

HIGH PERFORMANCE 2A ULDO LINEAR REGULATOR

PRELIMINARY DATA

- 2V TO 14V INPUT VOLTAGE RANGE
- 50mΩ Rdson TYPICAL @TJ=125°C
- 300µA QUIESCENT CURRENT AT ANY LOAD
- EXCELLENT LOAD AND LINE REGULATION
- 200mV MAX DROPOUT AT 2A
- 1.8V AND 2.5V FIXED VOLTAGE
- ADJUSTABLE FROM 1.2V TO Vin (L6932D1.2)
- 1% VOLTAGE REGULATION ACCURACY
- SHORT CIRCUIT PROTECTION
- THERMAL SHUT DOWN
- SO8 PACKAGE

APPLICATIONS

- MOTHERBOARDS
- MOBILE PC
- HAND-HELD INSTRUMENTS
- PCMCIA CARDS
- PROCESSORS I/O
- CHIPSET AND RAM SUPPLY

DESCRIPTION

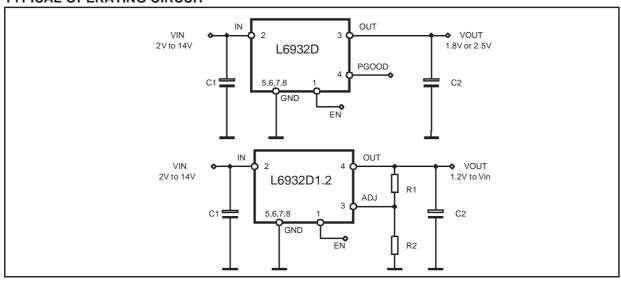
The L6932 Ultra Low Drop Output linear regulator operates from 2V to 14V and is able to support 2A. De-

SO-8 (4+4)

ORDERING NUMBERS:

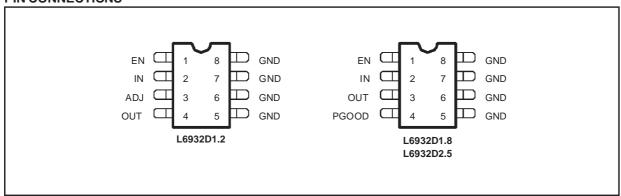
L6932D1.2 L6932D1.8 L6932D2.5

signed with an internal $50\text{m}\Omega$ N-channel


Mosfet, can be usefull for the DC-DC conversion between 2.5V and 1.8V at 2A in portable applications reducing the power dissipation.

L6932 is available in 1.8V, 2.5V and adj version from 1.2V and ensure a voltage regulation accuracy of 2%.

The current limit is fixed at 2.5A to controll the current in short circuit condition within $\pm 8\%$. The current is sensed in the power mos in order to limit the power dissipation.


The device is also provided of a thermal shut down that limits the internal temperature at 150°C with an histeresys of 20°C. L6932 provides the Enable and the Power good functions.

TYPICAL OPERATING CIRCUIT

January 2001 1/6

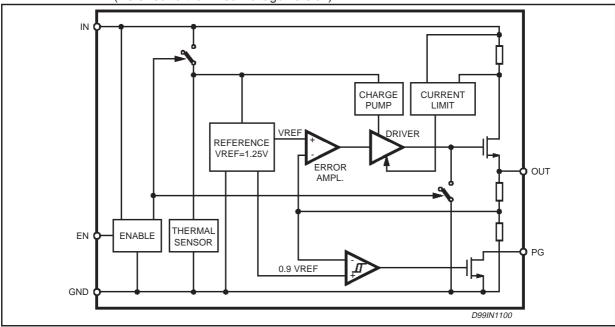
PIN CONNECTIONS

PIN FUNCTION

N°	L6232D 1.2	L6232D 1.8/2.5	Description			
1	EN		Enables the device if connected to Vin and disables the device if forced to gnd.			
2	IN		Supply voltage. This pin is connected to the drain of the internal N-mos. Connect this pin to a capacitor larger than 10 μ F.			
3	ADJ –		Connecting this pin to a voltage divider it is possible to programme the output voltage between 1.2V and Vin.			
	OUT OUT		Regulated output voltage. This pin is connected to the source of the internal N-mos. Connect this pin to a capacitor of $10\mu F$.			
4	OUT -		Regulated output voltage. This pin is connected to the source of the internal N-most Connect this pin to a capacitor of $10\mu F$.			
	-	PGOOD	Power good output. The pin is open drain and detects the output voltage. Is forced low if the output voltage is lower than 90% of the programmed voltage.			
5, 6, 7, 8	GND		Ground pin.			

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{in}	VIN and Pgood	14.5	V
	EN, OUT and ADJ	-0.3 to (V _{in} +0.3)	V


THERMAL DATA

Symbol	Parameter	Value	Unit
R _{th J-amb}	Thermal Resistance Junction to Ambient	62 (*)	°C/W
T _{max}	Maximum Junction Temperature	150	°C
T _{stg}	Storage Temperature Range	-65 to 150	°C

^(*) Measured on Demoboard with about 4 cm² of dissipating area 2 Oz.

2/6

BLOCK DIAGRAM (Referred to the Fixed Voltage version)

ELECTRICAL CHARACTERISTCS ($T_j = 25^{\circ}C$, $V_{IN} = 5V$ unless otherwise specified)

(*) Specification referred to T_j from -25°C to 125°C.

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
V _{in}	Operating Supply Voltage		2		14	V
Vo	Output voltage L6932D1.2	$I_0 = 0.1A$; $V_{in} = 3.3V$	1.188	1.2	1.212	V
	Output voltage L6932D1.8	$I_0 = 0.1A$; $V_{in} = 3.3V$	1.782	1.8	1.818	V
	Output voltage L6932D2.5	$I_0 = 0.1A$; $V_{in} = 3.3V$	2.475	2.5	2.525	V
	L6932D1.2 (*)	V _{in} = 2.5V ±10%; I _o = 10mA		1		mV
	Line Regulation	$V_{in} = 3.3V \pm 10\%; I_0 = 10 \text{mA}$		1		mV
		$V_{in} = 5V \pm 10\%; I_0 = 10 \text{mA}$		1		mV
	L6932D1.8 (*)	$V_{in} = 2.5V \pm 10\%; I_0 = 10 \text{mA}$		1		mV
	Line Regulation	$V_{in} = 3.3V \pm 10\%; I_0 = 10 \text{mA}$		1		mV
		$V_{in} = 5V \pm 10\%; I_0 = 10 \text{mA}$		1		mV
	L6932D2.5 (*)	$V_{in} = 3.3V \pm 10\%; I_0 = 10 \text{mA}$		1		mV
	Line Regulation	$V_{in} = 5V \pm 10\%; I_0 = 10 \text{mA}$		1		mV
	L6932D1.2 Load Regulation	$V_{in} = 3.3V; 0.1A < I_0 < 2A$			15	mV
	L6932D1.8 Load Regulation	V _{in} = 3.3V; 0.1A < I ₀ < 2A			15	mV

^(*) Guaranteed by design due to measurement problems.

ELECTRICAL CHARACTERISTCS (continued)

Symbol	Parameter Test Condition		Min.	Тур.	Max.	Unit	
	L6932D2.5 Load Regulation	$V_{in} = 3.3V$; $0.1A < I_0 < 2A$				15	mV
R _{dson}	Drain Source ON resistance				50	100	mΩ
l _{occ}	Current limiting			2.3	2.5	2.7	А
Iq	Quiescent current			0.2		0.4	mA
I _{sh}	Shutdown current	2V < V _{in} < 14V	*			25	μΑ
	Ripple Rejection	$f = 120$ Hz, $I_0 = 1$ A $V_{in} = 5$ V, $\Delta V_{in} = 2$ Vpp		60	75		dB
V _{en}	EN Input Threshold			0.5	0.65	0.8	V
	Pgood threshold	V _o rise			90		%Vo
	Pgood Hysteresis			10		%Vo	
	Pgood saturation	ration I _{pgood} = 2mA		·	0.2	0.4	V

Figure 1. Output Voltage vs. Junction Temperature (L6932D1.2)

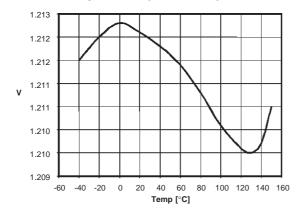


Figure 3. Output Voltage vs. Junction Temperature (L6932D2.5)

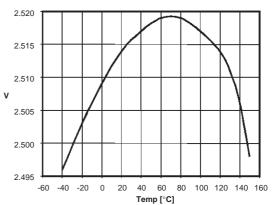
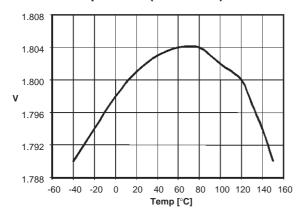
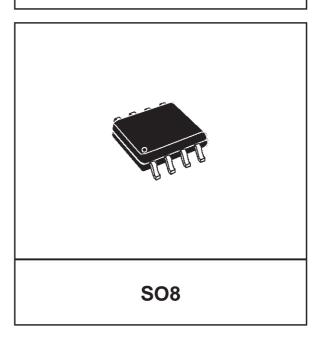
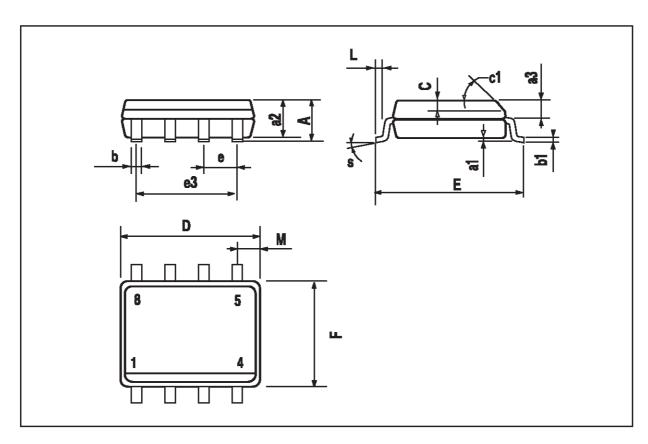



Figure 2. Output Voltage vs. Junction Temperature (L6932D1.8)




4/6

DIM.	mm			inch			
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Α			1.75			0.069	
a1	0.1		0.25	0.004		0.010	
a2			1.65			0.065	
a3	0.65		0.85	0.026		0.033	
b	0.35		0.48	0.014		0.019	
b1	0.19		0.25	0.007		0.010	
С	0.25		0.5	0.010		0.020	
c1			45° ((typ.)			
D (1)	4.8		5.0	0.189		0.197	
Е	5.8		6.2	0.228		0.244	
е		1.27			0.050		
еЗ		3.81			0.150		
F (1)	3.8		4.0	0.15		0.157	
L	0.4		1.27	0.016		0.050	
М			0.6			0.024	
S	8° (max.)						

(1) D and F do not include mold flash or protrusions. Mold flash or potrusions shall not exceed 0.15mm (.006nch).

OUTLINE AND MECHANICAL DATA

57

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics ® 2001 STMicroelectronics - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

