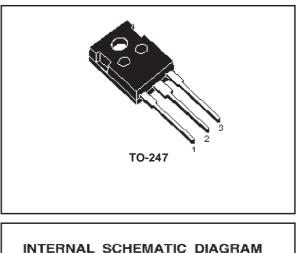
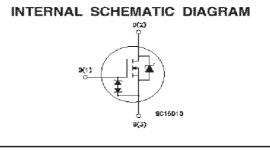


N-CHANNEL 800V - 1.5Ω - 6A TO-247 Zener-Protected PowerMESHTMIII MOSFET

TYPE	V _{DSS}	R _{DS(on)}	ID
STW7NC80Z	800 V	< 1.8Ω	6A

- TYPICAL $R_{DS}(on) = 1.5\Omega$
- EXTREMELY HIGH dv/dt CAPABILITY
- GATE-TO-SOURCE ZENER DIODES
- 100% AVALANCHE TESTED
- VERY LOW INTRINSIC CAPACITANCES
- GATE CHARGE MINIMIZED


DESCRIPTION


The third generation of MESH OVERLAYTM Power MOSFETs for very high voltage exhibits unsurpassed on-resistance per unit area while integrating back-to-back Zener diodes between gate and source. Such arrangement gives extra ESD capability with higher ruggedness performance as requested by a large variety of single-switch applications.

APPLICATIONS

- SINGLE-ENDED SMPS IN MONITORS, COMPUTER AND INDUSTRIAL APPLICATION
- WELDING EQUIPMENT

ABSOLUTE MAXIMUM RATINGS

Symbol Parameter Value Unit Drain-source Voltage ($V_{GS} = 0$) VDS 800 V Drain-gate Voltage ($R_{GS} = 20 \text{ k}\Omega$) V 800 VDGR V_{GS} ±25 V Gate- source Voltage Drain Current (continuos) at T_C = 25°C А I_D 6 Drain Current (continuos) at $T_C = 100^{\circ}C$ 3.8 А ID I_{DM} (•) Drain Current (pulsed) 24 А Total Dissipation at T_C = 25°C W Ртот 160 W/°C **Derating Factor** 1.28 Gate-source Current ±50 mΑ I_{GS} Gate source ESD(HBM-C=100pF, R=15KΩ) ΚV VESD(G-S) 3 dv/dt (1) Peak Diode Recovery voltage slope 3 V/ns T_{stg} Storage Temperature -65 to 150 °C °C Max. Operating Junction Temperature 150 Ti

(•)Pulse width limited by safe operating area

(1) $I_{SD} \leq 6A$, $di/dt \leq 100A/\mu s$, $V_{DD} \leq V_{(BR)DSS}$, $T_j \leq T_{JMAX}$.

THERMAL DATA

Rthj-case	Thermal Resistance Junction-case Max	0.78	°C/W
Rthj-amb	Thermal Resistance Junction-ambient Max	30	°C/W
Rthc-sink	Thermal Resistance Case-sink Typ	0.1	°C/W
TI	Maximum Lead Temperature For Soldering Purpose	300	°C

AVALANCHE CHARACTERISTICS

Symbol	Parameter	Max Value	Unit
I _{AR}	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T _j max)	6	А
E _{AS}	Single Pulse Avalanche Energy (starting $T_j = 25 \text{ °C}$, $I_D = I_{AR}$, $V_{DD} = 50 \text{ V}$)	250	mJ

ELECTRICAL CHARACTERISTICS (TCASE = 25 °C UNLESS OTHERWISE SPECIFIED) OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0$	800			V
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient	$I_D = 1 \text{ mA}, V_{GS} = 0$		0.9		V/°C
Inco	Zero Gate Voltage	V _{DS} = Max Rating			1	μΑ
IDSS	Drain Current ($V_{GS} = 0$)	V_{DS} = Max Rating, T_C = 125 °C			50	μΑ
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	$V_{GS} = \pm 20 V$			±10	μΑ

ON ⁽¹⁾

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	3	4	5	V
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10V, I _D = 3A		1.5	1.8	Ω
I _{D(on)}	On State Drain Current		6			А

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (1)	Forward Transconductance	$V_{DS} > I_{D(on)} \times R_{DS(on)max,}$ $I_{D} = 3A$		7		S
C _{iss}	Input Capacitance			1600		pF
C _{oss}	Output Capacitance	$V_{DS} = 25V, f = 1 \text{ MHz}, V_{GS} = 0$		125		pF
C _{rss}	Reverse Transfer Capacitance			12		pF

ELECTRICAL CHARACTERISTICS (CONTINUED)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on Delay Time	$V_{DD} = 400 V, I_D = 3 A$		26		ns
tr	Rise Time	$R_G = 4.7\Omega V_{GS} = 10V$ (see test circuit, Figure 3)		10		ns
Qg	Total Gate Charge			45	63	nC
Q _{gs}	Gate-Source Charge	V _{DD} = 640V, I _D = 6 A, V _{GS} = 10V		12		nC
Q _{gd}	Gate-Drain Charge			19		nC

SWITCHING ON (RESISTIVE LOAD)

SWITCHING OFF (INDUCTIVE LOAD)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{r(Voff)}	Off-voltage Rise Time	V _{DD} = 640V, I _D = 6 A,		11		ns
t _f	Fall Time	$R_{G} = 4.7\Omega, V_{GS} = 10V$		13		ns
t _c	Cross-over Time	(see test circuit, Figure 5)		19		ns

SOURCE DRAIN DIODE

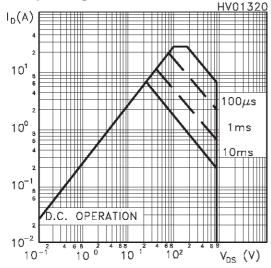
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain Current				6	А
I _{SDM} (2)	Source-drain Current (pulsed)				24	А
V _{SD} (1)	Forward On Voltage	I_{SD} =6 A, V_{GS} = 0			1.6	V
t _{rr}	Reverse Recovery Time	I _{SD} = 6 A, di/dt = 100A/μs,		850		ns
Q _{rr}	Reverse Recovery Charge	$V_{DD} = 100V, T_j = 150^{\circ}C$		8.1		μC
I _{RRM}	Reverse Recovery Current	(see test circuit, Figure 5)		19		А

GATE-SOURCE ZENER DIODE

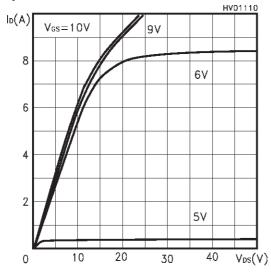
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
BV _{GSO}	Gate-Source Breakdown Voltage	Igs=± 1mA (Open Drain)	25			V
αΤ	Voltage Thermal Coefficient	T=25°C Note(3)		1.3		10 ⁻⁴ /°C
Rz	Dynamic Resistance	I _{GS} = 50 mA		90		Ω

Note: 1. Pulsed: Pulse duration = $300 \,\mu$ s, duty cycle 1.5 %.

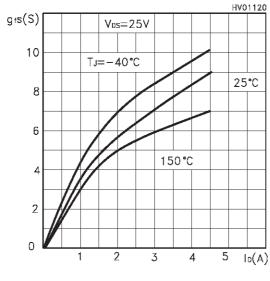
2. Pulse width limited by safe operating area.

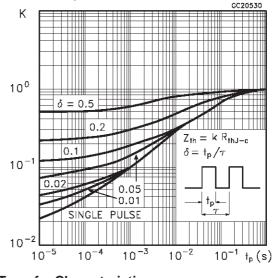

3. $\Delta V_{BV} = \alpha T (25^{\circ}-T) BV_{GSO}(25^{\circ})$

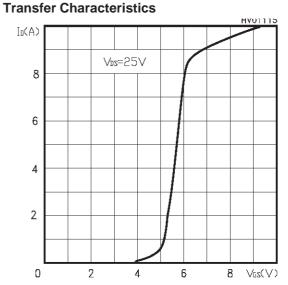
PROTECTION FEATURES OF GATE-TO-SOURCE ZENER DIODES


The built-in back-to-back Zener diodes have specifically been designed to enhance not only the device's ESD capability, but also to make them safely absorb possible voltage transients that may occasionally be applied from gate to souce. In this respect the 25V Zener voltage is appropriate to achieve an efficient and cost-effective intervention to protect the device's integrity. These integrated Zener diodes thus avoid the usage of external components.

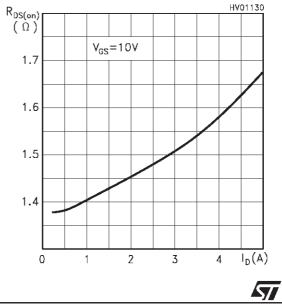
57

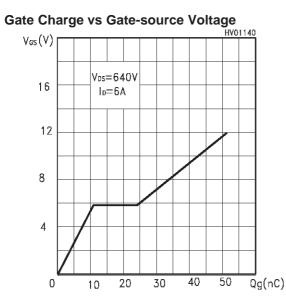


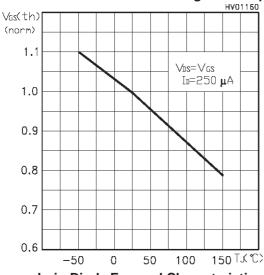

Output Characteristics

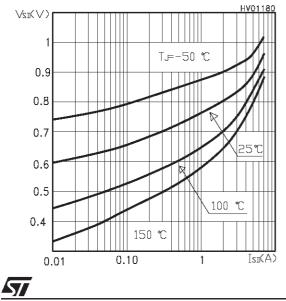


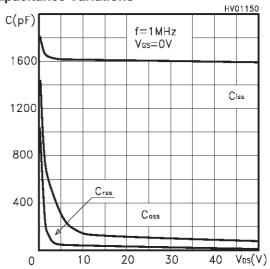
Transconductance




Thermal Impedance

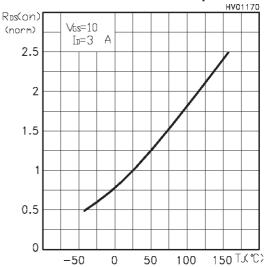
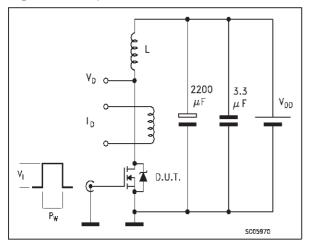
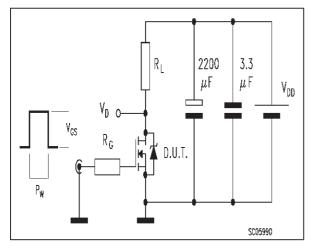





Normalized Gate Threshold Voltage vs Temp.

Capacitance Variations

Normalized On Resistance vs Temperature

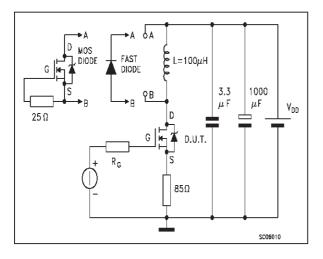
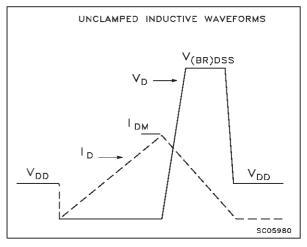
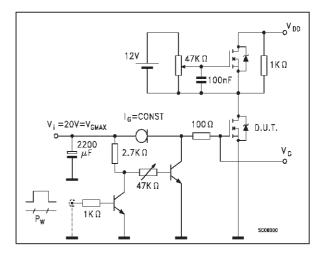
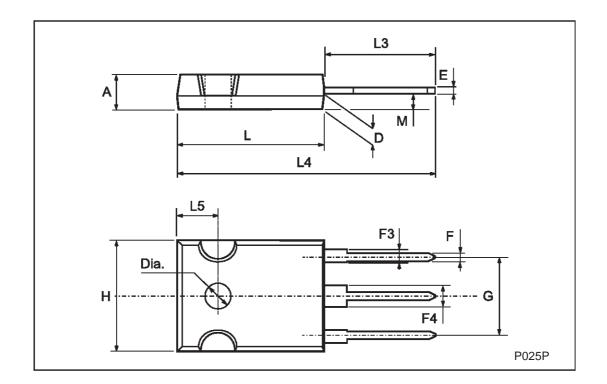

Fig. 1: Unclamped Inductive Load Test Circuit

Fig. 3: Switching Times Test Circuit For Resistive Load

Fig. 5: Test Circuit For Inductive Load Switching And Diode Recovery Times

Fig. 2: Unclamped Inductive Waveform


Fig. 4: Gate Charge test Circuit

57

	10-247 MECHANICAL DATA							
DIM.		mm		inch				
Dim	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
А	4.7		5.3	0.185		0.209		
D	2.2		2.6	0.087		0.102		
Е	0.4		0.8	0.016		0.031		
F	1		1.4	0.039		0.055		
F3	2		2.4	0.079		0.094		
F4	3		3.4	0.118		0.134		
G		10.9			0.429			
Н	15.3		15.9	0.602		0.626		
L	19.7		20.3	0.776		0.779		
L3	14.2		14.8	0.559		0.582		
L4		34.6			1.362			
L5		5.5			0.217			
М	2		3	0.079		0.118		

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a trademark of STMicroelectronics

© 2000 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco -Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

57