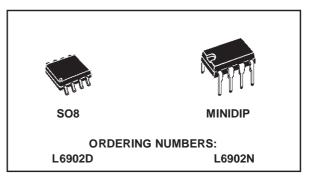


L6902

1A CONSTANT CURRENT BATTERY CHARGER

- UP TO 1A BATTERY CHARGER
- OPERATING INPUT VOLTAGE FROM 8V TO 36V
- PRECISE 3.3V (±2%) REFERENCE VOLTAGE
- 5% CHARGING CURRENT ACCURACY
- OUTPUT VOLTAGE ADJUSTABLE FROM 1.235V TO 34V
- 250KHz INTERNALLY FIXED FREQUENCY
- VOLTAGE FEEDFORWARD
- ZERO LOAD CURRENT OPERATION
- INTERNAL CURRENT LIMITING
- PROTECTION AGAINST FEEDBACK DISCONNECTION
- THERMAL SHUTDOWN

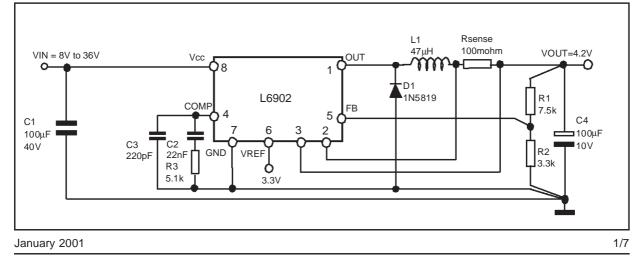

APPLICATION

- CHARGES FOR NiCd, NiMH AND LITHIUM BATTERIES
- SIMPLE, SMALLER & EFFICIENT STEP-DOWN CONVERTERS
- BATTERY EQUIPPED SYSTEMS
- DISTRIBUTED POWER SUPPLY
- MOBILE PC & SUBNOTEBOOK

DESCRIPTION

The L6902 is a complete and simplest IC for batteries charging application.

Based a voltage mode structure it is a step down switching converter integrating a current error ampli-



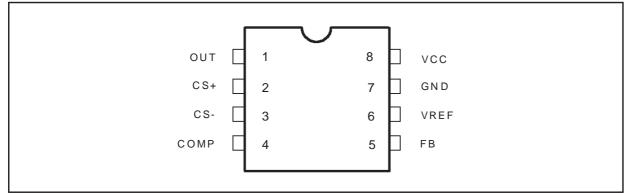
fier to have a constant voltage and constant current control for a most efficient charging solution of the modern rechargeable batteries including lithium-ion, NiMH and NiCd.

By means of 0.10hm on board current sense resistor and the availability of the current sense pins (both compatible to Vcc and for Cs- compatible with GND too) a charging current programming is very simple and accurate (\pm 5%).

The device can charge batteries in a wide range of outputs voltage (from 1.235 to 34V) from a single cell till to multiple cells or battery packs.

The internal robust P-Chanel DMOS transistor with a typical of 250mohm assures high efficiency and a minimum dropout even at high output current level. The internal limiting current (latched function) of typical value of 2.3A protects the device from accidental output short circuit avoiding dangerous batteries damage.

TEST AND APPLICATION CIRCUIT


L6902

DESCRIPTION (Continued)

Other protections as on chip overvoltage protection, thermal shutdown together the internal frequency modulation complete the device for a safe and reliable application.

The internal fixed switching frequency of 250KHz, and the possibility to have the device in SO-8 pin allows to built an ultra compact battery charger with a minimum board space.

PIN CONNECTION

PIN DESCRIPTION

N°	Pin	Function
1	OUT	Regular Output
2	CS+	Current Error Amplifier input (current sense at higher voltage)
3	CS-	Current Error Amplifier input (current sense at lower voltage)
4	COMP	E/A output to be used for frequency compensation
5	FB	Stepdown feedback input. Connecting directly to this pin results in an output voltage of 1.23V. An external resistive divider is required for higher output voltages.
6	V _{REF}	3.3V VREF. No cap is need for stability.
7	GND	Ground
8	VCC	Unregulated DC input voltage.

THERMAL DATA

Symbol	Parameter	Minidip	SO8	Unit
R _{th j-amb}	Thermal Resistance Junction to Ambient Max.	75 (*)	110 (*)	°C/W

57

(*) Package mounted on board.

ABSOLUTE MAXIMUM RATINGS

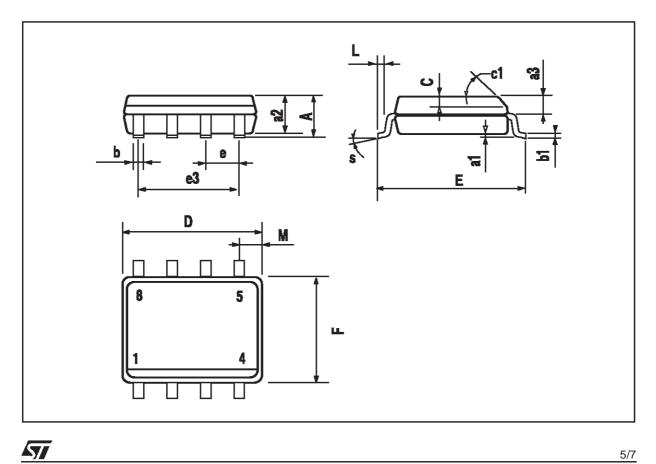
Symbol	Parameter	Value	Unit
V ₈	Input Voltage	40	V
V ₁	Output DC voltageOutput peak voltage at t = 0.1µs	-1 to 40 -5 to 40	V V
l ₁	Maximum output current	Internally limited	
V4, V5	Analog pins	4	V
V ₂ , V ₃	Analog pins	-0.3V to V _{CC}	V
P _{tot}	Power dissipation at $T_{amb} \leq 60~^\circ C$ Minidip SO8	1 0.75	W W
Tj	Operating junction temperature range	-40 to 150	°C
T _{stg}	Storage temperature range	-55 to 150	°C

ELECTRICAL CHARACTERISTCS

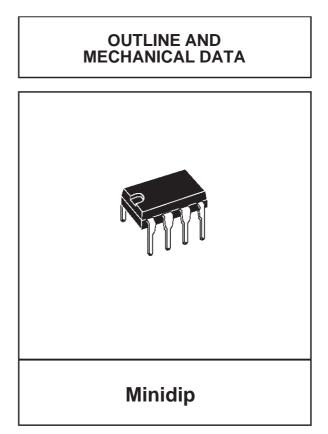
 $(T_j = 25^{\circ}C, V_{CC} = 12V, unless otherwise specified.)$ (•) Specification Referred to Tj from 0 to 125°C.

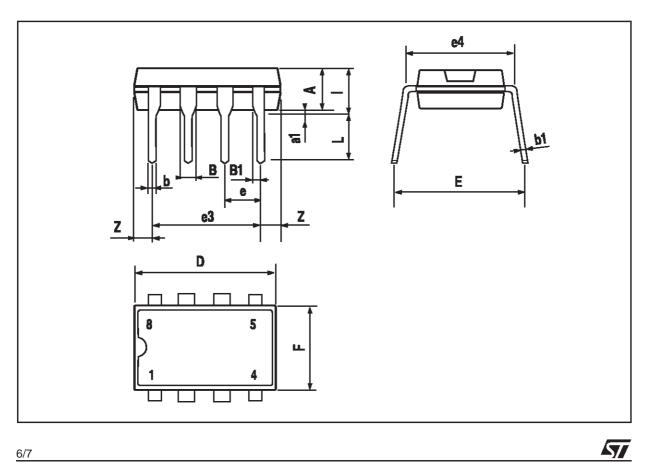
Symbol	Parameter	Test Condition		Min.	Тур.	Max.	Unit
V _{CC}	Operating input voltage range	V _O = 1.235V; I _O = 1A	•	8		36	V
Vd	Dropout voltage	VCC = 8V; IO = 1A	•		0.25	0.5	V
Ι _Ο	Operating charging current	with $R_{sense} = 0.1\Omega$	•	0.95 0.92	11	1.05 1.08	A A
I	Maximum limiting current	VCC = 8V to 36V	•		2.3		A
V _{batt (max)}	Maximum Vbatt with switch ON					V _{CC} -2	V
fs	Switching frequency		•	212 225	250 250	287 275	kHz kHz
d	Duty cycle			0		100	%
DYNAMIC	CHARACTERISTICS						
V ₅	Voltage feedback	8V , V _{CC} , 36V, 20mA < I _O < 1A	•	1.21 1.198	1.235 1.235	1.259 1.272	V V
η	Efficiency	$V_{O} = 5V, V_{CC} = 12V$			90		%
DC CHAR	ACTERISTICS						L
I _{qop}	Total operating quiescent current		•		3	5	mA
Ιq	Quiescent current	Duty cycle = 0; VFB = 1.5V				2.7	mA
I _{qst-by}	Total stand-by quiescent current	V _{inh} > 2.2V V _{CC} = 36V; V _{inh} > 2.2V	•		50 80	100 150	μΑ μΑ

ELECTRICAL CHARACTERISTCS (continued)


 $(T_j = 25^{\circ}C, V_{CC} = 12V, unless otherwise specified.)$ (•) Specification Referred to Tj from 0 to $125^{\circ}C$.

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
VOLTAGE	ERROR AMPLIFIER		1	1		
VOH	High level output voltage	$V_{FB} = 1V$	3.6			V
V _{OL}	Low level output voltage	V _{FB} = 1.5			0.4	V
I _{o source}	Source output current	$V_{comp} = 1.9V; V_{FB} = 1V$	250	300		mA
I _{o sink}	Sink output current	V _{comp} = 1.9V; V _{FB} = 1.5V	1	1.5		mA
I _b	Source bias current			2.5	4	mA
	DC open loop gain	R _L = 0	50	58		dB
gm	Transconductance	$I_{comp} = -0.1$ to 0.1 mA $V_{comp} = 1.9$ V		2.3		mS
CURREN	T ERROR AMPLIFIER					L
Voffs	Input offset voltage	$V_{CS-} = 1.8V; V_{CS+} = V_{comp}$	95	100	105	mV
Ι _Ρ	Pin output current	$I_O = 1A; V_{out} < V_{CC}-2V$		1.5	3	mA
REFERE			I	1		I
	Reference Voltage		3.234	3.3	3.366	V
		$I_{REF} = 0$ to 5mA $V_{CC} = 8V$ to 36V	• 3.2	3.3	3.399	V
	Line Regulation	$I_{REF} = 0mA$ $V_{CC} = 8V$ to 36V		5	10	mV
	Load Regulation	I _{REF} = 0 to 5mA		8	15	mV
	Short Circuit Current		10			mA


DIM.	mm			inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А			1.75			0.069	
a1	0.1		0.25	0.004		0.010	
a2			1.65			0.065	
a3	0.65		0.85	0.026		0.033	
b	0.35		0.48	0.014		0.019	
b1	0.19		0.25	0.007		0.010	
С	0.25		0.5	0.010		0.020	
c1			45° ((typ.)			
D (1)	4.8		5.0	0.189		0.197	
E	5.8		6.2	0.228		0.244	
е		1.27			0.050		
e3		3.81			0.150		
F (1)	3.8		4.0	0.15		0.157	
L	0.4		1.27	0.016		0.050	
М			0.6			0.024	
S	8° (max.)						



(1) D and F do not include mold flash or protrusions. Mold flash or potrusions shall not exceed 0.15mm (.006inch).

DIM.	mm			inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А		3.32			0.131		
a1	0.51			0.020			
В	1.15		1.65	0.045		0.065	
b	0.356		0.55	0.014		0.022	
b1	0.204		0.304	0.008		0.012	
D			10.92			0.430	
E	7.95		9.75	0.313		0.384	
е		2.54			0.100		
e3		7.62			0.300		
e4		7.62			0.300		
F			6.6			0.260	
I			5.08			0.200	
L	3.18		3.81	0.125		0.150	
Z			1.52			0.060	

6/7

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics ® 2000 STMicroelectronics - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A. http://www.st.com

57

7/7