ANIL77
K’L APPLICATION NOTE

80C51XA / M88 FLASH+PSD Design Guide

The M88x3Fxx devices are members of ST's M88 FLASH+PSD family of flash-based peripherals for use
with embedded microcontrollers (MCUs). These programmable system devices (PSDs) consist of
memory, logic, and I/O. When coupled with a low-cost, 80C51XA MCU, the PSD forms a complete
embedded flash system that is 100% In-System Programmable (ISP). There are many features in the PSD
silicon and in the PSDsoft development software that make ISP easy, regardless of how much experience
you have with embedded design.

This document offers two 80C51XA-based designs using an M88 FLASH+PSD device. The first is a
simple system to get up and running quickly for basic applications, or to check out your prototype
80C51XA hardware. The second design illustrates the use of enhanced features of PSD In-System
Programming as applied to the 80C51XA. You can start with the first design and migrate to the second if
needed.

Typically, a host computer downloads firmware into an embedded flash system through a communication
channel that is controlled by the MCU. This channel is usually a UART, but any communication channel
that the 80C51XA supports will do. The 80C51XA must execute the code that controls the ISP process
from an independent memory array that is not being erased or programmed. Otherwise, boot code and
flash programming algorithms (ISP loader code) will be unavailable to the 80C51XA. It is absolutely
necessary to use a secondary boot memory array (an independent memory that is not being programmed)
to store the ISP loader code.

A system designer must choose the type of secondary boot memory to store ISP loader code (SRAM,
FLASH, or EEPROM); each type has advantages and disadvantages. This secondary boot memory may
reside external to the MCU or on-chip. A top-level view of an embedded ISP flash system with external
memory is shown in Figure 1.

Figure 1. Embedded Flash System Capable of ISP (5 devices)

Main Flash Memory
€]
Host 128 KBytes
Computer
80C51XA » Secondary Boot Memory
T y CPLD for ISP Loader Code [
Communication System SRAM

Channel 8 KBytes

> System 1/0

Embedded System

Al03326

January 2000 1/25

AN1177 - APPLICATION NOTE

A Common Solution

Without a PSD device, implementing ISP with the 80C51XA can be difficult and time consuming. Philips’
application note AN97019 shows three methods of connecting an 80C51XA to external flash memory.
Each method has trade-offs and difficulties to overcome that add cost and design time, and no method
allowed for easy updates of the ISP loader code.

A Better, Integrated Solution

Previously, ISP required MCU participation to exercise a communication channel to implement a
download to the main flash memory. However, the M88x3Fxx offers an alternative ISP method that uses
a built-in IEEE-1149.1 JTAG interface, which requires no MCU participation. This means that a completely
blank PSD can be soldered into place, and the entire chip can be programmed in-system using ST's
FlashLINK JTAG cable and PSDsoft development software, which may be purchased from ST (please see
www.st.com/flashpsd for details of how to order).

Figure 2 shows a two-chip solution using an M88 FLASH+PSD. This system has ample main Flash
memory, an optional secondary Flash memory or EEPROM, and an optional SRAM. All three of these
memories can operate independently and concurrently; meaning the MCU can operate from one memory
while erasing/writing the other. The system has programmable logic, expanded I/O, and design security.
Since the M88x3Fxx family is 100% ISP, a blank M88x3Fxx can be connected to a ROM-less 80C51XA
and initially programmed through the JTAG port. Therefore, no 80C51XA firmware needs to be written up
front. Just plug in the FlashLINK cable and begin programming memory, logic, and configuration. This
powerful feature of the M88 FLASH+PSD family allows immediate development of application code in your
lab, smart manufacturing techniques, and easy field updates.

Figure 2. Embedded Flash System Capable of ISP (2 devices)

M88x3Fxx
Host
Computer 128 KByte Flash le— JTAG
80C51XA Optional 32 KByte
EEPROM/Flash System
~ IEII Optional 2KByte SRAM “—* 0
Communication Programmable Logic
Channel 110

Embedded System

Al03327

Taking a quick look inside the M8813F2x, as shown in Figure 3, you can see the three independent
memory arrays, which are selected on a segment basis when the proper MCU address is decoded in the
Decode PLD. The page register participates in memory decoding, which greatly simplifies paging. The
MCU address, data, and control signals are routed throughout the chip and can be used within the
general-purpose CPLD. The CPLD has 16 macrocells and 24 special latches for input signals. All 16
macrocells and 24 input latches can be accessed directly by the MCU in silicon. No extra design effort is
needed. This MCU access feature is great for loadable shift registers, counters, mailboxes, and state
machines. There are 27 1/0 pins that can be used for PLD I/O, latched address output, MCU 1/O,
Peripheral 1/0, and ISP. A power management scheme can selectively shut down parts of the chip and
tailor special power saving mechanisms on-the-fly. The security feature can block access to all areas of

2/25 E

AN1177 - APPLICATION NOTE

the chip from a device programmer/reader. Lastly, the self-contained JTAG controller allows ISP of all
areas of the chip, even on a completely blank device that is soldered onto a circuit board.

Figure 3. Top Level Block Diagram of M8813F2x

MBB13F2x MCU Address / Data / Control Bus
o P i <
= Rage 128 KByte 51 R
5 e [€g Flash] 2| | g M >
< O g 8 sectors @ =
= @ |—» o ||
g =l —
< 32 KByte m
Decode | 4 BootFlash [£
PLD 4 sectors o [< >
2 2
a =
- I} —>| 2 KByte SRAM |‘ iy —
= —
NG o]
O Power o
Mngt CPLD — E W »
16 Macrocells I
24 Input Latches = |
> —
8 'E —* [a)
> 3 =
o8 =
og O Lo B
4| JTAG Controller o

Al03322

4]

3/25

AN1177 - APPLICATION NOTE

SIMPLE DESIGN EXAMPLE

The first design example outlines the steps required to get an 80C51XA-based system up and running
quickly. A connection diagram, memory map, and the necessary design file for the PSDsoft software
development environment are provided. An M8813F2x was used for this example. However, other
members of the M88 FLASH+PSD family may be used instead, with minor changes to the sample design
file. Please see the M88 FLASH+PSD Family Data Sheet for a comparison of family members.

Physical Connections
Connect your 80C51XA to the M8813F2x as shown in Figure 4. Similar connections can be used for other
members of the M88 FLASH+PSD family. The JTAG programming channel and SRAM with battery
backup connections are optional.

Figure 4. Physical Connections, 80C51XA and M8813F2x

Connections:

Philips 80C51XA MCU
and M8813F2x PLCC package

Only the necessary pins
on the 80C51XA have been
shown

80C51XA Assumptions:

The logic levels on EA\ and
BUSW pinsare lowat reset.

The Bus Configuration Register
(BCR) bits BC2-BCO are set 010
to enable an 8-bitinterface and

a 20-bitdata / address output.

The Bus Timing Registers
(BTRH/BTRL) are setupso that
there are notiming conflicts
between the M8813F2x

and the 80C51XA.

Vee

TMS

TCK

TSTAT

Optional

TERR|

TDI

JTAG Port

TDO

80C51XA
M8813F2x
AO/WRH|
AL pao |22
EA\ A2 PAL |2
BUSW A3 PA2 | 27
A4/ DO| 301 Abioo PA3 |22
AS/D1 11 ADIO1 pasf2d
A6ID2 321 ApI02 PAS 23—
A7/D3 331 Api03 PA6 22
A8/D4 341 ADI04 PA7 J2L
A9ID5 351 ADIOS
AL0/D§ 361 ADIOG
A11/D 371 ADIO7 PBO |
A12/D7 394 ApI08 pB1|6
AL 401 Apiog PB2 |2
AL 411 ADI010 PB3 |4—
Al 424 ppio11 PB4 |—2—
AL 431 ADI012 PBS |2
AL 441 ADI013 PB6 | 22—
Al 454 ADI014 pe7 2L
mg—— 46lapjos5
pCoTMs |22
PCLTCK 2
pcavsTayY A2
PC3TSTATIHL
WR\ A1] cnTLo PCATERRIA
PC5/TDI|L3.
RD\ CNTLL 12
pSEN 40| cnrio PeomDOf-L2
ALE 104 Ppo-ALE PeT—
—2PD1-CLKIN
=& pp2-csil
RST\ T 48 {RESET\

RESET\ %
Lo &

Hil

Optional 3.6V
lithium battery or cap

Al03329

Memory Map
For this simple design, we used an M8813F2x with the following memories:

= 128 KBytes main flash memory, broken into eight 16 KByte segments denoted fs; (; = 1.g
= 32 KBytes boot Flash memory, broken into four 8 KByte segments denoted csboot; ; = 1.4). The

M8813F1x has a boot EEPROM instead of Flash memory. Therefore, ees j = 1.4) would be used in
place of csboot;.

s 2 KByte SRAM (rs0)
= 256 Byte configuration register (csiop).

The PSD memory segments are defined in the PSDabel file in PSDsoft. We use the boot memory to hold
the ISP boot loader code, 80C51XA interrupt vectors, and common firmware functions. For this example,

4/25

1573

AN1177 - APPLICATION NOTE

we execute from boot flash only and leave the main Flash memory in Data Space. A sample memory map
is shown in Figure 5.

Figure 5. Memory Map, Simple 80C51XA / M8813F2x Design

Program Space Data Space

F:FFFF F:FFFF

Not to Unmapped Not to Unmapped
Scale 13 x 64 KBytes Scale 13 x 64 KBytes

2:FFFF 2:FFFF

FS7
16 KBytes FLASH
FS6
2:8000 16 KBytes FLASH
FS5
16 KBytes FLASH
FS4
16 KBytes FLASH
FS3
1Co0o 16 KBytes FLASH
Unmapped ' FS2
160 KBytes 16 KBytes FLASH
1:8000
FS1
16 KBytes FLASH

FSO
16 KBytes FLASH
Unmapped
. 57.75 KBytes
0:1900 <
Boot PSD Control Register (CSIOP)

from 01800 256 Bytes
Here Not to) Optional SRAM (RS0)

0:8000 Scale 0:1000 2 KBytes
0:6000 Flash Boot Sector CSBOOT3 8 KBytes Unmapped
B Flash Boot Sector CSBOOT2 8 KBytes 3to 3.75 KBytes

0:4000 Flash Boot Sector CSBOOT1 8 KBytes 80C51XA On—Chip RAM

0:2000
Flash Boot Sector CSBOOTO 8 KBytes
00 ik 0:0000 256 Bytes to 1 KByte

2:C000

2:4000

2:0000

1:4000

1:0000

Al03330

Note the following about the sample memory map shown in Figure 5:

= Itis broken up into sixteen 64 KByte segments.

= It shows both Program Space and Data Space.

s The 32 KBytes of the boot memory is mapped to Program Space.

= The main flash memory is mapped to Data Space so that the contents can be programmed.
s The PSD Control Register and SRAM are in the bottom 64 KByte segment of Data Space.

Note that placing the main flash and boot memory into Program Space or Data Space is accomplished
with the PSD VM Register. PSDsoft is used to define the initial value of the VM Register when the system
powers up or is reset. This initial value is stored in the fuse-map that gets programmed into the PSD. At
run-time, the VM register can be changed by writing to it with the MCU. This is illustrated in the enhanced
design (starting on page 17).

The boot memory holds the following information:

= 80C51XA reset vector and initialization routines

E 5/25

AN1177 - APPLICATION NOTE

= 80C51XA interrupt vectors and service routines

= |/O management

= SRAM variables and SRAM stack.

Since Figure 5 is a sample memory map, you may wish to change it. To do so, simply change the
Hardware Description Language (HDL) equations for the Decode PLD for the desired segments.
Equations are written and compiled in the PSDsoft software development environment, using the standard
Hardware Description Language, ABEL (called “PSDabel” as packaged in PSDsoft). For example, if you
have an M88 FLASH+PSD part that does not contain the optional boot memory, you will wantto have the
main flash located at the bottom of Program Space (from 0:0000h to 1:FFFFh). See Appendix A for a
sample memory map for parts with no secondary boot memory.

PSDsoft Design Entry

Highlights of design entry will be given here. Please refer to Application Note AN1154 for a thorough
coverage of all the features of PSDsoft. This section is meant to show you just the essentials to get you
going. Here are the steps:

Invoke PSDsoft and Open a New Project
= Start PSDsoft.

= Open a new project.

= Enter your project name and directory (in this example, it is named “yourfile” in the directory
PSDSOFT\YOUR_PROJECT).

= Select an M8813F2x

= Select the 80C51XA template

= Click OK.

Now you have your project established, based on an M8813F2x and a 80C51XA.

Design Flow Window
The design flow window shows all of the major steps of the design process, as shown in Figure 6. Clicking
on a box within the design flow window invokes the associated process. You should see this:

4

6/25

AN1177 - APPLICATION NOTE

Figure 6. Design Flow Window

ﬁ P5Dsgoft Design Flow []

Device

L J
MCu C Code
Code Gen
Mapping

¥

Al03314

¥ *
Logic JTAG Device
Sim Prog Prog
Device Configuration

Click on the Device Configuration box inthe design flow window to configure the PSD for connection to a
80C51XA. You should make selections with your mouse to match Figure 7.

4]

7125

AN1177 - APPLICATION NOTE

Figure 7. Device Configuration Window

PSD Configuration

MCL Buz Configuration I Dther Configuratian I JTAG Ennfiguratiunl Sector F‘rnlen:tiunl

Drata Bus WwWidth Address/Tr ata Mode
|- @ 9-Bit O 16-Bit | |- @ Mux 0O MoreMux |

- Control Seting - addiess Latch/Shiobe Setup
[#uF, RD, /PSEM, Bustbode [+

Actve-Level of ALE A5 signal
@ High 0O Low

Enable Chin-Select Input [AC51)

~Set VM Register Configuration at Power Up

Flash —— Flagh Boot
[Fiogram Space
Data Space [Data Space

- D' ezcniption

Program Space =» This etz the initial configuration of how the Flagh B oot
memory output enable is activated. Choosing thiz will sllow the Flash Boot
rnemary array ko drive the ML data bus while the PSEN sigral is active which
places all Flazh Boot sectors in “program’” zpace.

Data Space =>» This cete the initial confiquration of how the Flagh B ook memory
output enable is activated, Chaosing this will sllow the Flazh B oot menary aray
to diive the MCU data bus while the RD signal iz active which places all Flash
Biont sectors in''data” space.

Mate T: The zethng takes effect from power-up and remain: until overndden by
MCU firmweare at run-time.

I ag ” Anrler I

Al03328

Now go to the JTAG Configuration tab and click the boxes as shown if you want to dedicate six pins of
Port C to be the JTAG channel for In-System-Programming, as shown in Figure 8. See Application Note
AN1153 for options regarding JTAG.

8/25

4

AN1177 - APPLICATION NOTE

Figure 8. Device Configuration Window — JTAG Configuration Tab

PSD Configuration

MCU Bus Canfiguration I Other Canfiguration | JTAG Configuration | Sectar Plolectiunl

FITAG Functions

zzign TMS/TCKATDITDO on PCOZPCY/PCS/PCE a: dedicated JTAG ping
Reseme PCIPCA for TSTATATERR funchion

- User Cod

- Dezcription

Thig option azzigns JTAG signals TMS, TCE, TDI, and TDO on PCO, PET,
PLCS and PCE, rezpectively, at all ime.

Selzct thiz ophion to alwaps assign JTAG tunchons on these pins.

“When thiz option is not zelected, JTAG function can alzo be enabled via a
product ke of the JTAG Enable Fegister at nun time.

I 0k, ” Anruler I

Al03316

Click OK to save this configuration and get back to the design flow window.

By default, the device is set to allow JTAG downloads, but the default setting of PSDSOFT is to disable
this function. If you do not configure the device in the way described (in Figure 8) the JTAG download cell
will be disabled for all subsequent programming sequences, and the device will disallow JTAG downloads.
From this state, the only way to restore the device is to use PSDpro programmer (M8PSDPRO). You are
strongly advised to use only the configuration described above.

PSDabel Design Entry

Click on the “Design Entry” box of the design flow window so you can enter your HDL equations using
PSDabel. Since you selected an 80C51XA template previously, the basis of the design will already be
there; you just have to edit the PSDabel template, as shown in Figure 9.

4]

9/25

AN1177 - APPLICATION NOTE

Figure 9. PSDabel Design Entry Window

ERPSDabel Design Entry - C:APSDSOFT y\new.abl

module new
title '3T M88XEF1/F2/F3 design template for the EEEICSlXle family
of microcontrollers (multiplexed bus wersions)':

rew®* This PSDabel file 1is used to:

rEETE

frwx*w 1, Define the chip select eguations for internal P3D components.

rrEET These equatilons are implewmented on the DPLD to select:
rEEEE * Main Flash memory
rE * Secondary NWVH nroogrammable memorw (EEPROM for
Al03351
Edit the template

The default 80C51XA template that you see on the screen has numerous elements inside to illustrate
many features of the M88 FLASH+PSD family. To simplify things, edit the template file that you see to look
like the simple PSDabel file shown here. You can cut and replace the following text from this document by
using Adobe’s “Text Selection Tool”. Be sure to change the module name in the very first line from “new”
to whatever you named your project when you first created it.

module new
title 'Simple 80C51XA embedded flash design’;

i

/I The following declarations are 80C51XA bus input signals to the PSD PLDs.
1

wr pin;”Active-low write strobe input

rd pin;”Active-low read strobe input

psen pin;"Active-low Program Space enable input

ale pin;”Address latch enable input

reset pin;”"Active-low reset input

al9..a0 pin;"Address input (demultiplexed)

address = [al9..a0];"Group the address inputs

1

I e T

1

/I Port pin assignments. See Application Notes AN1171 & AN1154 for details on
/I assigning port pins. No I/O pins are used in this simple 80C51XA example.
1

/I Be aware that you have clicked the boxes in 'Device Config’ to dedicate

/I 6 of the 8 Port C pins for JTAG use. See Application Note AN1153 for details
/I on JTAG and Port C

i

4

10/25

AN1177 - APPLICATION NOTE

i

1

1 Internal Node Declarations

1

/I Main flash memory segments: all M88x3Fxx devices have a 256 KByte main
/I flash, which is broken up into eight 16 KByte segments (fsO-fs7).

1

fs7..fsOnode;

1

/I Optional Boot flash: the M8813F2x devices have a 32 KByte boot flash.
/I This boot flash is broken up into four 8 KByte segments (csbootO-csboot3).
1

csboot3..csbootOnode;

1

/I Optional SRAM: the M88x3Fxx devices have a 2 KByte SRAM. The
/I SRAM is one segment.

1

rsO node;

1

/I PSD Control Register: all M88x3Fxx devices have a control register that
/I is 256 bytes.

1

csiopnode;

i

1

I Equations Section

1

EQUATIONS

1

/I Write chip select equations to implement the memory map

1

fsO = (address >= ~h10000) & (address <= "“h13FFF);
fsl = (address >= "h14000) & (address <= "h17FFF);
fs2 = (address >= "h18000) & (address <= "h1BFFF);
fs3 = (address >= "h1C000) & (address <= “h1FFFF);
fs4 = (address >= "h20000) & (address <= "h23FFF);
fs5 = (address >= "h24000) & (address <= "h27FFF);
fs6 = (address >= "h28000) & (address <= "h2BFFF);
fs7 = (address >= "h2C000) & (address <= "h2FFFF);

csboot0 = (address >= ~h00000) & (address <= "hO1lFFF);
csbootl = (address >= ~h02000) & (address <= "hO3FFF);
csboot?2 = (address >= ~h04000) & (address <= "hO5FFF);
csboot3 = (address >= ~h06000) & (address <= "hO7FFF);

ﬁ 11/25

AN1177 - APPLICATION NOTE

rsO = (address >= ~h01000) & (address <= "h017FF);
csiop = (address >= ~h01800) & (address <= "h018FF);

1

/I Write equations for general logic and external chip select equations
/I here. See Application Notes AN1171 and AN1154 for details.

1

end

Notice the following about this simple PSDabel file (in order):
= The pin declarations for connection to the 80C51XA occur at the beginning of the file.

= No PSD general-purpose I/O pins are declared in this example for simplicity. These features can be
easily implemented. (See Application Notes AN1171 and AN1154 for examples using I/O pins.)

= Internal PSD nodes are declared for memory selection and PSD control.

= The HDL equations appear for the selection of internal PSD memory segments and the PSD control
register. Each memory segment is assigned to an address range according to the memory map of
Figure 5.

= No equations for the CPLD were shown. For examples, see Application Notes AN1171 and AN1154.

Logic Synthesis and Fitting

After you have edited the PSDabel template file to look like the above file, go to the design flow window
and click on the “Logic Synthesis and Fitting” box. Now PSDsoft will compile the PSDabel file and then
synthesize the PSDabel statements into reduced logic that fits the M8813F2x silicon. When this process
is complete, a report will pop up that shows the resulting pin assignments and reduced equations. This is
the fitter report, which you can use to document your design. Notice the pin assignments for the JTAG
channel in the fitter report.

C Code Generation

You can take advantage of the provided low-level C code drivers for accessing memory elements within
the PSD by clicking on the “C Code Gen” box in the design flow window. To get the C functions and
headers, specify the folder in which you want the ANSI C files to be written. ANSI C code functions and
headers are generated for you to paste into your 80C51XA C compiler environment in the folder you
specify. Simply tailor the code to meet your system needs. See Application Note AN1154 for details on
the C code generation feature.

MCU Code Mapping

Now that the fitting process is complete, PSDsoft has created a fuse pattern that reflects the PSD
configuration and logic of your design. PSDsoft places this fuse information into a file (the .obj file).
However this fuse pattern does not yet contain the 80C51XA firmware. The next step will accomplish this,
producing a .obj file that contains the PSD configuration AND the 80C51XA firmware. This final .obj file is
what gets programmed into the PSD. Note: the first .obj file that is created without MCU firmware can be
used for logic simulation. See Application Note AN1154 for details. That same .obj file is appended with
MCU firmware in the next step below.

12/25 E

AN1177 - APPLICATION NOTE

For this step, MCU Code Mapping, you will input the firmware file(s) that contain absolute addresses from
your 80C51XA compiler/linker (S-record or Intel HEX format). The Address Translator will map these
file(s) into the memory segments of the PSD according to the HDL equations that you entered in PSDabel.
This mapping process translates the absolute system addresses that 80C51XA uses into physical internal
PSD addresses that are used by a programmer to program the PSD. The address translation process is
transparent. All you need to do is type in the file name(s) that were generated from your 80C51XA linker
into the appropriate boxes, and PSDsoft does the rest.

To perform the address translation, go to the design flow window and click on the “MCU Code Mapping”
box, as shown in Figure 10.

Figure 10. Address Translation Window

Address Translation
bl emony } File File
Select Memory Select Equations | Addiess Addiess Fils M amz
M arne Start Stap
Ipdn & parl & pord & a5 8 -
FE0 | atd & losi; E ||BFFF | | ‘
Ipde & lalh & a4 & o
F51 |4nnm | [rre] |

Ipdn & lparl & lpoll & 515

F$2 b lale i lcsi [oo0|[eFre || \
Ipdn & lparl & lpoll & 515
F53 |balddles |cnc|n | |FFFF | | ‘
- | or
Fiecord Type Mapping Mode
@ Intel Hex Record O Motorola 5-Record @ Direct O Relative ’m‘

Al03345

The far left column contains individual PSD memory segments. The next column shows the logic
equations for selection of each memory segment (shown for reference only). In the middle are the address
ranges that were specified in the PSDabel file to create the memory map. PSDsoft filled in these address
fields for you. PSDsoft expects to find these absolute MCU addresses within your 80C51XA linker file(s)
when they are imported. On the right are boxes where you type in the name of the file(s) (including path)
that your 80C51XA linker created. Notice that you can select Motorola S-Record or Intel Hex Record for
the input type. Leave the “Mapping Mode” set to “Direct”.

Now slide the scroll bar down until you see csbootO and csbootl, as shown in Figure 11.

4]

13/25

AN1177 - APPLICATION NOTE

Figure 11. Address Translation Window — after scrolling

I _I_——wmmmmhbbmbbTTa—bhh—m—h————————————h———
Addiess Translation
femony) File File
Select Memarp Select Equations | 4ddiess Addiess File Mame
REIT) Start Stop
Ipde & porl & Tpord & 215 -
FS7 |5 ald & lcsi; |EDEIEI | |FFFF ‘ | |
lpdk & 1216 & la1d & 1213 &
CEROOTO |ics; E |[FFe] [ebocthes |

lodn & la15 & latd & al3 &
CSBOOTT [lgsi |2cu30 | |3FFF \ |c:\boot.heu |

Ipon & 515 & o1& & lal 3 &
C5BOOTZ |lesi: |4uno ||5FFF H |‘

- [ok
Fecord Type M apping Made
& IntelHex Record O Motorala S-Record & Direct O Relative Cancel |

Al03332

Type in the name of the file from your 80C51XA linker that contains the firmware that will boot up your
system. For this example we called it boot.hex. This file can contain very simple 80C51XA code that
configures your system hardware and performs rudimentary tasks to check out your new hardware. In this
example, there are 32 KBytes available in flash boot segments csbootO and csbootl1, which is more than
enough for this simple boot and test code. After your new hardware is proven, you can add more code to
the boot area for advanced tasks, such as implementing a download to main flash memory from a host
computer, as shown in the enhanced design (starting on page 17).

No file names are required for the main flash regions (fsO-fs7) because we are only operating out of boot
flash for now.

Click OK, and the address translate process will produce the final .obj file that you can use to program the
PSD.

Programming the PSD

The .obj file can be programmed into the PSD in one of three ways:

s The ST FlashLINK JTAG cable, which connects to the PC parallel port.

s The ST PSDpro device programmer, which also connects to the PC parallel port.

= Third-party programmers, such as DATA I/O, Stag, and Needhams. Please see the web site at
www.st.com/flashpsd for a list of compatible third-party programmers.

First we show you how to use the FlashLINK JTAG cable to program the PSD.

Programming with FlashLINK
Connect the FlashLINK JTAG cable to the PC parallel port. Click the “JTAG Programming” box in the
design flow window, to make the window, as shown in Figure 12, pop up.

4

14/25

AN1177 - APPLICATION NOTE

Figure 12. JTAG Chain Setup Window

JTAG Operations - Multi Devices

- Step 1: Define JTAG chain

Select filename to program, select device, and specify the operation for each dewice in chain

select folder and Hle |D:\STF’SDSW\new.nb\ | | Browse

Select device |MEB1 AF JEI

Build JTAG chain by clicking ‘add’, then right click an the new entry to specify the operation.

Right click on the new entry again and elzct Properties’ to =et JTAG operation options,

| Device | File Nams | peration | Property Add
1 MBBIIFA DS TPSD S new obj BEvPass O ption-3

[4]] 11+ | M iowe IEI,T|
- Step 2 Execule JTAG operation

Click hiere: after ITAG chain has been defined
~ Step 3: Save/Retieve JTAG setup

Specify filenane and folder to savesietrieve the wetup ol this JTAG sezzion tor later/cunent uge

Selact folder and file |D:\tampinew.jcf | I Browse.. |
[Log Made - Click box ta recard log infamatian in the log fils * plg
P50 zoft 521 Copenght [C] 1393-1393 Walerzcale Integration, Inc. &l Rights Beserved, -
£ THicroclzctronios iz an autharized distributar of PSDealt
DATE ;1142499 TIME : 10:.47:28 J:

Hw Setup ” Reset Target ” Cancel |
Al03321

This window allows you to describe the JTAG chain that exists on your circuit board, your desired
operation, and also offers a loop-back test for your FlashLINK cable. If this is your first time using the

FlashLINK cable, you should test it by clicking on the “HW Setup” button, then click the “LoopTest” button
and follow the directions.

This design example uses a JTAG chain of one device, which is the most typical case. Now to define the
JTAG chain:

= Specify the .obj file to be programmed into the PSD. Click the “browse” button within the “Chain
Information” area to find your file. In this example, it is yourfile.obj, as shown in Figure 12.

m Choose the device name, M8813F2x, also as shown in Figure 12.

= Click the “Add” button to add the .obj file and the PSD device to the chain definition, as shown.

Now that the file and part are specified, you must specify the operation that you want to perform. In this
case we want to program the device. Notice in the highlighted line for device number one in the window

above, the operation is currently “ByPass”. This is the default operation for all devices that are added to
the JTAG chain.

Let us change that operation by clicking the right mouse button on the highlighted line, as shown in Figure
13.

4]

15/25

AN1177 - APPLICATION NOTE

Figure 13. JTAG Chain Setup Window — after pulling down the Bypass menu

- Step 1: Define ITAG chain

Select filename to program, select device, and specify the operation for each device in chain

Select tolder and hie: |D:\STPSDSW\mew.Dbi | | Browse...
Select device |MEE;1 AF2w IEI

Build ITAG chain by clicking Sdd', then right click om ths new entry to specify the operation

Right click on ke new entry again and select "Properties’ to set JTALR operation options.

Froperties.

0 Elank Test
Eraze
- Step 2 Executz JTAG operation I
Click here aftel JTAG chain has been defined arify
Upload
- Step % SaverRetrieve JTAG tetup P
! i . v ByFais
Specify flznare and folder bo 2ave/retiewve the setup of thiz JTAG e rer W I

Select foldar and file [D: shemphnew.jof || Browse.. |

[Loa Made - Click haox ba record log infomation in the log file * plg
PSDzoft 521 Copenght (C] 19931993 Waterseale [ntegration, Ine. &l Rights Rezerved,

STMicroelectrorics is an authorized distibutar of PSDsoft

S
DATE : 11/24/59 TIME ; 1004728 I:

-

|HWEelup IIHBsetTalget” Cancel |

Al03333

Now choose “Program” from the list that appears in the small pop up box. Once you select “Program”, you
will be given a choice to program all of the PSD, or just certain regions. Click “All” for this example.

Again, right-click on the highlighted line for device number one. This time, just for reference, click on
“Properties”. This is where you can specify use of 6 pins or 4 pins for the JTAG channel. You can also
specify the default state of 1/0 pins while JTAG operations are occurring. Notice that the default JTAG
setup in this window is “Option 3” (6 JTAG pin channel), and all I/O pins are in high-impedance input mode.
Just click “Cancel” to move on, since we are using all the default choices on this screen.

Now everything has been defined in the JTAG chain of one device: the file name, the type of PSD, and
the desired operation. To begin programming the device, just click the “Go” button. After programming is
complete, you can save the JTAG setup for this programming session to a file for later use. To do so, click
on the “Save” button in the “JTAG Chain File” section of the window. See Application Notes AN1153 and
AN1154 for details on all the features of the JTAG channel and this JTAG Chain Setup window.

Programming with PSDpro
Connect the PSDpro device programmer to your PC parallel port per the installation instructions. Click on
the “Device Programmer” box in the design flow window, as shown in Figure 14.

16/25

4

AN1177 - APPLICATION NOTE

Figure 14. Parallel Programming Window

ﬂ Parallel Programming - Mo Hardware =i E3

L2 [[%]o]%| B[]l @[] | [«[=]] |
M8813F2X Flash [Q0000 - TFFFF] | Fs0: 00oon new.obj 01Z34567E0ARBCDEF
00000 FFI FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |~ | - .-« ..o oo
00010 FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF
00020 FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF
0po3n FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF
00040 FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF
opos50 FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF
00060 FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF
00070 FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF
00080 FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF
opnan FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF
000AD FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF |FF

Al03323

If this is the first use of the PSDpro, click on the “Htest” icon to perform a test of the PSDpro and the PC
port. After testing, place an M8813F2x into the socket of the PSDpro and click on the “Program” icon. (The
.obj file is automatically loaded when this process is invoked). The messaging of PSDsoft will inform you
when programming is complete. See Application Note AN1154 for details on all the features of this
“Parallel Programming” window.

This window is also helpful even if you do not have a PSDpro programmer. You can use this window to
see where the Address Translate utility of PSDsoft has placed the 80C51XA firmware within physical
memory of the PSD. For this design example, you can click on the boot flash icon in the tool bar. Notice
the B0C51XA reset vector at absolute MCU addresses 00000h and 00002h, translates to PSD boot flash
physical addresses 20000h and 20002h, respectively. To see how all of your 80C51XA absolute
addresses translated into physical PSD memory addresses, click “View” from the main tool-bar and select
“Address Translation Report”. The start and stop addresses in the report are the absolute MCU system
addresses that you have specified. The addresses shown in square brackets are direct physical
addresses used by a device programmer to access the memory elements of the PSD in a linear fashion
(a special device programming mode that the MCU cannot access).

ENHANCED DESIGN EXAMPLE

This second design example builds upon the first to add enhanced features to this ISP capable system.
The physical connections between the 80C51XA and M8813F2x do not change, but the memory map and
PSDabel equations do. The focus of this enhanced design is to show how the memories of the M8813F2x
can be used concurrently. This means swapping the boot code out of Program Space after the initial boot
sequence has completed. The boot code can then be updated if desired.

Physical Connections
Same as the simple design example (on page 4).

Memory Map
The boot sequence and memory swap is a four step process, as shown in Figure 15 to Figure 19.

ﬁ 17/25

AN1177 - APPLICATION NOTE

Memory Map Configuration at Boot-Up

Figure 15 on the next page shows how the memory map looks at system power-on or at system reset. The
SWAP bit is one of the eight internal PSD page register bits, whose value is zero by default. The SWAP
bit is an example of how the page register bits can be implemented for uses other than memory paging.
The VM Register controls which space (Program or Data) the PSD memories appear in and can be set
prior to run-time using PSDsoft Configuration. Here is what the 80C51XA does upon power-up or reset:
= Boot from flash boot csbootO at address 00000h

m Perform a check-sum of main flash memory

= Download main flash memory from a host computer if needed and validate contents.

Figure 15. Memory Map, Enhanced Design at Boot-Up/ISP

Program Space Data Space
F:FFFF F:FFFF
Not to Unmapped Not to Unmapped
Scale 13 x 64 KBytes Scale 13 x 64 KBytes
2:FFFF 2:FFFF
FS7
2:C000 16 KBytes FLASH
FS6

2:8000 16 KBytes FLASH

FS5
16 KBytes FLASH
FS4
16 KBytes FLASH
FS3
1.Co00 16 KBytes FLASH
Unmapped ’ FS2
160 KBytes) 16 KBytes FLASH
1:8000 =1
16 KBytes FLASH
FSO
16 KBytes FLASH
Unmapped
. 57.75 KBytes
0:1900 :
Boot FSD Control Register (CSIOP)
from 01800 256 Bytes
Here Not to ’ Optional SRAM (RS0)

Scale 2 KBytes
0:8000 0:1000
Boot Flash Sector CSBOOT3 8 KB
0:6000 00! as| ector ytes Unmapped

0:4000 Boot Flash Sector CSBOOT2 8 KBytes 3to 3.75 KBytes
0'2000 Boot Flash Sector CSBOOT1 8 KBytes 80C51XA On-Chip RAM

Boot Flash Sector CSBOOTO 8 KBytes
0:0 Y 0:0000 256 Bytes to 1 KByte

2:4000

2:0000

1:4000

1:0000

swap =0

VM Register = 12h Al03334

Memory Map Configuration After Moving the Main Flash
The next step is to move the main flash from Data Space to Program Space. To do so, while executing
out ofthe boot flash, write 06h to the VM register. You will now have the memory map shown in Figure 16.

18/25 E

AN1177 - APPLICATION NOTE

Figure 16. Memory Map After Moving the Main Flash to Program Space

Not to
Scale

Execute

FiFFFF

Program Space

2:FFFF

Unmapped
13 x 64 KBytes

FS7
16 KBytes FLASH

2:C000

2:8000

FS6
16 KBytes FLASH

2:4000

FS5
16 KBytes FLASH

FS4
16 KBytes FLASH

2:0000

1:C000

FS3
16 KBytes FLASH

1:8000

FS2
16 KBytes FLASH

FS1
16 KBytes FLASH

1:4000

1:0000

FSO
16 KBytes FLASH

from
Here

Unmapped
32 KBytes

Boot Flash Sector CSBOOT3 8 KBytes

Boot Flash Sector CSBOOT2 8 KBytes

Boot Flash Sector CSBOOT1 8 KBytes

Boot Flash Sector CSBOOTO 8 KBytes

Not to
Scale

Not to
Scale

swap =0

F:FFFF

2:FFFF

0:1900

0:1800

0:1000

0:0000

VM Register = 06h

Data Space

Unmapped
13 x 64 KBytes

Unmapped
185.75 KBytes

PSD Control Register (CSIOP)
256 Bytes

Optional SRAM (RS0)
2 KBytes

Unmapped
3to 3.75 KBytes

80C51XA On-Chip RAM

256 Bytes to 1 KByte

Al03335

Memory Map Configuration After Setting the SWAP bit
Next, we want to transfer execution to main flash segment fs0. Once we are executing out of main flash,
it is desired to set the SWAP bit to re-map the flash boot segments csboot0/csbootl out of the MCU boot
area and replace it with main flash segment fs7, as shown in Figure 17. This swapping action is
implemented by including the SWAP bit in the PSDabel equations for the memory chip select equations.
(please see the PSDabel file, on page 4)

4]

19/25

AN1177 - APPLICATION NOTE

Figure 17. Memory Map After Moving the Boot Flash to Data Space

Program Space Data Space
F:FFFF F:FFFF
Not to Unmapped Not to Unmapped
Scale 13 x 64 KBytes Scale 13 x 64 KBytes
ZfFFFF Boot Flash Sector CSBOOT1 8 KBytes ZFFFF
2:E000 Boot Flash Sector CSBOOTO 8 KBytes
2:C000
FS6
28000 16 KBytes FLASH
FS5
24000 16 KBytes FLASH
’ FS4
Execute’\ 20000 16 KBytes FLASH
xecu :
¢ FS3 Unmapped
rom 16 KBytes FLASH 185.75 KBytes
Here ES2
16 KBytes FLASH
FS1
16 KBytes FLASH
FSO
16 KBytes FLASH
0:1900 -
Unmapped PSD Control Register (CSIOP)
32 KBytes 256 Bytes
0:1800 -
Optional SRAM (RS0)
) Not to : 2 KBytes
ggggg Boot Flash Sector CSBOOT3 8 KBytes Scale 0:1000 Unmapped
0:4000 Boot Flash Sector CSBOOT2 8 KBytes 3to 3.75 KBytes
’ FS7 80C51XA On-Chip RAM
0:0000 16 KBytes FLASH 0:0000 256 Bytes to 1 KByte
swap =0

VM Register = 06h Al03336

Memory Map Configuration After Moving the Boot Flash to Data Space

The final step is to move the boot flash to Data Space so that it can be updated if desired. To move the
boot flash to Data Space, write OCh to the VM register. Once the VM register has been written, you can
program either half of the boot flash, depending on how the UNLOCK bit is set. Figure 18 shows the final
state of the memory map.

4

20/25

AN1177 - APPLICATION NOTE

Figure 18. Memory Map After Setting the SWAP Bit

Program Space Data Space
F:FFFF F:FFFF
Not to Unmapped Not to Unmapped
Scale 13 x 64 KBytes Scale 13 x 64 KBytes
2FFFF Unmapped 2_:FFFF Boot Flash Sector CSBOOT1 8 KBytes
16 KBytes 2:E000 Boot Flash Sector CSBOOTO 8 KBytes
2:C000 2:C000
FS6
2:8000 16 KBytes FLASH
FS5
24000 16 KBytes FLASH
’ FS4
16 KBytes FLASH
Execute Y 2:0000);SS Unmapped
from 16 KBytes FLASH 144 KBytes
Here ES2
16 KBytes FLASH
FS1
16 KBytes FLASH 0:8000
FSO : Boot Flash Sector CSBOOT3 8 KBytes
0:6000 Boot Flash Sector CSBOOT2 8 KBytes
16 KBytes FLASH 0:4000 Y1
Unmapped
0-1900 8.75 KB){tes
PSD Control Register (CSIOP)
Unmapped 0:1800 256 Bytes
48 KBytes) Optional SRAM (RS0)
Not to 2 KBytes
0:1000
Scale Unmapped
3to 3.75 KBytes
0:4000 -
FS7 80C51XA On-Chip RAM
0:0000 16 KBytes FLASH 0:0000 256 Bytes to 1 KByte
swap =0

VM Register = 0Ch Al03337

In this final configuration, the 80C51XA has available:

= 16 KBytes main flash memory in the boot area (00000h-03FFFh)

= 112 KBytes main flash in Program Space (10000h-2BFFFh)

m 2 KBytes of SRAM in addition to the SRAM that resides on the 80C51XA
= 16 KBytes of boot flash for general data storage (04000h-07FFFh)

= 16 KBytes of boot flash for boot and ISP loader code (2C000h-2FFFFh).

Each time this 80C51XA system gets reset or goes through a power-on cycle, the PSD presents the
memory map of Figure 15 to the MCU, and the boot sequence is repeated.

PSDsoft Design Entry
The 80C51XA design template that is installed with your copy PSDsoft contains the PSDabel file needed
to implement this second design example. Just do the following:

= Open a new project
= Select an M8813F2x
= Select the 80C51XA design template to get the core of this design

ﬁ 21/25

AN1177 - APPLICATION NOTE

= Tailor the PSDabel template to meet your system needs

= Synthesize and fit the design

= Map the MCU Code (80C51XA firmware)

= Program the part.

When mapping the 80C51XA firmware in the Address Translate utility of PSDsoft for this second design
example, you still do not need to specify any HEX or S-Record file for the PSD main flash area. You only
need to specify the 80C51XA linker file(s) for the boot flash area (as in the first simple design) because
the 80C51XA will execute code from boot flash and download to main flash memory. For reference, the
following are the only PSDabel statements that differ between the simple design and this enhanced
design.

swap node 117; "This is an unused page register bit 'pgr7’
unlock node 116; "This is an unused page register bit 'pgr6’

/I Node numbers are used the declarations above instead of reserved
/I the names, pgr7 and pgr6. This allows the actual names, SWAP and
/I UNLOCK, to appear throughout the reduced logic equations, making
/I reports more readable also making files compatible with future

/I PSDsoft features.

/I The following memory select equations match the memory maps of
/I Figure 16 to Figure 19. Notice the use of the SWAP and UNLOCK bits.

fsO = (address >= "h10000) & (address <= "h13FFF);
fsl = (address >= "h14000) & (address <= "h17FFF);
fs2 = (address >= "h18000) & (address <= "h1BFFF);
fs3 = (address >= "h1C000) & (address <= “h1FFFF);
fs4 = (address >= "h20000) & (address <= "h23FFF);
fs5 = (address >= "h24000) & (address <= "h27FFF);
fs6 = (address >= "h28000) & (address <= "h2BFFF);
fs7 = ((address >= ~h2C000) & (address <= "h2FFFF) & !swap)

((address >= ~h00000) & (address <= "hO3FFF) & swap);

csboot0 = ((address >= ~h00000) & (address <= "hO1FFF) & !swap)

((address >= "2C000) & (address <= "h2DFFF) & swap & !unlock);
csbootl = ((address >= ~h02000) & (address <= "hO3FFF) & !Iswap)

((address >= "“2E000) & (address <= "“h2FFFF) & swap & !unlock);
csboot?2 = (address >= ~h04000) & (address <= “hO5FFF) & swap & unlock;
csboot3 = (address >= ~h06000) & (address <= “hO7FFF) & swap & unlock;

4

22/25

AN1177 - APPLICATION NOTE

CONCLUSION

These examples are just two of an endless number of ways to configure the M88 FLASH+PSD for your
system. Concurrent memories with a built-in programmable decoder at the segment level offer excellent
flexibility. Also, as you have seen with the SWAP and UNLOCK bits, the page register bits do not have to
be used just for paging through memory. The ability to expand your system does not require any physical
connection changes, as everything is configured internal to the PSD. And finally, the JTAG channel can
be used for ISP anytime, and anywhere, with no participation from the MCU. All of these features are
cross-checked under the PSDsoft development environment to minimize your effort to design a flash
80C51XA system capable of ISP.

REFERENCES
» M88 FLASH+PSD Family Data Sheet

= Application Note AN1153 for detailed use of the JTAG channel
= Application Note AN1171 for details on the CPLD and I/O pins

= Application Note AN1154 for a design tutorial, and details on PSD 1/O, CPLD, logic simulation, and
PSDsoft features.

= Application Note AN1176 for a design guide for the 68HC11 and M8813F1x.
= Application Note AN1178 for a design guide for the 80C51 and M8813F2x.

4]

23/25

AN1177 - APPLICATION NOTE

APPENDIX A—CONNECTING TO AN M88X3F3X (WITH NO BOOT MEMORY)
Figure 19 shows a sample memory map for connecting to an M88x3F3x (with no secondary boot memory).
This memory map assumes you have downloaded the main flash with the FlashLINK cable or you have
booted from a separate PROM and have downloaded the flash using the MCU. In either case, you must
change your design file (.abl) to account for the different segment locations.

Figure 19. Memory Map for an M88x3F3x Device (with No Secondary Boot Memory)

F:FFFF

Not to
Scale

2:FFFF

2:0000
1:C000
1:8000
1:4000
1:0000
0:C000
0:8000

0:4000

0:0000

Program Space

Unmapped
13 x 64 KBytes

Unmapped
64 KBytes

FS7
16 KBytes FLASH

FS6
16 KBytes FLASH

FS5
16 KBytes FLASH

FS4
16 KBytes FLASH

FS3
16 KBytes FLASH

FS2
16 KBytes FLASH

FS1
16 KBytes FLASH

FSO
16 KBytes FLASH

F:FFFF

Not to
Scale

2.FFFF

0:1900

0:1800

Not to

0:1000
Scale

0:0000

Data Space

Unmapped
13 x 64 KBytes

Unmapped
169.75 KBytes

PSD Control Register (CSIOP)
256 Bytes

Optional SRAM (RS0)
2 KBytes

Unmapped
3to 3.75 KBytes

80C51XA On-Chip RAM
256 Bytes to 1 KByte

Al03338

24125

4

AN1177 - APPLICATION NOTE

For current information on M88 FLASH+PSD products, please consult our pages on the world wide web:
www. st.com/flashpsd

If you have any questions or suggestions concerning the matters raised in this document, please send
them to the following electronic mail addresses:

apps.flashpsd@st.com (for application support)
ask.memory@st.com (for general enquiries)

Please remember to include your name, company, location, telephone number and fax number.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

[J 2000 STMicroelectronics - All Rights Reserved
The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners.
STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain -
Sweden - Switzerland - United Kingdom - U.S.A.
http:// www.st.com

ﬁ 25/25

