive trend values
(difference between two consecutive Slip values) and returns a
smoothed trend value.

Using previously filtered Slip values and performing an additional av-
erage is required to extract the real speed trend and to minimize the high
pass effect amplifying parasitic speed feedback noise.

Inputs Both PreviousSmoothedSlip and SmoothedSlip are using the output
format of the ACM_SmoothSlip32 function (i.e. [0.1/32] Hz).

Returns Signed value with [(0.1 / 32) / (4 * x) Hz/ms] (x being the time between
two calls to ACM_SmoothTrend4). The returned value can be used as it
is, or as an input to any regulation algorithm (PI, PID, Fuzzy, etc.) which
must take into account the particular format.

Duration Maximum: 75 µs (CPU running at 25 MHz, without interrupt).

Note The user must keep in mind that returned value units (and therefore re-
liability) depend on the timebase used to call this function.

This must especially be taken into account for the first call to this func-
tion (required latency before any use of these values).

This function will only be available if the USE_SMOOTHED_TREND
switch is ON (conditional compilation). See Section 3.3.3.3.

Code example The ACM_InitSlipFreqReg and ACM_SlipRegulation functions can be
consulted for the practical implementation of the ACM_SmoothTrend4
function.

56/93

Getting Started with the ST92141 Software Library Version 1.0

3.3.3 Detailed Explanations and Customization

3.3.3.1 ACM_VoltageMaxAllowed

The stator windings of an AC motor can be approximately first represented as an inductance,
for which the impedance will therefore increase as the stator frequency becomes higher.

The scalar control method is commonly used with AC motor drives to assume that torque will
be maintained by keeping a constant voltage versus frequency ratio.

Above a certain frequency limit, this ratio will decrease as the voltage is limited by the inverter
topology, that is practically reached with 100% modulation (i.e. voltage = 255). A minimum
voltage must also be maintained at low speed in order to energize the stator windings. (See
Figure 11.).

Figure 11. Practical Implementation of Standard V/f Characteristics

Voltage is calculated by the following equations:

Setpoints can be entered in the acmparam.h header file. Both VF_COEFF and VF_OFFSET
will be re-computed at compile time (multiplication by 256 is used here to maintain a sufficient
accuracy and to decrease quantification effects).

Important : All variables used in this function are 16-bit. When modifying setpoints, the user
must verify the following:

Voltage (8-bit modulation index)

Frequency (Hz)

VF_LOWFREQ_LIMIT VF_HIGHFREQ_LIMIT

V_MIN

V_MAX

VF_COEFF 256 V_MAX V_MIN–()×()
VF_HIGHFREQ_LIMIT VF_LOWFREQ_LIMIT–()

--- -=

VF_OFFSET VF_COEFF VF_LOWFREQ_LIMIT×=

Voltage StatorFrequency VF_COEFF×() VF_OFFSET–
256

--- V_MIN+=

VF_OFFSET 0xFFFF≤
VF_HIGHFREQ_LIMIT VF_COEFF×() VF_OFFSET–() 0xFFFF≤

57/93

Getting Started with the ST92141 Software Library Version 1.0

Otherwise, certain variables and constants may have to be declared as u32 instead of
u16. (Buffer declared inside ACM_VoltageMaxAllowed, VF_OFFSET, etc.).

3.3.3.2 ACM_GetOptimumSlip

The purpose of this function is to return the most appropriate slip frequency, based on stator
frequency, if this value changes inside the motor operating range. Setpoints for this curve may
be obtained either from the motor manufacturer or from empirical trials (see Figure 12.).

Figure 12. Linear Function returning Optimal Slip Value

The equations used to obtain the optimum slip value are comparable to the value described
for the ACM_VoltageMaxAllowed function (see Section 3.3.3.1).

Setpoints can be entered in the acmparam.h header file. Both SLIP_COEFF and
SLIP_OFFSET will be re-computed at compile time (multiplication by 256 is used here to
maintain a sufficient accuracy and to decrease quantification effects).

Important : All variables used in this function are 16-bit. When modifying setpoints, the user
must verify the following:

Otherwise, certain variables and constants may have to be declared as u32 instead of
u16. (Buffer declared inside ACM_GetOptimumSlip, SLIP_OFFSET, etc.).

Optimum Slip Frequency [0.1 Hz]

Stator Frequency (Hz)

OPT_SLIP_LOWFREQ

OPT_SLIP_HIGHFREQ

OPT_SLIP_LOWFREQ_LIMIT OPT_SLIP_HIGHFREQ_LIMIT

SLIP_OFFSET 0xFFFF≤

OPT_SLIP_HIGHFREQ_LIMIT SLIP_COEFF×() SLIP_OFFSET–() 0xFFFF≤

58/93

Getting Started with the ST92141 Software Library Version 1.0

3.3.3.3 ACM_SlipRegulation

Since ACM_SlipRegulation uses a fuzzy engine to compute the most appropriate voltage from
the current slip value (see Section 3.5), few functions can be customized:

– The regulation loop time may be modified to adjust the bandwidth. Nevertheless, since an
accumulative term “VoltageIntegralTerm” is used in this routine (the PI integral like term), in-
creasing loop time will decrease its effects (accumulation will be slower and integral action
on the output will be delayed). Inversely, decreasing loop time will increase its effects (accu-
mulation will be faster and integral action on the output will be increased).

– A USE_SMOOTHED_TREND commutator may be switched ON to filter one of the slip_reg
“Error_slip_reg” input variables. Refer to the description of the ACM_SmoothSlip32 and
ACM_SmoothTrend4 functions.

Below is an example of the use of this regulation process.
ACM_SoftStart(StartFrequency, MinTachoFrequenc y); /* Open loop*/

OptimumSlip = ACM_GetOptimumSlip(ACM_GetCurrentStatorFreq ());

ACM_InitSlipFreqReg(OptimumSlip); /* Mandatory regulation initialization */

IMC_Load_Reg_LoopTime(10); /* Regulation time base set-up */

/* From here regulation can be called periodically */

...

...

while (NoStopOrderReceived()) /* Example of regulation stop event */

{

if (IMC_Reg_LoopTime_Elapsed()) /* Periodic re-start */

{

OptimumSlip = ACM_GetOptimumSlip(New Frequency);

NewVoltage = ACM_SlipRegulation(Opti mumSlip);

}

}

Note : ACM_SoftStart is considered as an open loop because the tacho feedback is just used at that spe-
cific time to limit the voltage when the rotor shaft turns at a fast enough speed.

It is recommended to exit this routine with a slip that is close to or slightly lower than the slip
to be regulated for smoothing the transition to closed loop operations (to be determined em-
pirically).

Two functions must be called before starting the regulation process:

– ACM_InitSlipFreqReg to initialize the Integral like term.

– IMC_Load_Reg_LoopTime to set-up the regulation time base.

59/93

Getting Started with the ST92141 Software Library Version 1.0

3.3.3.4 ACM_SoftStart

This Soft Start function basically imposes a voltage profile to start the motor without an exces-
sively heavy inrush current. This profile, which can by parameterized depending on the appli-
cation, is described in Figure 13..

Two parameters can be set (SOFTSTART_TIMEOUT and START_DURATION) while the
third one (OPTIONAL_TIMEOUT) is computed at compile time. These constants are located
in the acmparam.h header file.

OPTIONAL_TIMEOUT, which is sometimes mandatory for high inertia loads, may be can-
celled by setting SOFTSTART_TIMEOUT equal to START_DURATION.

Figure 13. Voltage Profile during ACM_SoftStart Routine

A flowchart is also given in Figure 22. in Section 4.2.1.

Voltage

Time
SOFTSTA RT_TIMEOUT OPTIONAL_TIMEOUT

0

START_DURATION

ACM_VoltageMaxAllowed(StatorFreq)

Motor stopped (see note)

Note: if starting conditions
are not reached, voltage

goes down to zero

60/93

Getting Started with the ST92141 Software Library Version 1.0

3.3.3.5 Using P Pole Motors

The current library has been setup for an AC motor with a single pair of poles (unipolar), where
the stator and rotor frequencies are directly comparable and the slip can be calculated in a
simple way (subtraction).

Generally (motors with p pair of poles) the following relations apply:

In order to make setting parameters easier, only the pseudo slip will be taken into considera-
tion. This means that value returned by ACM_GetCurrentSlip will be p times the real electrical
slip frequency.

The user will therefore have to keep in mind this definition when:

– measuring the rotor speed via the IMC_GetRotorFreq function, whose return is also p times
the real rotor speed,

– characterizing its motor (efficiency vs slip characteristics),

– setting-up ACM_GetOptimumSlip parameters.

Parameters are customized in the IMCParam.h file, by modifying the MOTOR_POLES_PAIR
constant used in the IMC_GetRotorFreq function to calculate the frequency.

Frotor

Fstator
p

--------------------=

Fslip

Fstator
p

-------------------- Frotor–=

Fslip’ Fstator p Frotor×–=

Electrical slip:

Pseudo slip:

61/93

Getting Started with the ST92141 Software Library Version 1.0

3.3.3.6 Stator Frequencies above 340 Hz

Note : This section is obsolete when using Version 2.0 where stator frequencies can go up to 680 Hz with-
out any customizing or voltage loss. Please refer to application note AN1277 for more details.

The ACMotor module is parameterized to limit the stator frequency to 339.4 Hz, which corre-
spond to 20,000 RPM for a unipolar motor.

A higher stator frequency may be required when using very high speed or multi-polar motors.
Therefore, the acmparam.h module can be customized in order to be able to work with fre-
quencies up to 680 Hz (approximately 40,000 RPM for a 4-pole motor).

This is achieved by re-defining the following constants and tables:

– HIGHEST_FREQUENCY (in acmparam.h),

– LOWEST_PERIOD (in acmparam.h),

– Sin_ref_tab_12[3] (in acmparam.h),

– Sin_ref_tab_48[12] (in acmparam.h),

– Mean_sine (in sine.asm)

– Max_sine (in sine.asm)

Default values are set for a maximum operating frequency of 339 Hz. The set of values for
680 Hz are commented (in both acmparam.h and sine.asm).

It is recommended that the 680 Hz operating frequency be used only if necessary because
this will result in a 5% loss of motor voltage due to variable PWM frequency operation. This
drawback may be eliminated by modifying the reference sine wave quarter tables
(Sin_ref_tab_12 and Sin_ref_tab_48) and adding a third harmonic to the fundamental. In this
case, the sine coefficient MUST NOT exceed the maximum value in the reference tables (See
Table 3).
Table 3. Reference Sine Wave Quarters and Absolute Max. Values for Customization

WARNING : Never run a motor above its rated stator frequency. This may cause the rotor or
ball bearings to explode if the speed is higher than the absolute maximum rating.

Max.
Frequency

Table Name

S
te

p
1

S
te

p
2

S
te

p
3

S
te

p
4

S
te

p
5

S
te

p
6

S
te

p
7

S
te

p
8

S
te

p
9

S
te

p
10

S
te

p
11

S
te

p
12 Max

.

339.4 Hz Sin_ref_tab_48 16 48 78 108 136 161 183 203 219 231 239 243 243

339.4 Hz Sin_ref_tab_12 65 178 243 243

680 Hz Sin_ref_tab_48 15 45 74 102 128 152 173 192 207 218 226 230 230

680 Hz Sin_ref_tab_12 102 192 230 230

62/93

Getting Started with the ST92141 Software Library Version 1.0

3.4 ADC MODULE

3.4.1 Purpose

This module (ADCModul.c) is used for the following functions:

– initialize and start the A/D converter,

– obtain the ready-to-use values from the converter,

– monitor the performance of the ADC peripheral in the main routine.

It was basically written to monitor signals that vary slowly, such as trimmers, since the sam-
pling rate is set to 1 acquisition per 530 µs.

3.4.2 Description

The ADC is initialized in Continuous mode: When all channel conversions are completed
(from Ch2 to Ch7), an End Of Conversion Interrupt is issued for processing this data and
channel scanning is automatically restarted.

The Filtering method uses a classical average: Once a predefined number of acquisitions is
completed, their result is stored in a buffer and their average value is calculated by division.

3.4.3 Synopsis
#include <ADCModul.h>

...

ADC_Init();

...

CORE_Enable_Interrupts();

...

ADC_Start();

...

/* From this point, you can call any time functions

ADC_Get_Chx(); x being the number of the channel to be read */

...

{

u8 SpeedTrimmer, VoltageTrimmer;

SpeedTrimmer = ADC_Get_Ch2();

VoltageTrimmer = ADC_Get_Ch3();

}

63/93

Getting Started with the ST92141 Software Library Version 1.0

3.4.4 Memory Use

All variables are stored in RAM for easier portability.

Each channel requires 3 bytes (2 for buffers and 1 for results).

Number of averages counter: 1 byte.

Watchdog counter: 1 byte.

Current version: 20 bytes

3.4.5 Timings

The ADC input clock is prescaled here so that conversions are slowed down (to lower the CPU
load).

Each conversion is achieved in 138 clock cycles. This means that the following is required in
order to complete 6 conversions with an input clock prescaler set to 16:

T = 138 x Number of channels x Prescaler factor x (1 / INTCLOCK).

T = 138 x 6 x 16 x 40 ns = 530 µs.

T is the average duration between End Of Conversion interrupts.

The interrupt duration is approximately 14 µs (average), the maximum time being 43 µs (out-
side nested interrupts) with the CPU running at 25 MHz.

3.4.6 Software Watchdog

The ADC_WDT_Counter variable is increased (up to 255, without roll-over) every time an End
Of Conversion interrupt (EOC_IT) is issued.

The purpose is to monitor the number of interrupts that have been issued between 2 main loop
scanning periods (assuming that this period is roughly constant and known) in the main pro-
gram.

If this number exceeds a predefined range, an error has occurred (the ADC has been stopped,
an external interrupt is overloading the CPU, etc.). The user is then free to either correct the
error or to let the hardware watchdog reset the MCU.

This ADC_WDT_Counter variable can only be accessed through function calls so as to have
a Read-only like variable which cannot be modified erroneously by other modules.

64/93

Getting Started with the ST92141 Software Library Version 1.0

3.4.7 Caution

The following important points must be taken into consideration.

3.4.7.1 ADC Register Declaration File Version

The header file containing the ADC register and bit declarations used by the C compiler must
be release 5.0 of ad_c.h and must be located in the include.st9 directory of the toolchain (V4.3
release).

This include file contains the declaration for the new registers needed for this type of ST9+ 8-
bit ADC with input clock prescaler.

3.4.7.2 Sampling Issues

The maximum frequency for input signals can be calculated as a function of the conversion
speed and number of acquisitions needed before updating the averaged value.

Example: The time required to scan the channels is 530 µs and since 4 values are needed for
averaging, the total time between data updates is 530 µs x 4 = 2.12 ms.

Shannon’s theorem will enable us to monitor signals of up to approximately 230 Hz (i.e. 1/
(0.00212 x 2).

3.4.7.3 Value Availability Time

The user must reserve a certain amount of time until the first averaged values become avail-
able (2.12 ms after ADC_Start(); in the previous example).

3.4.7.4 Interrupts

Interrupts are used in Nested mode. The priority level for ADC interrupts is set to 6.

3.4.7.5 Port Initialization

The I/O ports corresponding to the ADC channels must be previously initialized as Analog In-
puts in another module (for example, in an IO_AnalogPorts_Init function).

3.4.8 Customizing the ADC Module

This module is just an example of ADC use. The user can perform the following actions de-
pending on the application:

– Decrease memory needs by not scanning all 7 channels (keep in mind that Auto Scan mode
requires that the scanning procedure ends with channel 7). Function prototypes, variable
declarations and interrupt service routines must be changed this way (i.e. basically by delet-
ing unused code).

– Increase the speed of channel scanning by decreasing the ADC Clock prescaler.

– Increase the speed of the interrupt service routine by using registers from the register file
rather than from RAM locations.

65/93

Getting Started with the ST92141 Software Library Version 1.0

– Set the ADC to Single Shot mode and have it start at special events (for example:
IMC_User_1ms_Routine, see ZPC_IT chapter of IMC module.

– Use the Analog watchdog functions (available only on channels 6 and 7) to decrease the
CPU load.

Ex: Once a trimmer has been read, the Analog watchdog thresholds can be set close to the
measured value and the End Of Conversion interrupts can be disabled. Once the trimmer
value has changed and has it has reached the predefined thresholds, Analog Watchdog inter-
rupts will be issued.

For further explanations and details, see also:

– ADCModul.c and ADCModul.h files in-line comments,

– ST92141 Datasheet.

– ST9+ User Guide

66/93

Getting Started with the ST92141 Software Library Version 1.0

3.5 FUZZY LOGIC REGULATION

3.5.1 Description

The benefits of using fuzzy logic when designing embedded control systems have already
been proven in a wide variety of applications. The ease and speed of their implementation as
well as their higher flexibility in regards to a classical PID algorithm (with equivalent develop-
ment time) were the key selection criteria for this project.

The usual drawbacks, memory use and execution time, are not critical for the ST92141. For
reference, the fuzzy engine only required about 1 Kbyte of ROM (including the fuzzy kernel),
45 bytes of RAM and is completed in less than 0.9 ms.

The fuzzy logic regulation was designed using the Inform Software Corporation fuzzyTECH
tool, a convenient way to obtain a ready-to-compile file from graphical settings. This C-
precompiler generates ANSI C code traducing project data: fuzzy membership functions set-
points and rules. Even if C code can be compiled on any host platform, the fuzzyTECH 5.2
MCU-C Precompiler Edition is recommended as it is especially suited for 8/16-bit MCUs due
to its efficient data structures and MCU-optimized programming style.

Two files, slip_reg.c and slip_reg.h, were pre-compiled from the slip_reg.ftl project (Fuzzy
Tech Language) and contain 2 functions that are accessible from the user modules:

– initslip_reg: Initializes the fuzzy engine and must be called only once before closed-loop op-
erations,

– slip_reg: Contains the fuzzy engine itself. Input and Output variables are global
(Error_slip_reg and Frequency_slip_reg are inputs, Voltage_slip_reg and
DeltaVoltage_slip_reg are outputs).

The following two generic files (application independent) must also be included in the working
directory in order to use the fuzzy logic regulation:

– ftc8.l: Contains the fuzzy kernel (i.e. a set of generic fuzzy functions used for fuzzification,
rule execution and defuzzification). This file, located in the /fuzzylib folder of the working di-
rectory contains the object files archived with the AR9 utility (see Section 3.5.3).

– ftclib.h: Contains some typedef and fuzzy kernel function prototypes.

67/93

Getting Started with the ST92141 Software Library Version 1.0

3.5.2 Fuzzy Engine Technical Characteristics

The fuzzy control algorithm uses 2 inputs and 2 outputs and is characterized by a set of 21
rules. The centre of maximum method is used to defuzzify the fuzzy inference. As mentioned
above, it is executed in less than 0.9 ms.

Fuzzy variables are:

– current stator frequency: Frequency_slip_reg input, described with 3 membership functions
(mbf),

– slip frequency error: Error_slip_reg input, described with 7 mbfs,

– voltage: Voltage_slip_reg output, described with 5 mbfs,

– voltage variation: DeltaVoltage_slip_reg output, described with 6 mbfs,

This last term is accumulated to take into account the “history” of the slip frequency error. It
balances positive and negative portions to eliminate steady state errors in the same way that
a PID algorithm does. It is then added with the voltage term to give the final control output.

3.5.3 Customization

3.5.3.1 Updating the ftc8.l Fuzzy Kernel Library

The fuzzy kernel is delivered with the fuzzyTECH pack as several C source files. They need to
be compiled in a object library with the same options as the C sources used in the project. A
batch file included in the utility folder (stmake8.bat) is available for re-compiling the ftc8.l file
from these C sources. Further details on customization may be found in the appendix, Section
4.4.

68/93

Getting Started with the ST92141 Software Library Version 1.0

3.5.3.2 Modifying the Fuzzy Engine

The fuzzyTECH software must be purchased in order to be able to modify the fuzzy engine. All
information can be found on the Internet at http://www.fuzzytech.com.

The project was pre-compiled using the fuzzyTECH 5.2 MCU-C Precompiler Edition (see
Figure 14.). The current release is “fuzzyTECH 5.31d MCU-C Edition”

The project source file “slip_reg.ftl” is available on request in order to allow users to customize
and improve the delivered algorithm.

Figure 14. Inform Software fuzzyTECH Tool

69/93

Getting Started with the ST92141 Software Library Version 1.0

3.6 I/O MODULE

3.6.1 Description

The purpose of this module is to keep all information concerning the ports within the same file.
This will make sharing I/Os between the peripherals and/or the interfacing functions more
clear.

I/Os are initialized at the beginning of the main program, just after the PLL start.

A single function (IO_Init_Ports) is externally accessible. Peripheral or module I/Os (SPI, An-
alog, Push-buttons, LED, etc.) must be initialized separately in static functions (see module in-
line comments).

3.6.2 I/O Access

Once the ports are initialized, the P3DR and P5DR data registers can be directly accessed an-
ywhere in the program without using a paging mechanism, since they are located in group E
below R240 (respectively R227 and R229), using the DPRREM bit set to 1 in the EMR1 reg-
ister of the MMU.

For further explanations, see also ST92141 Datasheet, I/O ports chapter.

3.7 RCCU MODULE

3.7.1 Description

This module is used for the Reset and Clock Control Unit. It is currently used only for the PLL
initialisation, using the following settings:

– 5 MHz crystal, divided by 2 before the PLL to obtain an accurate 50% duty cycle.

– Multiplication by 10 to obtain a 25 MHz CPU clock.

3.7.2 Customization

Outside functions provided with ST9+ standard library, this module should contain all func-
tions related to:

– Slow mode (SLOW1, SLOW2),

– Wait for Interrupt (WFI),

– Low Power WFI.

70/93

Getting Started with the ST92141 Software Library Version 1.0

3.8 CORE MODULE

3.8.1 Description

The purpose of this module is to group together functions related to the ST9+ Core.

It mainly deals with interrupts, since most of the system registers are already initialized in the
crt9.asm start-up file.

3.8.2 Available Functions

■ CORE_Init_External_Interrupt

This function is called during MCU initialisation. The external interrupt vector base address
must correspond to the address used in the crt9.asm file. Interruption mode is Nested and the
external interrupt priority is not set (reset value is 7, i.e. they will not be acknowledged in
Nested mode).

■ CORE_Enable_Interrupts / CORE_Disable_Interrupts.

Both functions apply to interrupts received from either external or peripheral sources.

3.8.3 Customization

3.8.3.1 DIV_Zero_Trap

This trap routine must be filled in by the user to determine the behaviour of the program when
there is a divide-by-zero attempt. This may occur during an assembly routine (calc_rpt_tab
uses div mnemonic) or during division operations from the set of mathematical routines
(stdlib.h, math.h, etc.) provided with the C compiler (see relevant literature).

3.8.3.2 External Interrupts

The user can include external interrupt subroutines in this module under the following condi-
tions:

– the interrupts are enabled with the expected edge sensitivity,

– the interrupts have a priority strictly superior to 7 (due to Nested mode),

– the corresponding port has been properly set-up.

3.8.3.3 NMI Interrupt

The NMI interrupt routine is declared inside this Module. The user must enter the executable
code.

Due to the particular behaviour of the NMI pin on the ST92141 (sets all PWM outputs to high
impedance if properly set-up), all data referring to its use must be carefully read in the da-
tasheet, especially in the following sections:

– INTERRUPT section, Top level interrupt chapter

– INTERRUPT section, NMI / WKP0 line management chapter

– IMC section, NMI management chapter.

71/93

Getting Started with the ST92141 Software Library Version 1.0

3.8.4 UART Module

3.8.5 Description

This module contains a software-emulated UART that is used to upload data on a PC. When
used with the appropriate software terminal (tty_5 utility delivered with the library) it is a very
convenient tool that can monitor, trace and store MCU internal data in the application without
using the debugger. The hardware resource for this UART is the ST9+ standard timer. Bytes
are output using interrupts to reduce the CPU load and the priority is set to 5 (i.e. lower than
the motor control peripheral, but higher than the ADC).

Figure 15. TTY_5 Utility (Data download in progress)

3.8.6 ST92141 Characteristics

Data to be sent must be stored in the Transmit_data[0...4] array. Once the SendDataToPC
function has been called, the content of this array will be output on the P3.3 port, with the fol-
lowing characteristics:

– 9600 bauds

– 8-bit data

– 1 stop bit

– No parity

– hexadecimal format (ASCII terminal cannot be used with the current UART version)

– No communication protocol

Note : Any attempt to restart a transmission while the previous one is not completed will be cancelled.

This UART works with standard timer interrupts and the priority for this peripheral is set to 2.

72/93

Getting Started with the ST92141 Software Library Version 1.0

3.8.7 PC Characteristics

Once the tty_5 executable has been launched (all default settings are correct, only the port
has to be checked), data will be displayed in real time at a rate of 5 bytes every 10 ms and si-
multaneously written in a data.txt log file located in the tty_5 working directory.

Since the ST9 is Master during the uploading sequence, the transmission timebase is reliable
and data files can be imported on any spreadsheet editor, e.g. for closed loop performance
evaluation.

3.8.8 Customization

The communication baud rate can be adjusted from 1200 up to 38400 bauds, keeping in mind
that the interrupt processing load will increase accordingly (ten interrupts being issued for
every byte transmitted). The rest of the protocol remains the same (1 stop bit, no parity, etc.).

3.8.9 Important Notice for Hardware Implementation

There must be a galvanic isolation between the ST92141 and the PC serial port if there is
none available between the ST92141 and the power inverter. This will lower the risk of user in-
jury and computer destruction.

This is achieved by adding opto-isolators between the MCU and the level converter (RS 232
transceiver) directly connected to the serial bus.

Two-lines are needed for asynchronous transmission; the pin number corresponds to a
standard DB9 female connector:

– Tx (pin 2 for straight cable, pin 3 for null modem cable).

– Ground (pin 5 of DB9 female connector).

73/93

Getting Started with the ST92141 Software Library Version 1.0

3.9 CODE EXAMPLE

Two demo programs are included in the main.c routine. Two define statements are used to
choose either Open Loop (OPEN_LOOP) or Closed Loop (CLOSED_LOOP) operations.

The following procedure may be used for starting the practical implementation:

– Test the open loop operation without using the power inverter to verify the PWM signals (sine
waves can be displayed using a 10K / 22nF RC low-pass filter) and to validate any UART
links.

– Test the open loop operation with the power inverter by slowly increasing the DC bus voltage
to verify the power stage and to define the best ”Vmax versus frequency” curve for the motor.
This stage can also be used to validate the correct tacho frequency measurements via the
UART.

– Finally, test the closed loop operations and system stability.

Both modes are described below.

3.9.1 Open Loop: Voltage and Frequency are individually adjustable

This program converts ADC readings (channels 2 and 3 are scanned every 100 ms) into
voltage (0 to 255 modulation index) and stator frequency settings (0.9 to 255 Hz).

Since no tests are performed on the V/f ratio, trimmers (multi-turn -type trimmers are recom-
mended) must be handled carefully, starting from low voltage/ low frequency. In any case, if
the start-up voltage is greater than 10, it is slowly increased until it reaches its nominal value
to prevent an excessive inrush current.

Note : Both NewVoltage and NewStatorFreq variables are declared in the register file for demonstration
purposes only. In Version 2.0, both variables are declared in the main.c file.

3.9.2 Closed Loop

Tacho parameters have been set for 8 pairs of poles for the tacho and 1 pair of poles for the
motor.

The implemented speed profile is shown in Figure 16. below. The target speed is calculated
by subtracting the regulated slip from the given stator frequency (set in the profile).

Example: At 100Hz, given an optimum slip frequency of 2 Hz, the rotor speed will be 5,880
RPM (98 Hz).

This profile may be easily modified to characterize both regulation (accuracy, speed re-
sponse) and motor (torque and acceleration capability) characteristics.

74/93

Getting Started with the ST92141 Software Library Version 1.0

Figure 16. Closed Loop Speed Profile

Stator Frequency (Hz)

Time (s)
20s20s20s20s 20s

CCW

CW

15

100

200

2s Active Brake

75/93

Getting Started with the ST92141 Software Library Version 1.0

3.10 DESIGNING WITH 92141LIB: LIBRARY INTEGRATION

Once the tools and demo programs have been successfully run, the user will have to integrate
this library in his design. Some modules will be used as they are, others will have to be filled
in and some will have to be created.

Before starting this process, the following two important points must be highlighted:

– upgrades (various improvements, new modules or modulation methods, etc.)

– support for tools and/or application software (even though source codes and flowcharts are
provided to make customization and in depth library understanding as easy and clear as pos-
sible).

Note : Upgrading between Version 1.0 and Version 2.0 is described in detail in application note AN1277.

Users should follow the recommendations listed below in order to very easily benefit from the
latest library upgrades (by simply replacing existing modules with the new ones without any
source level modifications):

– Do not modify either of the two IMCModul.c and ACmotor.c modules. These modules can be
customized in the IMCParam.h and ACMParam.h header files (see Table 4 for other mod-
ules).

– Carefully trace all modifications to generic modules in order to make support easier.

– Regularly monitor the stack during development (at least when adding routines which in-
crease nesting depth). The same should be done for both ROM/RAM use (data available as
a percentage in file acmotor.map, generated at compile time).

– Maintain existing function interfaces.

– A modular approach should be used as often as possible.

– Use functions such as ACM_SoftStart, ACM_SoftStart_OpenLoop, ACM_RampUp or
ACM_SustainSpeed, for example, to implement modified versions outside source modules
if they do not fit targeted applications.

Note : ACM_RampUp and AMC_SustainSpeed functionsq have been slightly modified in Version 2.0.
Please refer to application note AN1277 for more details.

The following matrix (Table 4) describes the module classification for customization:

– Class A: The code inside the module can be partially removed,

– Class B: The code can be added to a module. Existing functions, define statements and con-
stants should nevertheless be maintained for upward compatibility,

– Class C: Modules must not be modified (start-up files, SW library core modules, automati-
cally generated source code).

76/93

G
e

tting
S

tarted
w

ith
the

S
T

92141
S

oftw
are

L
ibrary

V
ersion

1.0

T
a

ble
4.M

o
du

le
C

lassification
(cf.abo

ve
textfor

exp
lanations

on
A

,B
,

C
classes).

Module
Name

acmotor.c & .h

acmparam.h

adcmodul.c & .h

core.c & .h

crt9.asm

debug.h

define.h

ftclib.h

IMCModul.c & .h

IMCparam.h

IOModule.c & .h

main.c

makefile

RCCU_Mod.c & .h

Reg_file.h

sine.asm

slip_reg.c & .h

UART.c & .h

A
x

x
B

x
x

x
x

x
x

x
x

x
x

x
C

x
x

x
x

x

77/93

Getting Started with the ST92141 Software Library Version 1.0

4 APPENDIX

4.1 IMC MODULE FLOWCHARTS

4.1.1 Automatic Data Transfer Interrupt (ADT)

Note : ADT_IT routines are processed differently in Version 2.0. Please refer to application note AN1277
for more details.

Figure 17. Main Task (Pointer Update and Compare Register Refresh)

Loadcompareregistersfornext step:
CMPU<-&Phase2
CMPV<-&Phase1
CMPW<- &Phase3

Didanysine
parameterchange?

(NewContextflagset)

DidPhase1pointer
reachEndof table?

DidPhase3pointer
reachEndof table?

DidPhase2pointer
reachEndof table?

IsBrakemode
enabled?

Isrotation
ClockWise?

Loadcompareregistersfornext step:
CMPU<-&Phase1
CMPV<- &Phase2
CMPW<-&Phase3

Returnfrominterrupt

See”context switching”
flowchart.

Resetpointersto
beginningof table:

Phase1PWM
Repetitioncounter

Reset pointerto
beginningof table:

Phase3PWM

Loadcompareregistersfornext step:
CMPU<-BrakeDutyCycle
CMPV<- 0(NoPWM)
CMPW<-0(NoPWM)

Reset pointerto
beginningof table:

Phase2PWM

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No

ADTInterruptRequest

78/93

Getting Started with the ST92141 Software Library Version 1.0

Figure 18. Context Switching in ADT (i.e. either the voltage or frequency are modified)

Didsine
amplitudechange?
(NewSineflagset)

Didsine
frequencychange?
(NewRptflagset)

Didsinewave
resolutionchange?
(Length_changed

flagset)

Swapthe3PWMpointers
topreparedPWMtable

LoadnewPWMtablestart
andendaddress

ClearNewSineflag

Swaptherepetition
pointertoprepared

Repeattable

LoadnewRepeat table
startaddress

ClearNewRpt flag

48to12step
transition?

Get pointeroffset in
current table

Getpointeroffset in
currenttable

Divideoffset by4 Multiplyoffset by4

Loadpointerswithnewtable
startaddressplusoffset

Loadpointerswithnewtable
start addressplusoffset

UpdateTableLengthvariableand
setnewEndaddressfor table

ClearLength_changedflag

Returnfrominterrupt

ClearNewContextflag

Isa48to12step
transitionrequested

withPWMpointersnot
a multipleof 4?

i.e. there’sno
possiblephase

matchingbetween
48-pointand

12-pointdefinition
sinewaves

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

79/93

Getting Started with the ST92141 Software Library Version 1.0

4.1.2 Zero of PWM Counter Interrupt (ZPC)

Note : Timebase is implemented with the ADT_IT routine in Version 2.0. Please refer to application note
AN1277 for more details.

Figure 19. Example of Software Timebase implementation in ZPC Interrupt

ZPC Interrupt RequestDecrease PWMTickCounter

Is PWMTickCounter
equal to zero?

Reload PWMTickCounter
with TIMEBASE constant

Is IMC_WDT_Counter
less than 255?

Increase IMC_WDT_Counter

Decrease
FreqStepCounter

TIMEBASE x PWM period
gives the system time
base (1ms in curren tSW)

No

Yes

Return from interrupt

Is RegCounter
equal to zero?

Set corresponding flag
(checked in

IMC_Reg_LoopTime _Elapsed
function)

Reload duration in
RegCounte rwith

RegTimeBase var iable

Yes

Is
UploadDataCount er

equal to zero?

Set corresponding flag (checked in

IMC_Upload_time_Elapsed function)

Reload duration in

with _UploadPer iodconstant

Yes

Is
FreqStepCounter

equal to zero?

Set corresponding flag
(checked in

IMC_Sequence_Ela psed
function)

Reload duration in
FreqStepCounter with

StepTimeBase variable

Yes

Is
IMC_ms_Counter

equal to zero?

Set corresponding flag
(checked in

IMC_ms_Counter_Elapsed
function)

Yes

No
No

No

Decrease UploadDataCounter

Decrease RegCounter

Decrease
IMC_ms_Counter

No

No

UploadDataCounte r

80/93

Getting Started with the ST92141 Software Library Version 1.0

4.1.3 Tacho Capture Interrupt (CPT)

Figure 20. Tacho Period Acquisition with Auto-Prescaling

Reset flagcorresponding
toprescalerchange

Hastachotimer prescalerbeen
modifiedduringlast capture

interrupt?

Returnfrominterrupt

Yes No

Istachoprescaler
ratiomedium?

Istachoprescaler
equaltozero?

No

Yes Iscapturedvalue>=
NO_DIV_LOW_LIMIT?

Iscapturedvalue<=
MED_DIV_HIGH_LIMIT?

Iscapturedvalue>=
MED_DIV_LOW_LIMIT?

Yes

No

No

No

Yes

Iscapturedvalue<=
HIGH_DIV_HIGH_LIMIT?

Is tacho
overflowflag

set?

Storeprevioustacho
prescalerand
previoustacho

capture
Set flagsindicating
prescalerhasbeen

modifiedand
requestingrolling

averageinitialization

Setprescaler ratioto
medium

No

No

Yes No

Yes

Returnfrominterrupt

Storeprevioustachoprescalerand
previoustachocapture

Set flagsindicatingprescalerhas
beenmodifiedandrequestingrolling

averageinitialization

Setprescaler ratiotomedium

Storeprevioustachoprescalerand
previoustachocapture

Set flagsindicatingprescalerhas
beenmodifiedandrequestingrolling

averageinitialization

Setprescaler ratiotozero

Yes

Storeprevioustachoprescalerand
previoustachocapture

Set flagsindicatingprescalerhas
beenmodifiedandrequestingrolling

averageinitialization

Setprescalerratiotohigh

Yes

Reset tachotimer
overflowflag

Updatetachoprescalerbufferwith
newvalue(changedetectedin

IMC_GetRotorFreq)

Pushthethreelatest capture
inthe4-stagessoftwarestack

Storethecurrentlycapturedvalue

Fill the4-stagesSWstack
withthecurrentacquisition

InitializeRolling
average?

Yes

Resetcorrespondingflag

CPTInterruptRequest

i.e. tacho prescaler
ratioishigh

No

81/93

Getting Started with the ST92141 Software Library Version 1.0

4.1.4 IMC_GetRotorFreq

Figure 21. Calculation of Rotor Frequency depending on Tacho Prescaler Ratio

Get raw captured

value of tacho period

Is rolling average enabled?

Is a tacho prescaler

change on-going?

No

Sum up the four latest
captured values
of tacho period

Yes

Divide it by four

Multiply previoustacho

prescaler value by previou s

captured value (i.e. rotor

period is frozen until next

rotor period acquisition with

new prescaler value)
Use captured

period as it is

Multiply
captured

period by mid

prescaler

factor

Multiply

capture d

period by high

prescaler

factor

Is tacho

prescaler equal

to zero

Is tacho

prescaler ratio

medium?

Yes No

Yes No

Yes No

Did a tacho timer overflow occur?

OR

Is a 16-bit divisio noverflow possible?

Calculate and return rotor frequency

Yes No

Return 0

Period is given with variable time unit
depending on tacho prescaler value

Period is given with

CPU clock period unit

82/93

Getting Started with the ST92141 Software Library Version 1.0

4.2 ACMOTOR MODULE FLOWCHARTS

4.2.1 ACM_SoftStart

Figure 22. Starting Procedure limiting the Inrush Current and Start-up Torque

Set time unit to 1
(minimum value)

Update sine wave tables for zero
voltageand desired stator frequency

Calculate voltage increments time unit
(i.e. slope) using VoltageMaxAllowed

and SOFTSTART_TIMEOUT

Is time unit equal to zero?

Increment output
voltage

Load ”step” time base
with time unit

Are function input

Is ”step” duration
elapsed?

Is voltage grea ter than VoltageMaxA llowed?

OR
Is Rotor speed high enough?

Open loop
mode?

Set Time varia ble to 0

Is Rotor speed
high enough?

Increment Time

Wait 10 ms

Is time greater than
OPTIONAL_TIMEOUT?

Stop PWM generation

Return FALSE

Return FALSE

Return TRUE

Start tacho rolling
average

No

Yes

No

Yes

No

Yes

Yes

No

Yes

No

Yes

No

No

Enable PWM on outputs

Yes
parameters correct?

83/93

Getting Started with the ST92141 Software Library Version 1.0

4.2.2 ACM_RampUp

Figure 23. Motor Acceleration with Continuous Monitoring of the Slip Frequency

Increase sta tor
frequency
(+ 0.1Hz)

Get current stator frequency

Calculate number of 0.1 Hz
up to target speed

Load ”step” software timebase
with RampTime/StepNumber

Is step duration
elapsed?

Is regulati on
loop time elapse d?

Is target
speed

reached?

Get current slip frequency

Calculat e Maximum allowed slip
during ramp up:

MaxSlip = CurrentSlip + SLIP_LIMIT

Is current slip
lower than
MaxSlip?

Get optimum slip
frequency for regulation

Get New voltage from slip
regulation

Update stator voltag e

Yes

Yes

Yes

Yes

No

No

No

No
i.e. Slip frequenc yis
currently too high to
continue the ramp

Return

84/93

Getting Started with the ST92141 Software Library Version 1.0

4.2.3 ACM_Update_Sine_Tables

Note : Due to important changes in PWM sine wave generation methods, this flowchart is now obsolete
for Version 2.0. Please refer to application note AN1277 for more details.

Figure 24. Output Sine Wave Parameter Modification (Voltage, Frequency)

Is NewContext flag set?
(i.e. previous update request

Is
New frequency <=

LOWEST_FREQUENCY
?

Set New frequency to
HIGHEST_FREQUENCY

Set New frequency to
LOWEST_FREQUENCY

Yes

Yes

Is
New frequency

different from curren t
frequency?

Set the most appropriate number of
PWM periods per sine period (NewPeriod)

Is NewPeriod less or
equal to 47?

Is sine generat ion
configur edfor 48

values?

Is sine generat ion
configured for 12

values?

Initialize parame ters:
Set NewTabLength

Set Pointer to 48-points referen cesine
Set Pointer to 48-points repetition table

Initialize parame ters:
Set NewTabLength

Set Pointer to 12-points reference sine
Set Pointer to 12-points repetition table

Is NewPeriod
different from curren t

per iod?

Update repetition table defining
sine Period (calc_rpt asm routine)

Set NewRpt flag

Set new PWM frequency depending on
Period and desired sta tor frequency

Yes

Is requested

current voltage?
Did sine wave definition change

(48-points / 12-p oints)?

Update PWM ratios table defining

Set NewSine flag

No

Return (FALSE)

Return (TRUE)

Is
New frequency >=

HIGHEST_FREQUENCY
?

Yes

Yes

YesNo

No No

No

Yes

Is there sine tables update
to be done in ADT interrupt?

Set NewContext flag

Yes Yes

No

No

Yes

No

No

No

sine amplitu de (calc_sin asm rout ine)

voltage different from

not yet acknowledged)

85/93

Getting Started with the ST92141 Software Library Version 1.0

4.2.4 ACM_SlipRegulation

Figure 25. Regulation Routine using a Fuzzy Engine

Get currentslipvalue

Get currentstator
frequencyvalue

Set valueto255

Doesstator
frequencyexceed

8-bit format?

Yes

Fuzzy engine call

Convertstatorfrequency
tofuzzyformat (8-bit,1Hz

resolution)

Calculatefuzzyerror
out of currentslipand

targetslip

Accumulate”fuzzy
integral”result to

voltageintegral term
(signed16-bit)

Setvoltageintegral
termtoMAX_S16

Setvoltageintegral
termtoMIN_S16

Doesintegral
termoverflow?

Doesintegral
termunderflow?

Yes

No

Yes

No

SetNewVoltageto255

Set NewVoltageto0

DoesNewVoltage
overflow?

DoesNewVoltage
underflow?

Yes

No

Yes

No

Add”fuzzyproportional”
and

8-bitvoltageintegral
toget NewVoltage
(unsigned8-bit)

Decimatevoltageintegral
termtoget signed8-bit

value

No SlipControl
Fuzzy Engine

ReturnNewVoltage

IsNewVoltagegreater
thanMaxAllowed

Voltage?

Set NewVoltageto
MaxAllowedvalue

Yes

No

Fuzzystator
frequencyFuzzysliperror

Fuzzy
”proportional”
givingdirect

voltage

Fuzzy ”integral”
givingvariable

increment/
decrement

86/93

Getting Started with the ST92141 Software Library Version 1.0

4.3 TOOL OPTION SUMMARY

Further details can be found in the corresponding literature (tool user manuals).

4.3.1 Linker

It is directly invoked (rather than via the GCC9). The following options are used to modify the
behaviour of the linker program (LD9).

-I

During the link phase, the GCC9 (default) ensures that the initial values of initialized variables
are copied to the end of the .text segment. From here (normally, in non-volatile memory) they
will be recopied at run-time into the .data segment (in read/write memory) so that these values
may be used and modified by the program. If the linker is directly invoked for linking (instead
of via the GCC9) by default the LD9 linker does not copy the initial values to the .text segment.
This is only done if option -I is specified.

In order for the .data section values to be copied to the .text area, they should be linked with
the GCC9 (default) or the LD9 with option -I. If the initial values are not to be copied to the end
of the .text segment, the GCC9 may be invoked with option -noI, or the LD9 in default mode
(i.e. LD9 called without option -I).

When option -I is active, the LD9 will define the _text_end global symbol as the final address
of the initialized variables stored within the .text section (i.e. at the end of the .text section after
the initial content of the .data section);

-mmu

When the linker is directly invoked, this is not the default option and it must be specified when
targeting ST9+ architecture. However, the GCC9 invokes the LD9 linker with the -mmu option
by default. This generates an ST9+ application containing 64Kbyte memory code segments.
Instructions specific to ST9+ MCUs requiring special relocations, new assembler operators
and correct DPR translation are only possible under this option. The -mmu option also in-
structs the linker to use 22-bit physical addresses when generating a map listing, as well as to
produce a table of DPR register assignments.

-m

This option writes the link map to the <filename>.map output file. When -o is not specified, the
the link map is written to the a.map file by default.

-v

Verbose mode. This option is used to display the version number of LD9, as well as the files
and libraries as they are processed, names of temporary open files, etc.

87/93

Getting Started with the ST92141 Software Library Version 1.0

4.3.2 Assembler

It is invoked via the GCC9. The following options are passed to modify behaviour of the as-
sembler program (GAS9).

-g

The -g option is used to produce debugging information that will be used by the GAS9 and the
LD9 to allow source level debugging by the WGDB9. This option generates the stabs, stabd
and stabn directives in the generated file.

It is important to bear in mind that the -tr9 option is required to compile assembly programs
that include TR9 files (*.inc) or to compile C programs that contain asm directives involving the
TR9.

-tr9

By default, the compiler generates code for the GAS9 assembly language; TR9 is not invoked
unless option -tr9 is used. With this option, the GCC9 will invoke the CPP9 + CC9 (with the
-mtr9 option) + TR9 + GAS9 + LD9. Note that the behaviour of the compiler has been changed
in versions 4.3 and higher -- the TR9 language treats all ST9+ instruction mnemonics as re-
served words. In previous versions, this prevented the user from defining functions named
add, div or and. This rendered the compiler non-ASCI compliant and difficult to use, especially
if calling the library routine div, delivered with the ST9+ toolchain.

A number of options have been added to allow parameters to be passed selectively from the
GCC9 to the TR9, GAS9 and LD9. These are respectively:

– Wt, for the macro-expander;

– Wa, for the assembler; and -Wl, for the linker-loader:

– GCC9 with -Wt, allows the passing of the string which follows the comma to TR9.

Note that -tr9 must be invoked for this to happen (i.e. the -tr9 -Wt,-c command string will send
the -c parameter to the TR9);

– GCC9 with the option -Wa, will pass the string which follows the comma to the assembler
GAS9 (i.e. -Wa,-ahld to pass option -ahld to GAS9);

– GCC9 with -Wl, allows the passing of the string which follows the comma to the linker (i.e. -
Wl,-m) to pass the -m parameter to the LD9).

88/93

Getting Started with the ST92141 Software Library Version 1.0

4.3.3 C Compiler (GCC9)

The following options are passed to modify the behaviour of the C compiler (GCC9).

-samepd

The GCC9 -samepd option (or the CC9 -mnopd option) is used to generate ST9 code where
program and data use only a single 64Kbyte space.

The -samepd option places all constants and const-type variables in the .text section.

-g

This option generates source level debugging information (this information is present in the
generated file, using specific assembly directives, and will be used by the WGDB9+ during the
debug phase). This option has no effect on the code generated.

-c

The -c option is used to stop after having invoked the assembler (GAS9). This option is also
used to compile, macro-assemble or assemble the source files, but not to link them. Object
files are produced with names formed by replacing the existing suffix with .o.

-O

Optimize. When the optimization option is selected, the compilation time is longer and the host
will require more memory.

Without the ’-O’ option, the compiler will reduce compilation costs and ensure that the debug-
ging will produce the expected results. Statements are independent, and the program may be
stopped using a breakpoint between statements. A new value can be assigned to any vari-
able, or the program counter set to any other statement in the function, with exactly the same
results as expected from the source code. Only variables that are explicitly declared as reg-
ister variables are allocated to registers.

When’-O’ is invoked, the compiler will reduce code size and minimize the execution time of the
generated code.

-mlink

This option generates shorter prologues and epilogues. The compiler is requested to use ei-
ther link or unlink instructions in the prologue and epilogue. When the -mparmusp option is
also active, the compiler will use linku and unlinku. By default, the compiler generates pro-
logue and epilogue functions that are recognisable by ST9+ devices, and will adjust the
system or user stack by using pushw, ldw, and subw.

When the -mlink option is selected, a GCC9_LINK macro is predefined by the C processor to
flag that the new version of prologue and epilogue are in use.

-fomit-frame-pointer

89/93

Getting Started with the ST92141 Software Library Version 1.0

The frame pointer should only be maintained in a register if it is used by functions. This elimi-
nates unnecessary frame pointer save, setup and restore instructions, an extra register in
many functions is also freed. The option decreases code size, but on the other hand, it some-
times makes debugging difficult.

-mparmusp

The -mparmusp option will use the user stack pointer (RR236) to pass function parameters
and push register values. By default, the system stack pointer (RR238) is used.

If the -mparmusp option is invoked, the two stacks must be initialised in the C start-up file.

The ST9+ is able to use of 2 stacks: the system stack, where return addresses from calls and
interrupts are stored, and the user stack. Variables in either stack may be pushed, popped or
accessed.

The compiler uses only one stack, by default, the system stack. In this case, return addresses
from calls are stored in this stack, as well as parameters and local variables. It is also used for
internal temporary storage.

The -mparmusp option allows the user stack to be used. In this case, return addresses are still
stored in the system stack, but parameters, local variables and temporary internal data are
stored in the user stack. When this option is invoked, the GCC9 generates the predefined
GCC9_PARMUSP macro for the preprocessor.

The algorithm used for parameter passing remains the same, except that the parameters are
now are stored in the user stack, instead of the system stack.

Caution: The ST9+ is able to map stacks in either the register file or in memory. If only the
system stack can be used, it MUST be mapped to memory. If both stacks are employed, the
system stack may be mapped to the register file, but the user stack MUST be mapped to
memory. The interest of using both stacks is that the system stack can be mapped in the reg-
ister file, which decreasing the size occupied by the user stack in memory. However, this si-
multaneously reduces the size of the register file that remains available to the program.

Note : Library names that end with ’ureg9’ must be used with the ’-mparmusp’ option. (The first parameters
use registers rr0 and rr2, and the remaining ones are in the user stack)

-Wa,ahdl

If the GCC9 is used with the -Wa option, the string that follows the comma will be passed to
the GAS9 assembler (i.e. -Wa,-ahld to pass option -ahld to GAS9); I.e. the -a option is used to
request the generation of the listing file that includes high-level lines, assembly lines and a
symbols list. This option should be followed by modifiers that specify which information should
be included in the listing file. The modifiers must be concatenated with this option (i.e. ”-alhd”).

90/93

Getting Started with the ST92141 Software Library Version 1.0

Modifiers :

– ”l” is used to request the generated assembly code listing, the relative offset of the instruction
from the beginning of the current section and the hexadecimal dump of the instruction. The
use of this modifier is recommended.

– ”h” is used to request the generation of source lines interleaved with the generated code.
The use of this modifier is recommended.

– ”d” is used to suppress the source-level directives included in the intermediate assembly file
by the compiler or the macro-expander. These directives are generated by the source-level
debugging option (’-g’). They are used by the GAS9, but they make the listing file difficult to
read. The use of this modifier is recommended.

-Wall

This option specifies the maximum warning level.

91/93

Getting Started with the ST92141 Software Library Version 1.0

4.4 CREATE YOUR OWN FTC8.L FILE

This file is required if certain tool options contained in the makefile must be modified. The pro-
cedure used to create a ftc8.l file is described below:

1. Modify the stmake8.bat batch file (described below) to include the new options.

2. Copy the “ftlibc.h” file (located in \fuzzyTECH 5.2\Runtime\C\include) and the stmake8.bat
utility into the \fuzzyTECH 5.2\Runtime\C\Lib\Src\MCU folder.

3. Run the stmake8.bat utility in this last directory, using the toolchain DOS session. It will
create a lib8 folder with object files and the ftc8.l fuzzy kernel library.

4. Copy the ftc8.l file into the fuzzylib directory of the working folder (Ex: c:\code\st92141).

Note : The same utility exists for using 16-bit internal variables in the fuzzy kernel. The identical procedure
is used (stmake16.bat will replace stmake8.bat).

@echo off

echo *** ************* *****************

echo ******** STMAKE8.BAT: fuzzyTECH Runtime Kernel FTC8.LIB April 2000

echo ********

echo ******** Step 1: Create a lib8 directory

echo ******** Step 2: Compile all C-Sources to object files

echo ******** Step 3: Move all object files to a library

echo ********

echo ******** Note: The compiler command line switches used in this batch file

echo ******** for building the library is set for current ST92141lib SW.

echo ******** It uses 8-bit variables for fuzzy computations.

echo *** ************* *****************

echo ********

mkdir lib8

gcc9 -samepd -g -c -O -mlink -fomit-frame-pointer -mparmusp -Wall -DFTLIBC8

hcom.c -o lib8\hcom.o

gcc9 -samepd -g -c -O -mlink -fomit-frame-pointer -mparmusp -Wall -DFTLIBC8

hflms.c -o lib8\hflms.o

gcc9 -samepd -g -c -O -mlink -fomit-frame-pointer -mparmusp -Wall -DFTLIBC8

hflmss.c -o lib8\hflmss.o

gcc9 -samepd -g -c -O -mlink -fomit-frame-pointer -mparmusp -Wall -DFTLIBC8

hmax.c -o lib8\hmax.o

gcc9 -samepd -g -c -O -mlink -fomit-frame-pointer -mparmusp -Wall -DFTLIBC8

hmaxprod.c -o lib8\hmaxprod.o

gcc9 -samepd -g -c -O -mlink -fomit-frame-pointer -mparmusp -Wall -DFTLIBC8

hmin.c -o lib8\hmin.o

gcc9 -samepd -g -c -O -mlink -fomit-frame-pointer -mparmusp -Wall -DFTLIBC8

92/93

Getting Started with the ST92141 Software Library Version 1.0

hminprod.c -o lib8\hminprod.o

gcc9 -samepd -g -c -O -mlink -fomit-frame-pointer -mparmusp -Wall -DFTLIBC8

hmom.c -o lib8\hmom.o

gcc9 -samepd -g -c -O -mlink -fomit-frame-pointer -mparmusp -Wall -DFTLIBC8

hpubvars.c -o lib8\hpubvars.o

cd lib8

ar9 qv ftc8.l hcom.o hflms.o hflmss.o hmax.o hmaxprod.o hmin.o hminprod.o hmom.o

hpubvars.o

ar9 s ftc8.l

cd ..

93/93

Getting Started with the ST92141 Software Library Version 1.0

THE PRESENT NOTE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS WITH INFORMATION
REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME. AS A RESULT, STMICROELECTRONICS
SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO
ANY CLAIMS ARISING FROM THE CONTENT OF SUCH A NOTE AND/OR THE USE MADE BY CUSTOMERS OF
THE INFORMATION CONTAINED HEREIN IN CONNEXION WITH THEIR PRODUCTS.”

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without the express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

 2000 STMicroelectronics - All Rights Reserved.

Purchase of I2C Components by STMicroelectronics conveys a license under the Philips I2C Patent. Rights to use these components in an
I2C system is granted provided that the system conforms to the I2C Standard Specification as defined by Philips.

STMicroelectronics Group of Companies
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain

Sweden - Switzerland - United Kingdom - U.S.A.

http:// www.st.com

