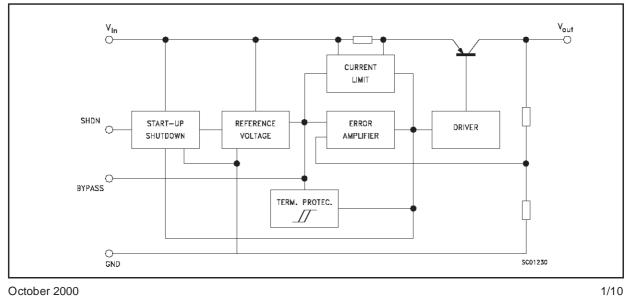

LK112 SERIES

LOW NOISE LOW DROP VOLTAGE REGULATOR WITH SHUTDON FUNCTION

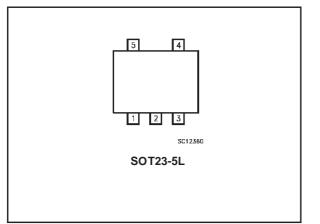
- OUTPUT CURRENT UP TO 100mA
- LOW DROPOUT VOLTAGE (240mV AT I_{OUT}=60mA)
- VERY LOW QUIESCENT CURRENT: 0.1µA IN OFF MODE AND MAX 250µA IN ON MODE AT I_{OUT}=0mA
- LOW OUTPUT NOISE: TYP 30µV AT I_{OUT}=60mA AND 10Hz<f<80KHz
- WIDE RANGE OF OUTPUT VOLTGAES
- INTERNAL CURRENT AND THERMAL LIMIT


DESCRIPTION

The LK112 is a low dropout linear regulator with a built in electronic switch. The internal switch can be controlled by TTL or CMOS logic levels. The device is ON state when the control pin is pulled to a logic high level. An external capacitor can be used connected to the noise bypass pin to lower the output noise level to $30\mu V_{rms}$. An internal PNP pass transistor is used to achieve a low dropout voltage.

The LK112 has a very low quiescent current in ON MODE while in OFF MODE the Iq is reduced down to 100nA max. The internal thermal shutdown circuitry limits the juntion temperature to below 150°C. The load current is internally monitored and the device will shutdown in the presence of a short circuit or overcurrent condition at the output.

SCHEMATIC DIAGRAM



LK112 SERIES

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
VI	DC Input Voltage	16	V
V _{SHDN}	Shutdown Input Voltage	16	V
Ι _Ο	Output Current	Internally limited	
T _{stg}	Storage Temperature Range	-55 to +150	°C
T _{op}	Operating Junction Temperature Range	-30 to +80	°C

CONNECTION DIAGRAM (top view)

PIN DESCRIPTION

Pin N°	Symbol	Name and Function
1	SHDN	Shutdown Input: Disables the regulator when is connected to GND or to positive voltage less than 0.6V
2	GND	Ground Pin: Internally connected to the die attach flag to decrease the total thermal resistance and increase the package ability to dissipate power.
3	Bypass	Bypass Pin: Bypass with 0.1µF to improve the Vref thermal noise performances.
4	OUT	Output Port
5	IN	Input Port

ELECTRICAL CHARACTERISTICS FOR LK112 (T_j = 25°C, V_{IN}=V_{OUT}+1V (see Note 1), I_{OUT}=0mA, V_{SHDN}=1.81V, C_I = 1 μ F, C_O = 2.2 μ F, C_{BYPASS} = 0.1 μ F unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _d	Quiescent Current	ON MODE (except I _{SHDN})		175	250	μA
		OFF MODE V _I = 8V V _{SHDN} = 0V		0	0.1	μA
V _O	Output Voltage	I _O = 30mA	(see table)	
ΔV_{O}	Line Regulation	$ \begin{array}{ll} V_{I} = V_{O} + 1V \mbox{ to } V_{O} + 6V, & V_{O} \leq 5.6V \\ V_{I} = V_{O} + 1V \mbox{ to } V_{O} + 6V, & V_{O} > 5.6V \end{array} $		0.7 0.8	20 40	mV mV
ΔV_{O}	Load Regulation	$I_{O} = 1$ to 60mA $I_{O} = 1$ to 100mA		15 25	30 90	mV mV
V _d	Dropout Voltage	I _O = 60 mA (see Note 2)		0.17	0.24	V
Ι _Ο	Output Current Limit		100			mA
SVR	Supply Voltage Rejection	$V_{I} = V_{O}+1.5V$ $C_{BYP} = 0.1\mu F$ $C_{O} = 10\mu F$ f = 400Hz $I_{O} = 30mA$		55		dB
eN	Output Noise Voltage	$ B= 10Hz \ to \ 80KHz \ \ C_{BYP} = 0.1 \mu F \\ C_{O} = 10 \mu F \ \ \ V_{I} = V_{O} + 1.5 V, I_{O} = 60 mA $		30		μV
I _{SHDN}	Shutdown Input Current	V _{SHDN} = 1.8V Output ON		12	35	μA
V _{SHDN}	Shutdown Input Logic	Output ON Output OFF	1.8		0.6	V V
$\Delta V_0/T_j$	Output Voltage Temperature Coefficient	I _O = 10mA		0.09		mV/°C

Note 1: for version with output voltage less than 2V V_{IN}=2.4V Note 2: only for version with output voltage more than 2.1V

ORDERING NUMBERS AND OUTPUT VOLTAGE

Part Number	Output Voltage	V _{OUT} Min	V _{OUT} Max	Test Voltage
LK112M13TR	1.3V	1.24V	1.36V	2.4V
LK112M14TR	1.4V	1.34V	1.46V	2.4V
LK112M15TR	1.5V	1.44V	1.56V	2.4V
LK112M16TR	1.6V	1.54V	1.66V	2.4V
LK112M17TR	1.7V	1.64V	1.76V	2.4V
LK112M18TR	1.8V	1.74V	1.86V	2.4V
LK112M19TR	1.9V	1.84V	1.96V	2.4V
LK112M20TR	2.0V	1.94V	2.06V	3.0V
LK112M21TR	2.1V	2.04V	2.16V	3.1V
LK112M22TR	2.2V	2.14V	2.26V	3.2V
LK112M23TR	2.3V	2.24V	2.36V	3.3V
LK112M24TR	2.4V	2.34V	2.46V	3.4V
LK112M25TR	2.5V	2.44V	2.56V	3.5V
LK112M26TR	2.6V	2.54V	2.66V	3.6V
LK112M27TR	2.7V	2.64V	2.76V	3.7V
LK112M28TR	2.8V	2.74V	2.86V	3.8V
LK112M29TR	2.9V	2.84V	2.96V	3.9V
_K112M30TR	3.0V	2.94V	3.06V	4.0V
_K112M31TR	3.1V	3.04V	3.16V	4.1V
LK112M32TR	3.2V	3.14V	3.26V	4.2V
LK112M33TR	3.3V	3.24V	3.36V	4.3V
LK112M34TR	3.4V	3.335V	3.465V	4.4V
LK112M35TR	3.5V	3.435V	3.565V	4.5V
LK112M36TR	3.6V	3.535V	3.655V	4.6V
LK112M37TR	3.7V	3.630V	3.770V	4.7V
LK112M38TR	3.8V	3.725V	3.875V	4.8V
LK112M39TR	3.9V	3.825V	3.975V	4.9V
LK112M40TR	4.0V	3.920V	4.080V	5.0V
LK112M41TR	4.1V	4.020V	4.180V	5.1V
LK112M42TR	4.2V	4.120V	4.280V	5.2V
LK112M43TR	4.3V	4.215V	4.385V	5.3V
LK112M44TR	4.4V	4.315V	4.485V	5.4V
LK112M45TR	4.5V	4.410V	4.590V	5.5V
_K112M46TR	4.6V	4.510V	4.690V	5.6V
LK112M47TR	4.7V	4.605V	4.795V	5.7V
LK112M48TR	4.8V	4.705V	4.895V	5.8V
LK112M49TR	4.9V	4.800V	5.000V	5.9V
LK112M50TR	5.0V	4.900V	5.100V	6.0V
LK112M55TR	5.5V	5.390V	5.610V	6.5V
LK112M80TR	8.0V	7.840V	8.160V	9.0V

TYPICAL CHARACTERISTICS (unless otherwise specified $T_i = 25^{\circ}C$, $C_i = 1\mu$ F, $C_o = 2.2\mu$ F, $C_{BYP} = 100$ nF)

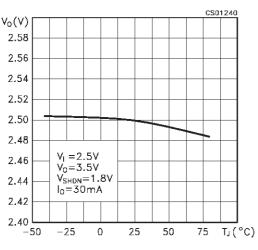


Figure 2 : Output Voltage vs Temperature

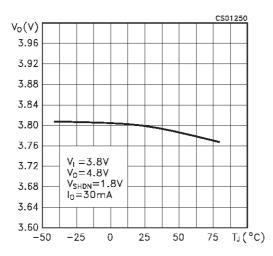
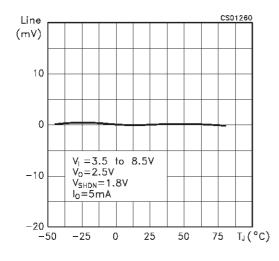



Figure 3 : Line Regulation vs Temperature

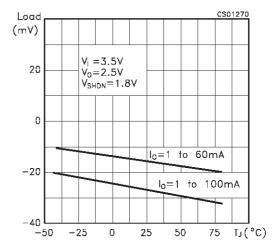


Figure 4 : Load Regulation vs Temperature

Figure 5 : Dropout Voltage vs Temperature

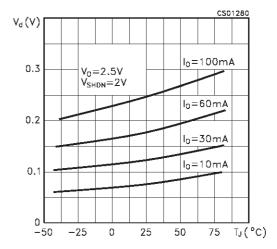


Figure 6 : Short Circuit Currennt vs Dropout Voltage

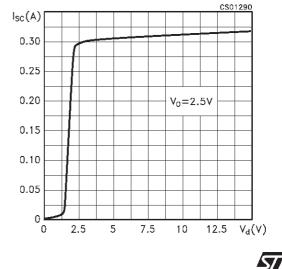


Figure 7 : Output Voltage vs Input Voltage

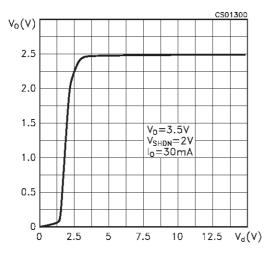


Figure 8 : Shutdown Voltage vs Temperature

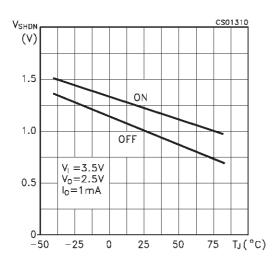
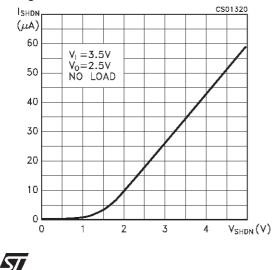



Figure 9 : Shutdown Current vs Shutdown Voltage

Figure 10 : Supply Voltage Rejection vs Temperature

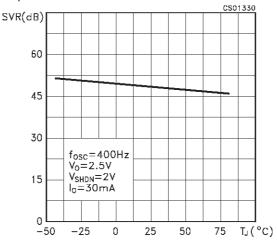


Figure 11 : Supply Voltage Rejection vs Output Current

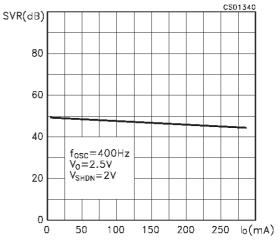
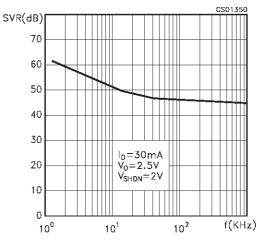



Figure 12 : Supply Voltage Rejection vs Frequency

Figure 13 : Supply Voltage Rejection vs Temperature

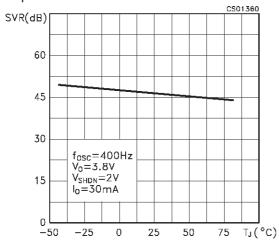


Figure 14 : Quiescent Current vs Temperature

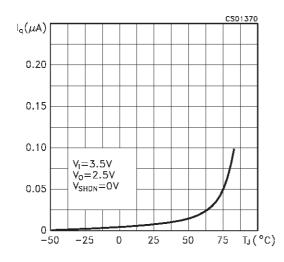
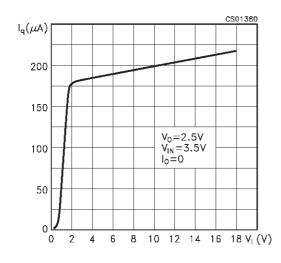



Figure 15 : Quiescent Current vs Input Voltage

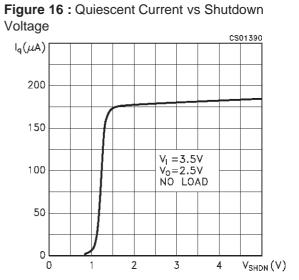


Figure 17 : Quiescent Current vs Output Current

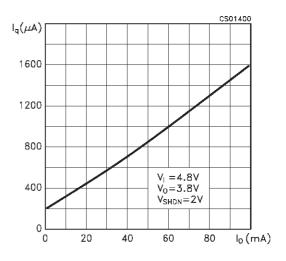
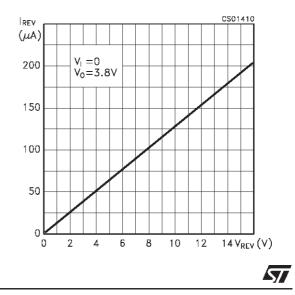
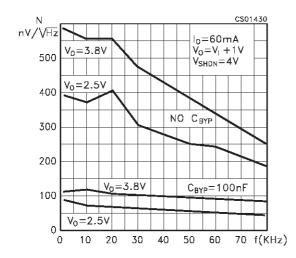


Figure 18 : Reverse Current vs Reverse Voltage

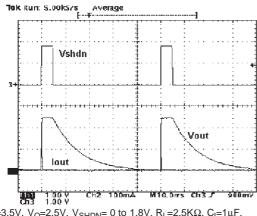
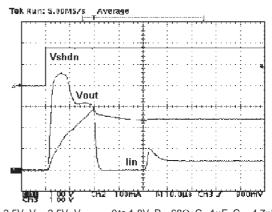
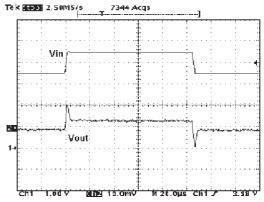
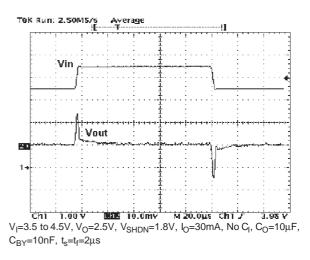

Figure 19 : Stability

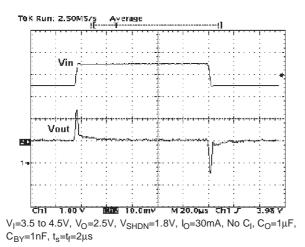
Figure 20 : Spectrum Noise



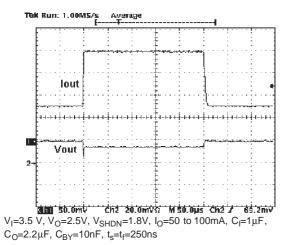
V_I=3.5V, V_O=2.5V, V_{SHDN}= 0 to 1.8V, R_L=2.5K\Omega, C_I=1\mu F, C_O=4.7\mu F, C_B\gamma=10n F

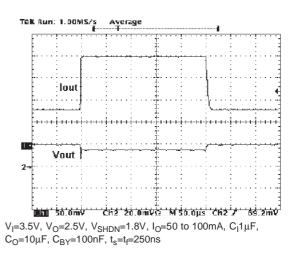

57

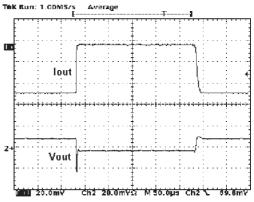

V_I=3.5V, V_O=2.5V, V_{SHDN}= 0 to 1.8V, R_L=68\Omega, C_I=1\mu F, C_O=4.7\mu F, C_{BY}=100nF



V_I=3.5 to 4.5V, V_O=2.5V, V_{SHDN}=1.8V, I_O=30mA, No C_I, C_O=10 \mu F, C_{BY}=100 nF, t_s=t_f=2 \mu s




Figure 25 : Line Transient


Figure 26 : Load Transient

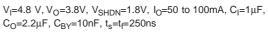
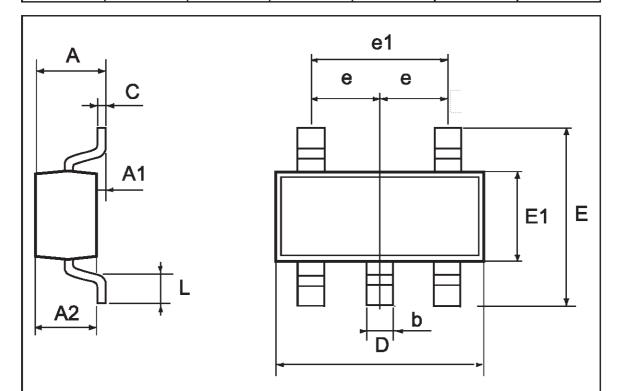


Figure 27 : Load Transient

Figure 28 : Load Transient



57

DIM.	mm			mils		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	0.90		1.45	35.4		57.1
A1	0.00		0.15	0.0		5.9
A2	0.90		1.30	35.4		51.2
b	0.35		0.50	13.7		19.7
С	0.09		0.20	3.5		7.8
D	2.80		3.00	110.2		118.1
E	2.60		3.00	102.3		118.1
E1	1.50		1.75	59.0		68.8
L	0.35		0.55	13.7		21.6
е		0.95			37.4	
e1		1.9			74.8	

Γ

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. © The ST logo is a registered trademark of STMicroelectronics

© 2000 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom © http://www.st.com

