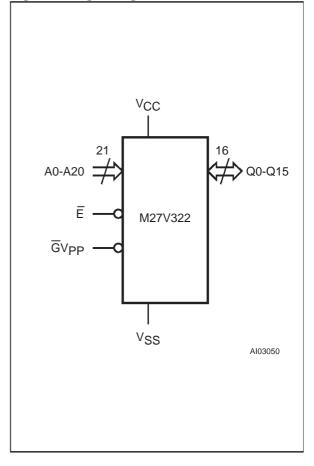


32 Mbit (2Mb x16) Low Voltage UV EPROM and OTP EPROM

- 3.3V ± 10% SUPPLY VOLTAGE in READ OPERATION
- READ ACCESS TIME
 - 100ns at $V_{CC} = 3.0V$ to 3.6V
- PIN COMPATIBLE WITH M27C322
- WORD-WIDE CONFIGURABLE
- 32 Mbit MASK ROM REPLACEMENT
- LOW POWER CONSUMPTION
 - Active Current 30mA at 5MHz
 - Stand-by Current 60μA
- PROGRAMMING VOLTAGE: 12V ± 0.25V
- PROGRAMMING TIME: 50µs/word
- ELECTRONIC SIGNATURE
 - Manufacturer Code: 0020h
 - Device Code: 0034h

DESCRIPTION


The M27V322 is a 32 Mbit EPROM offered in the UV range (ultra violet erase) and OTP range. It is ideally suited for microprocessor systems requiring large data or program storage. It is organised as 2 MWords of 16 bit. The pin-out is compatible with a 32 Mbit Mask ROM.

The FDIP42W (window ceramic frit-seal package) has a transparent lid which allows the user to expose the chip to ultraviolet light to erase the bit pattern. A new pattern can then be written rapidly to the device by following the programming procedure.

For applications where the content is programmed only one time and erasure is not required, the M27V322 is offered in PDIP42 package.

Figure 1. Logic Diagram

March 2000 1/13

Figure 2A. DIP Connections

_			
A18 [1	0	42 1 A19
A17 🛚 2	2		41 🛚 A8
A7 🛚 3	3		40 🛮 A9
A6 🛚	4		39] A10
A5 🛚 5	5		38 🛮 A11
A4 [] 6	6		37 A12
A3 [7	7		36 🛚 A13
A2 [8	8		35 A14
A1 [] 9	9		34] A15
A <u>0</u> [1			33] A16
Eq	11	VIZT V JZZ	32 🛚 A20
_Vss [^			31 🛘 V _{SS}
GV _{PP} []	13		30 Q15
Q0 [1	14		29 🕽 Q7
Q8 [^	15		28 1 Q14
Q1 [] 1	16		27 🕽 Q6
Q9 [^	17		26 Q13
Q2 [1	18		25 D Q5
Q10 [1			24 DQ12
Q3 [2	20		23] Q4
Q11 [2	21		22 V _{CC}
		Al	03051

DEVICE OPERATION

The operating modes of the M27V322 are listed in the Operating Modes Table. A single power supply is required in the read mode. All inputs are TTL compatible except for V_{PP} and 12V on A9 for the Electronic Signature.

Read Mode

The M27V322 has a word-wide organization. Chip Enable (\overline{E}) is the power control and should be used for device selection. Output Enable (\overline{G}) is the output control and should be used to gate data to the output pins independent of device selection. Assuming that the addresses are stable, the address access time (t_{AVQV}) is equal to the delay

Table 1. Signal Names

A0-A20	Address Inputs
Q0-Q15	Data Outputs
Ē	Chip Enable
GV _{PP}	Output Enable / Program Supply
Vcc	Supply Voltage
V _{SS}	Ground

from \overline{E} to output (t_{ELQV}). Data is available at the output after a delay of t_{GLQV} from the falling edge of \overline{GV}_{PP} , assuming that \overline{E} has been low and the addresses have been stable for at least t_{AVQV} - t_{GLQV} .

Standby Mode

The M27V322 has a standby mode which reduces the supply current from 30mA to 30 μ A. The M27V322 is placed in the standby mode by applying a CMOS high signal to the \overline{E} input. When in the standby mode, the outputs are in a high impedance state, independent of the $\overline{G}V_{PP}$ input.

Two Line Output Control

Because EPROMs are usually used in larger memory arrays, this product features a 2 line control function which accommodates the use of multiple memory connection. The two line control function allows:

- a. the lowest possible memory power dissipation,
- b. complete assurance that output bus contention will not occur.

For the most efficient use of these two control lines, \overline{E} should be decoded and used as the primary device selecting function, while $\overline{G}V_{PP}$ should be made a common connection to all devices in the array and connected to the \overline{READ} line from the system control bus. This ensures that all deselected memory devices are in their low power standby mode and that the output pins are only active when data is required from a particular memory device.

Table 2. Absolute Maximum Ratings (1)

Symbol	Parameter	Value	Unit
TA	Ambient Operating Temperature (3)	-40 to 125	°C
T _{BIAS}	Temperature Under Bias	-50 to 125	°C
T _{STG}	Storage Temperature	-65 to 150	°C
V _{IO} (2)	Input or Output Voltage (except A9)	–2 to 7	V
Vcc	Supply Voltage	–2 to 7	V
V _{A9} (2)	A9 Voltage	-2 to 13.5	V
V _{PP}	Program Supply Voltage	-2 to 14	V

Note: 1. Except for the rating "Operating Temperature Range", stresses above those listed in the Table "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents.

2. Minimum DC voltage on Input or Output is -0.5V with possible undershoot to -2.0V for a period less than 20ns. Maximum DC voltage on Output is V_{CC} +0.5V with possible overshoot to V_{CC} +2V for a period less than 20ns.

3. Depends on range.

Table 3. Operating Modes

Mode	Ē	GV _{PP}	А9	Q15-Q0
Read	V _{IL}	V _{IL}	Х	Data Out
Output Disable	VIL	VIH	Х	Hi-Z
Program	V _{IL} Pulse	V _{PP}	Х	Data In
Program Inhibit	VIH	Vpp	Х	Hi-Z
Standby	V _{IH}	Х	Х	Hi-Z
Electronic Signature	V _{IL}	V _{IL}	V _{ID}	Codes

Note: $X = V_{IH}$ or V_{IL} , $V_{ID} = 12V \pm 0.5V$.

Table 4. Electronic Signature

Identifier	A0	Q7	Q6	Q5	Q4	Q3	Q2	Q1	Q0	Hex Data
Manufacturer's Code	VIL	0	0	1	0	0	0	0	0	20h
Device Code	V _{IH}	0	0	1	1	0	1	0	0	34h

Note: Outputs Q15-Q8 are set to '0'.

<u>57</u>

Table 5. AC Measurement Conditions

	High Speed	Standard
Input Rise and Fall Times	≤ 10ns	≤ 20ns
Input Pulse Voltages	0 to 3V	0.4V to 2.4V
Input and Output Timing Ref. Voltages	1.5V	0.8V and 2V

Figure 3. AC Testing Input Output Waveform

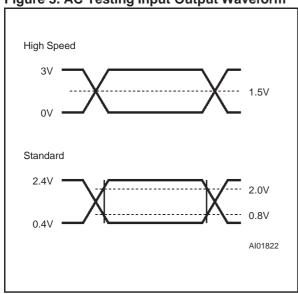


Figure 4. AC Testing Load Circuit

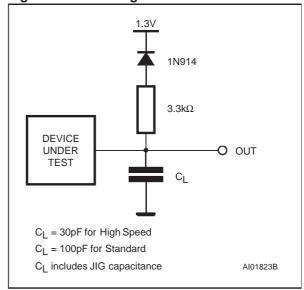


Table 6. Capacitance ⁽¹⁾ ($T_A = 25$ °C, f = 1 MHz)

Symbol	Parameter	Test Condition	Min	Max	Unit
C _{IN}	Input Capacitance	$V_{IN} = 0V$		10	pF
C _{OUT}	Output Capacitance	V _{OUT} = 0V		12	pF

Note: 1. Sampled only, not 100% tested.

System Considerations

The power switching characteristics of Advanced CMOS EPROMs require careful decoupling of the supplies to the devices. The supply current ICC has three segments of importance to the system designer: the standby current, the active current and the transient peaks that are produced by the falling and rising edges of \overline{E} . The magnitude of the transient current peaks is dependent on the capacitive and inductive loading of the device outputs. The associated transient voltage peaks can be suppressed by complying with the two line out-

put control and by properly selected decoupling capacitors. It is recommended that a $0.1\mu F$ ceramic capacitor is used on every device between V_{CC} and V_{SS} . This should be a high frequency type of low inherent inductance and should be placed as close as possible to the device. In addition, a $4.7\mu F$ electrolytic capacitor should be used between V_{CC} and V_{SS} for every eight devices. This capacitor should be mounted near the power supply connection point. The purpose of this capacitor is to overcome the voltage drop caused by the inductive effects of PCB traces.

Table 7. Read Mode DC Characteristics (1) (T_A = -40 to 85 °C or 0 to 70 °C; V_{CC} = $3.3V \pm 10\%$; V_{PP} = V_{CC})

Symbol	Parameter	Test Condition	Min	Max	Unit
ILI	Input Leakage Current	0V ≤ V _{IN} ≤ V _{CC}		±1	μΑ
ILO	Output Leakage Current	0V ≤ V _{OUT} ≤ V _{CC}		±10	μΑ
Icc	Supply Current	$\overline{E} = V_{IL}, \overline{G}V_{PP} = V_{IL}, I_{OUT} = 0mA,$ f = 5MHz		30	mA
I _{CC} 1	Supply Current (Standby) TTL	E = V _{IH}		1	mA
I _{CC} 2	Supply Current (Standby) CMOS	$\overline{E} > V_{CC} - 0.2V$		60	μΑ
I _{PP}	Program Current	$V_{PP} = V_{CC}$		10	μΑ
V _{IL}	Input Low Voltage		-0.6	0.2V _{CC}	V
V _{IH} ⁽²⁾	Input High Voltage		0.7V _{CC}	V _{CC} + 0.5	V
Vol	Output Low Voltage	I _{OL} = 2.1mA		0.4	V
V _{OH}	Output High Voltage TTL	I _{OH} = -400μA	2.4		V

Note: 1. V_{CC} must be applied simultaneously with or before V_{PP} and removed simultaneously or after V_{PP} .

Table 8. Read Mode AC Characteristics ⁽¹⁾ $(T_A = -40 \text{ to } 85 \text{ °C or } 0 \text{ to } 70 \text{ °C}; V_{CC} = 3.3V \pm 10\%; V_{PP} = V_{CC})$

Symbol Alt				M27V322						
		Parameter	Test Condition	-100 ⁽³⁾		-120		-150		Unit
				Min	Max	Min	Max	Min	Max	
t _{AVQV}	tACC	Address Valid to Output Valid	$\overline{E} = V_{IL}, \overline{G} = V_{IL}$		100		120		150	ns
t _{ELQV}	t _{CE}	Chip Enable Low to Output Valid	$\overline{G} = V_{IL}$		100		120		150	ns
t _{GLQV}	t _{OE}	Output Enable Low to Output Valid	E = V _{IL}		50		60		60	ns
t _{EHQZ} (2)	t _{DF}	Chip Enable High to Output Hi-Z	$\overline{G} = V_{IL}$	0	45	0	50	0	50	ns
t _{GHQZ} (2)	t _{DF}	Output Enable High to Output Hi-Z	E = V _{IL}	0	45	0	50	0	50	ns
t _{AXQX}	toH	Address Transition to Output Transition	$\overline{E} = V_{IL}, \overline{G} = V_{IL}$	5		5		5		ns

Note: 1. V_{CC} must be applied simultaneously with or before V_{PP} and removed simultaneously or after V_{PP}

^{2.} Maximum DC voltage on Output is V_{CC} +0.5V.

^{2.} Sampled only, not 100% tested.

^{3.} Speed obtained with High Speed measurement conditions.

Figure 5. Read Mode AC Waveforms

Table 9. Programming Mode DC Characteristics (1) (T_A = 25 °C; V_{CC} = 6.25V \pm 0.25V; V_{PP} = 12V \pm 0.25V)

Symbol	Parameter	Test Condition	Min	Max	Unit
ILI	Input Leakage Current	$V_{IL} \le V_{IN} \le V_{IH}$		±10	μΑ
Icc	Supply Current			50	mA
I _{PP}	Program Current	E = V _{IL}		50	mA
V _{IL}	Input Low Voltage		-0.3	0.8	V
V _{IH}	Input High Voltage		2.4	V _{CC} + 0.5	V
V _{OL}	Output Low Voltage	I _{OL} = 2.1mA		0.4	V
V _{OH}	Output High Voltage TTL	I _{OH} = -2.5mA	3.5		V
V _{ID}	A9 Voltage		11.5	12.5	V

Note: 1. V_{CC} must be applied simultaneously with or before V_{PP} and removed simultaneously or after V_{PP} .

Table 10. MARGIN MODE AC Characteristics (1)

 $(T_A = 25 \, ^{\circ}C; \, V_{CC} = 6.25V \pm 0.25V; \, V_{PP} = 12V \pm 0.25V)$

Symbol	Alt	Parameter	Test Condition	Min	Max	Unit
t _{A9HVPH}	t _{AS9}	V _{A9} High to V _{PP} High		2		μs
tvphel	tvps	VPP High to Chip Enable Low		2		μs
t _{A10} HEH	t _{AS10}	V _{A10} High to Chip Enable High (Set)		1		μs
t _{A10} LEH	t _{AS10}	V _{A10} Low to Chip Enable High (Reset)		1		μs
t _{EXA10X}	t _{AH10}	Chip Enable Transition to V _{A10} Transition		1		μs
t _{EXVPX}	t _{VPH}	Chip Enable Transition to V _{PP} Transition		2		μs
t _{VPXA9X}	t _{AH9}	V _{PP} Transition to V _{A9} Transition		2		μs

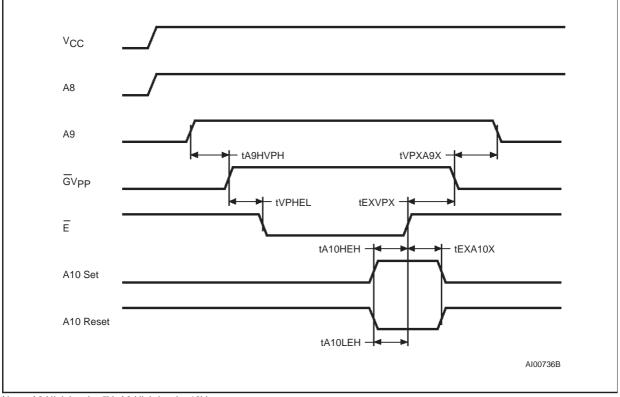
Note: 1. V_{CC} must be applied simultaneously with or before V_{PP} and removed simultaneously or after V_{PP} .

Table 11. Programming Mode AC Characteristics (1)

 $(T_A = 25 \, ^{\circ}C; \, V_{CC} = 6.25 \text{V} \pm 0.25 \text{V}; \, V_{PP} = 12 \text{V} \pm 0.25 \text{V})$

Symbol	Alt	Parameter	Test Condition	Min	Max	Unit
t _{AVEL}	t _{AS}	Address Valid to Chip Enable Low		1		μs
tQVEL	tDS	Input Valid to Chip Enable Low		1		μs
tvchel	t _{VCS}	V _{CC} High to Chip Enable Low		2		μs
tvphel	toes	V _{PP} High to Chip Enable Low		1		μs
t _{VPLVPH}	t _{PRT}	V _{PP} Rise Time		50		ns
t _{ELEH}	t _{PW}	Chip Enable Program Pulse Width (Initial)		45	55	μs
tEHQX	t _{DH}	Chip Enable High to Input Transition		2		μs
t _{EHVPX}	t _{OEH}	Chip Enable High to V _{PP} Transition		2		μs
tvplel	t _{VR}	V _{PP} Low to Chip Enable Low		1		μs
t _{ELQV}	t _{DV}	Chip Enable Low to Output Valid			1	μs
t _{EHQZ} (2)	t _{DFP}	Chip Enable High to Output Hi-Z		0	130	ns
t _{EHAX}	t _{AH}	Chip Enable High to Address Transition		0		ns

Note: 1. V_{CC} must be applied simultaneously with or before V_{PP} and removed simultaneously or after V_{PP} .


2. Sampled only, not 100% tested.

Programming

When delivered (and after each erasure for UV EPROM), all bits of the M27V322 are in the "1" state. Data is introduced by selectively programming "0"s into the desired bit locations. Although only "0"s will be programmed, both "1"s and "0"s can be present in the data word. The only way to change a "0" to a "1" is by die exposition to ultravi-

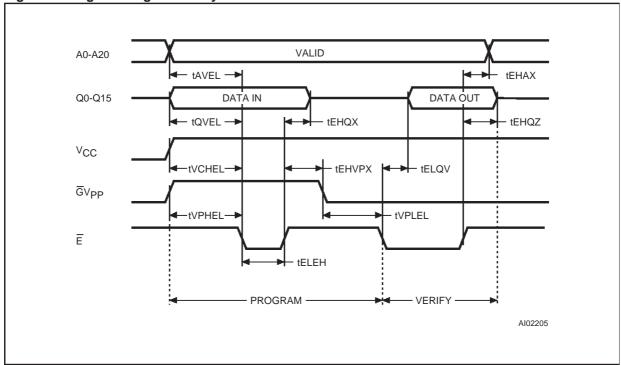

olet light (UV EPROM). The M27V322 is in the programming mode when V_{PP} input is at 12.V, $\overline{G}V_{PP}$ is at V_{IH} and \overline{E} is pulsed to $V_{IL}.$ The data to be programmed is applied to 16 bits in parallel to the data output pins. The levels required for the address and data inputs are TTL. V_{CC} is specified to be $6.25V \pm 0.25V.$

Figure 6. MARGIN MODE AC Waveforms

Note: A8 High level = 5V; A9 High level = 12V.

Figure 7. Programming and Verify Modes AC Waveforms

Note: BYTE = V_{IH}.

57

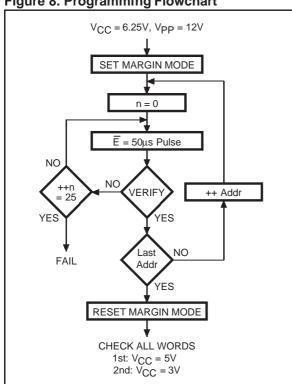


Figure 8. Programming Flowchart

PRESTO III Programming Algorithm

The PRESTO III Programming Algorithm allows the whole array to be programed with a guaranteed margin in a typical time of 100 seconds. Programming with PRESTO III consists of applying a sequence of 50µs program pulses to each word until a correct verify occurs (see Figure 8). During programing and verify operation a MARGIN MODE circuit must be activated to guarantee that each cell is programed with enough margin. No overprogram pulse is applied since the verify in MARGIN MODE provides the necessary margin to each programmed cell.

AI03059B

Program Inhibit

Programming of multiple M27V322s in parallel with different data is also easily accomplished. Except for E, all like inputs including GVPP of the parallel M27V322 may be common. A TTL low level pulse applied to a M27V322's E input and VPP at 12V, will program that M27V322. A high level \overline{E} input inhibits the other M27V322s from being programmed.

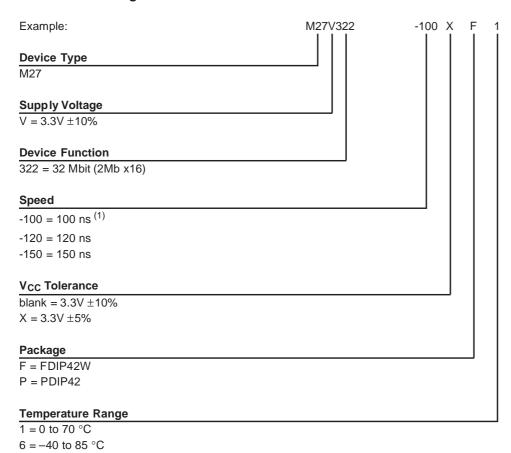
Program Verify

A verify (read) should be performed on the programmed bits to determine that they were correctly programmed. The verify is accomplished with GV_{PP} at V_{IL}. Data should be verified with t_{ELQV} after the falling edge of E.

On-Board Programming

The M27V322 can be directly programmed in the application circuit. See the relevant Application Note AN620.

Electronic Signature


The Electronic Signature (ES) mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment to automatically match the device to be programmed with its corresponding programming algorithm. The ES mode is functional in the 25°C \pm 5°C ambient temperature range that is required when programming the M27V322. To activate the ES mode, the programming equipment must force 11.5V to 12.5V on address line A9 of the M27V322, with $V_{PP} = V_{CC} = 5V$. Two identifier bytes may then be sequenced from the device outputs by toggling address line A0 from V_{IL} to V_{IH}. All other address lines must be held at V_{II} during Electronic Signature mode.

Byte 0 (A0 = V_{IL}) represents the manufacturer code and byte 1 (A0 = V_{IH}) the device identifier code. For the STMicroelectronics M27V322, these two identifier bytes are given in Table 4 and can be read-out on outputs Q0 to Q7.

ERASURE OPERATION (applies to UV EPROM)

The erasure characteristics of the M27V322 is such that erasure begins when the cells are exposed to light with wavelengths shorter than approximately 4000 A. It should be noted that sunlight and some type of fluorescent lamps have wavelengths in the 3000-4000 Å range. Research shows that constant exposure to room level fluorescent lighting could erase a typical M27V322 in about 3 years, while it would take approximately 1 week to cause erasure when exposed to direct sunlight. If the M27V322 is to be exposed to these types of lighting conditions for extended periods of time, it is suggested that opaque labels be put over the M27V322 window to prevent unintentional erasure. The recommended erasure procedure for M27V322 is exposure to short wave ultraviolet light which has a wavelength of 2537 Å. The integrated dose (i.e. UV intensity x exposure time) for erasure should be a minimum of 30 W-sec/cm². The erasure time with this dosage is approximately 30 to 40 minutes using an ultraviolet lamp with 12000 μ W/cm² power rating. The M27V322 should be placed within 2.5cm (1 inch) of the lamp tubes during the erasure. Some lamps have a filter on their tubes which should be removed before erasure.

Table 12. Ordering Information Scheme

Note: 1. High Speed, see AC Characteristics section for further information.

For a list of available options (Speed, Package, etc...) or for further information on any aspect of this device, please contact the STMicroelectronics Sales Office nearest to you.

Table 13. Revision History

Date	Revision Details			
July 1999	First Issue			
02/09/00	Programming Flowchart changed (Figure 8) PRESTO III Programming Algorithm paragraph changed FDIP42W Package Dimension, L Max added (Table 14)			

57

Table 14. FDIP42W - 42 pin Ceramic Frit-seal DIP with window, Package Mechanical Data

Symb	mm			inches		
	Тур	Min	Max	Тур	Min	Max
А			5.72			0.225
A1		0.51	1.40		0.020	0.055
A2		3.91	4.57		0.154	0.180
А3		3.89	4.50		0.153	0.177
В		0.41	0.56		0.016	0.022
B1	1.45	_	-	0.057	-	-
С		0.23	0.30		0.009	0.012
D		54.41	54.86		2.142	2.160
D2	50.80	_	_	2.000	_	-
Е	15.24	_	_	0.600	_	-
E1		14.50	14.90		0.571	0.587
е	2.54	_	_	0.100	_	-
eA	14.99	_	_	0.590	_	-
eB		16.18	18.03		0.637	0.710
L		3.18	4.10		0.125	0.161
S		1.52	2.49		0.060	0.098
К	8.00	_	_	0.315	_	_
K1	16.00	_	_	0.630	_	_
α		4°	11°		4°	11°
N	42			42		

Note: Drawing is not to scale.

57

Table 15. PDIP42 - 42 pin Plastic DIP, 600 mils width, Package Mechanical Data

Symb	mm			inches		
	Тур	Min	Max	Тур	Min	Max
А		-	5.08		-	0.200
A1		0.25	-		0.010	-
A2		3.56	4.06		0.140	0.160
В		0.38	0.53		0.015	0.021
B1		1.27	1.65		0.050	0.065
С		0.20	0.36		0.008	0.014
D		52.20	52.71		2.055	2.075
D2	50.80	-	-	2.000	-	_
Е	15.24	-	-	0.600	-	_
E1		13.59	13.84		0.535	0.545
e1	2.54	-	_	0.100	-	_
eA	14.99	-	-	0.590	-	-
eB		15.24	17.78		0.600	0.700
L		3.18	3.43		0.125	0.135
S		0.86	1.37		0.034	0.054
α		0°	10°		0°	10°
N	42			42		

Note: Drawing is not to scale.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is registered trademark of STMicroelectronics ® 2000 STMicroelectronics - All Rights Reserved

All other names are the property of their respective owners.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

