
AN1179/1199 1/25

APPLICATION NOTE

PROGRAMMING ST7 FLASH MICROCONTROLLERS IN
REMOTE ISP MODE (IN-SITU PROGRAMMING)

by Microcontroller Division Applications

1 INTRODUCTION

This application note is divided into two parts. The first part describes the ISP and FLASH pro-
gramming specifications for the following ST7 devices:

– ST72C104

– ST72C124

– ST72C171

– ST72C215

– ST72C216

– ST72C254

– ST72C314

– ST72C334

– ST72C411 (supports two ISP protocols, refer to the datasheet).

The second part of this application note gives an example of how to use the ISP protocol to
program the FLASH memory and the option bytes of a ST72C254, using another ST7 as a
programming tool.

1.1 WHAT IS ISP?

You can program any of the MCUs listed above by inserting it in the socket of a programming
tool available from STMicroelectronics (EPB). You can also program them, using a serial in-
terface, in In-Situ Programming (ISP) mode.
The ISP feature allows you to update the content of Flash program memory when the chip is
already plugged on the application board. ISP programming uses a serial protocol to interface
a programming tool (which can be the EPB, or any other device that has the specifications de-
scribed below).The ISP feature can be implemented with a minimum number of added com-
ponents and board area impact.
The ISP serial communication is based on a Master/Slave Architecture where the master is
the ST7 to be programmed. So the clock speed depends on the speed of the ST7 CPU and
this fact can produce some timing constraints.

1

2/25

PROGRAMMING ST7 FLASH MICROCONTROLLERS IN ISP MODE

2 ISP SPECIFICATIONS

2.1 ISP HARDWARE DESCRIPTION

In remote ISP mode, the ST7 has to be supplied with power (VDD and VSS) and an internal or
external clock signal (you can use any of the oscillator configurations described in the da-
tasheet). This mode needs five signals (plus the VDD signal if necessary) to be connected to
the programming tool. These signals are:

– RESET: device reset

– VSS: device power supply ground

– ISPCLK: ISP serial clock output

– ISPDATA: ISP serial data input

– ISPSEL: Remote ISP mode selection. This pin must be connected to VSS on the applica-
tion board through a pull-down resistor.

These pins are connected to the ST Programming tool using a HE10 type connector .

If any of these pins are used for other purposes in the application, a serial resistor can be im-
plemented to avoid a conflict if the other device forces the signal level.

Figure 1 shows a typical hardware interface to a standard ST7 programming tool. For more
details on the pin locations, refer to the device pinout description of the ST7.
Figure 1. Typical Remote ISP Interface

ISP mode used pin ISPDATA ISPCLK ISPSEL RESET VSS VDD

HE10 connector pin number 2 4 8 6 1,3,5 7

ISPSEL

VSS

RESET

ISPCLK

ISPDATA

O
S

C
1

O
S

C
2

V
D

D

ST7 FLASH

HE10 CONNECTOR TYPE
TO PROGRAMMING TOOL

10KΩ

CL0 CL1

APPLICATION

4.7KΩ

1

XTAL

O
ptional resistor

Opt
io

na
l, c

an
be

int
er

na
l o

sc
illa

to
r o

r a
ny

 u
se

r

 c
loc

k c
on

fig
ur

at
ion

for ST72411

Optional

2

3/25

PROGRAMMING ST7 FLASH MICROCONTROLLERS IN ISP MODE

2.2 ISP FUNCTIONAL DESCRIPTION

The ISP mode is selected by a specific sequence on the ISPSEL pin. ISP is performed in three
steps and makes use of the ST7’s capability of executing RAM-resident code:

– Selection of ISP mode

– Download code in RAM

– Execution of the downloaded code in RAM to program the user program into the FLASH

The programming sequence using the ISP protocol is described in Figure 2.

Figure 2. Flowchart of the ISP Protocol .

Put the ST7
in ISP mode

ST7 is in ISP mode

ST7 Execute the ‘boot-
strap’ program in RAM

A bootrom, in the ST7, is executed in order to read
(through the ISPDATA pin) and load the ‘boot-strap’ pro-
gram into RAM.
Then the ST7 jumps to the RAM to execute the ‘boot-strap’

The ‘boot-strap’ program reads data through the serial link

and programs the Flash memory and the option byte.

33 Rising edges on ISPSEL after reset pin is released
(rising edge on RESET pin) while ISPDATA pin stays low

4/25

PROGRAMMING ST7 FLASH MICROCONTROLLERS IN ISP MODE

2.2.1 ISP MODE SELECTION

To enter ISP mode the ST7 needs to be powered-on and connected to an available clock
system (internal RC, external RC, external clock or Crystal/resonator). The factory configura-
tion is internal RC (for clock selection refer to the datasheet).
During the reset phase, a sequence on the ISPSEL pin is used to enter ISP mode. ISPDATA
must be tied low until the first rising edge of ISPCLK. The sequence is shown in Figure 3.

Figure 3. ISP mode selection

Note: The 33 pulses do not need to be synchronized with the CPU clock. In this mode, the
reset phase is still 4096 CPU cycles.

RESET

ISPDATA

33 Rising Edges

ISPSEL

In a window of 256 CPU cycles

ISPCLK

Reset Phase: 4096 CPU cycles ISP Bootrom execution

5/25

PROGRAMMING ST7 FLASH MICROCONTROLLERS IN ISP MODE

2.2.2 DOWNLOADING CODE IN RAM

At the end of the Reset phase, the reset vector is fetched into the ISP bootrom.
The bootrom code is executed, to configure the port logic and to receive data serially through
the ISPDATA pin to be stored in the RAM area. To execute this ISP boot program, the status
of the ISPDATA pin must externally forced LOW just after the RESET phase, until the first
rising edge of ISPCLK.
Downloading the code in the RAM area is done sequentially from the least significant address
of the RAM. The number of bytes to be downloaded (after the first one) is specified in the first
data byte transfer and so can not exceed 255 bytes.

The ISP bootrom program and ISP protocol flowchart are shown in Figure 4.

Figure 4. ISP Bootrom: Code & Flowchart

A complete timing diagram is shown in Figure 5 and Figure 6Figure 6.

Enter with Valid
ISPDATA

X = 8

Force ISPCLK line High

Copy ISPDATA to carry Flag

7 0c

Rotate A Register

Force ISPCLK line Low

X = 0
No

Yes

X = X - 1

Store byte

.ISP_bootrom

BSET PxDR,#ISPCLK
BSET PxDDR,#ISPCLK
BSET PxOR,#ISPCLK

CLR Y
BRES PxDR,#ISPCLK

.nbyte CLR A ;A=ReceivedData
LD X,#$08 ;X=BitCounter

.nbit BSET PxDR,#ISPCLK
BTJF PxDR,#ISPDATA,read

;Update the carry flag
.read RLC A

BRES PxDR,#ISPCLK
DEC X
JRNE nbit
TNZ Y
JRNE store
LD RAMBEG,A ;RAMBEG=NB_byte

.incy INC Y
JP nbyte

.store LD (RAMBEG,Y),A
CP Y,RAMBEG
JRNE incy

.end JP {RAMBEG + 1}

6/25

PROGRAMMING ST7 FLASH MICROCONTROLLERS IN ISP MODE

Figure 5. ISP bit communication

Figure 6. ISP byte communication

2.2.3 EXECUTING CODE IN RAM, FLASH PROGRAMMING

After downloading the program in RAM, jumping to the start address of this program starts the
FLASH programming operation.

The FLASH program memory is organised as a single 8-bit wide memory block which can be
used for storing both code and data constants. The FLASH program memory is mapped in the
upper part of the ST7 addressing space and includes the reset and user interrupt vector area.

RESET

ISPCLK

ISPDATA DATA BIT

READ DATA

4096
13 CPU CYCLES

fCPU

DATA BIT

ISP MODE BOOTROM EXECUTION

12 CPU CYCLESCPU CYCLES
N CPU

 CYCLES

SELECTION

INITIALIZATION
PHASE

Note: The initialization phase duration is device dependent, timings are given in Section 2.2.3.4

ISPDATA

ISPCLK

USER RAM PROGRAM

BYTE NB BYTE 1 BYTE 2 BYTE NB-1 BYTE NB

EXECUTION
BOOTROM EXECUTION

7/25

PROGRAMMING ST7 FLASH MICROCONTROLLERS IN ISP MODE

2.2.3.1 Programming the FLASH

The FLASH area is driven by the Flash Control & Status Register (EEXCSR).
The FLASH area can program up to 16 bytes in the same erase & programming cycle.The
FLASH is mono-voltage, a charge pump generates the high voltage internally to enable the
erase and programming cycles. The global programming cycle duration is controlled by an in-
ternal circuit.

Flash Control & Status (EEXCSR) Register description

Reset Value: 0000 0000 (00h)

– Bit 7:3 = Reserved, forced by hardware to 0.

– Bit 2 = OPT Option byte access
Option byte enable at high level. It allows read and write access to the option bytes in ISP
mode. The two option bytes are selected by their own address (see table below).
0: User FLASH program area selected
1: Option Bytes area selected

– Bit 1 = LAT Latch Access Transfer
This bit is set by software. It is cleared by hardware at the end of the programming cycle.
It can only be cleared by software if the PGM bit is cleared.
0: Transfer latches not accessible
1: Transfer latches accessible

– Bit 0 = PGM Programming control and status
This bit turns on the charge-pump. This bit must be set to start the programming cycle. At
the end of the programming cycle, this bit is automatically cleared, stopping the charge
pump.
0: Programming finished or not yet started
1: Programming cycle is in progress

The EEXCSR address and the option byte addresses are device dependent and summarized
in the following table:

7 0

0 0 0 0 0 OPT LAT PGM

ST7 FLASH ST72C104 ST72C124 ST72C171 ST72C215 ST72C216 ST72C254 ST72C314 ST72C334 ST72C411

EEXCSR 0026h 002Dh 0026h 0026h 0026h 0026h 002Dh 002Dh 0026h
Option Byte 1

Option Byte 2

E000h

E001h

C000

C001

E000h

E001h

E000h

E001h

E000h

E001h

E000h

E001h

C000

C001

C000

C001

F000

-

8/25

PROGRAMMING ST7 FLASH MICROCONTROLLERS IN ISP MODE

Read Operation (LAT=0)

The FLASH can be read as a normal ROM location when the LAT bit of the EEXCSR register
is cleared.

Write Operation (LAT=1)

To access the write mode, the LAT bit has to be set by software (the PGM bit remains
cleared). When a write access to the FLASH area occurs, the 8-bit data bus is memorized in
one of the 16 8-bit data latches. The data latches are selected by the lower part of the address
(A<3:0> bits).

When the PGM bit is set by software, all the previous bytes written in the data latches (up to
16) since the last programming, are programmed in the FLASH cells. The effective high ad-
dress (A<15:4> bits) is determined by the last FLASH write sequence.
If 16 consecutive write instructions are executed by sweeping from A<3:0>=0h to A<3:0>=Fh,
with the same higher part of the address (A<15:4> bits), the 16 data latches will be written in
the same row of the FLASH matrix. At the end of the programming cycle, the LAT bit is auto-
matically reset, and the 16 data latches are cleared.

To avoid wrong programming, the user must take care that all the bytes written between 2 pro-
gramming sequences have the same high address: only the four Least Significant Bits of the
address can change.

Note: If only N (N<17) write instructions are executed before the PGM bit is set, only the N
bytes of the matrix will be written.

Figure 7. FLASH Programming Flowchart

Note: If a programming cycle is interrupted (by software/RESET action), the data integrity in
memory will not be guaranteed.

READ MODE
LAT=0
PGM=0

WRITE MODE
LAT=1, PGM=0

READ BYTES
IN FLASH AREA

WRITE UP TO 16 BYTES
IN FLASH LATCH

(with the same 12 MSB of the address)

START PROGRAMING CYCLE
LAT=1, PGM=1

WAIT FOR END OF PROGRAMMING
LAT=0 ,PGM=0 (reset by Hardware)

9/25

PROGRAMMING ST7 FLASH MICROCONTROLLERS IN ISP MODE

Figure 8. FLASH Programming Cycle

2.2.3.2 Programming the option bytes

Some ST7 devices have Option Bytes for configuring the device features.
The Option Bytes can be only accessed in ISP mode, they can be programmed by writing the
corresponding byte (byte row is included inside FLASH Matrix and can be managed as a
normal FLASH row). For more details refer to FLASH Control and Status register description.
In ROM devices the Option Bytes are fixed in hardware by the ROM code.
The following is an example algorithm for programming devices with up to two option bytes
using the standard ISP protocol.

Figure 9. Option Bytes Programming Code & Flowchart

PGM BIT

tPROG

READ OPERATION NOT POSSIBLE

WRITING
DATA LATCHES

READ OPERATION POSSIBLE

LAT BIT

 BYTE 1 BYTE 2 BYTE 16 PROGRAMMING

WRITE MODE
OPT=1,LAT=1, PGM=0

WRITE the 2 OPTION BYTES

IN FLASH LATCH
@Option byte 1 Address

START PROGRAMMING CYCLE
OPT=1,LAT=1, PGM=1

WAIT FOR END OF PROGRAMMING

LAT=0 ,PGM=0 (reset by Hardware)

@Option byte 2 Address

OPT=0 (reset by Software)

NBCOL BYTE $2 ;2 option bytes

CLR Y
BRES PxDR,#ISPCLK

.nbyte CLR A ;A=ReceivedData
LD X,#$08;X=BitCounter

.nbit BSET PxDR,#ISPCLK
BTJF PxDR,#ISPDATA,read

.read RLC A
BRES PxDR,#ISPCLK
DEC X
JRNE nbit
BSET EEXCSR,#OPT
BSET EEXCSR,#LAT
LD EEPBEG,Y),A
INC Y
CP Y, NBCOL
JRNE .nbyte

.store BSET EEXCSR,#PGM
BTJT EEXCSR,#LAT,*
BRES EEXCSR,#OPT

.end

10/25

PROGRAMMING ST7 FLASH MICROCONTROLLERS IN ISP MODE

2.2.3.3 Bootstrap Program content

Depending on the downloaded bootstrap program in RAM, the memory programming can be
completely customized (number of bytes to program, location of the program, programming of
option bytes, or selecting any other serial communication interface for downloading). You can
also use the bootstrap program to run a test program in RAM even if you are using a ROM de-
vice.

The example given in the second part contains a bootstrap program able to program 8 Kbytes
of FLASH and the option bytes of the ST72254 reading in the data to be programmed through
the I/O port. In most ST7 devices, you can also use the SPI protocol to read in the data to be
programmed in the FLASH. Refer to the SPI protocol example given later in this document.

Whatever the selected protocol, the bootstrap program will always execute the same algo-
rithm shown in Figure 10.
Figure 10. Bootstrap program algorithm.

READ 16 bytes through
ISPDATA pin

PROGRAM the previous
16 bytes in the FLASH

TEST if the number of bytes
to program is reached

Infinite loop

WAIT for a reset to start the
execution of the new

FLASH content

YES

NO

11/25

PROGRAMMING ST7 FLASH MICROCONTROLLERS IN ISP MODE

SPI protocol:

To use this protocol, the SPI has to be configured as follows:

– The SS pin should be configured in Master mode.

– The SPI Master output (MOSI) pin should be disabled.

For more details refer to the SPI chapter of the datasheet and the Miscellaneous Register
(where available).

The following is a bootstrap code example for programming the FLASH using the SPI pro-
tocol.

COUNT BYTE number ;byte_number

NBCOL BYTE $10 ;number of latch

.spi LD A,#$0B ;pinNSS soft

LD MSCR2,A;set SMOD bit

LD A,#$5C

LD SPICR,A;SPI

CLR Y

.main LD SPDAT,X

.rbyte BTJF SPSR,#SPIF,rbyte

LD A,SPDAT

BSET EEXCSR,#LAT

LD (EEPBEG,Y),A

INC Y

CP Y,NBCOL

JRNE loop

CALL store

.loop CP Y, COUNT

JRNE rbyte

BTJF EEXCSR,#LAT,end

CALL store

.end BRES SPCR,#SPE ; stop spi

.store BSET EEXCSR,#PGM

BTJT EEXCSR,#LAT,*

LD A,NBCOL

ADD A,#$10

LD NBCOL,A

RET

12/25

PROGRAMMING ST7 FLASH MICROCONTROLLERS IN ISP MODE

2.2.3.4 ISP Programming Time

The time required to program the FLASH using the ISP protocol can be estimated using the
following table:

Table 1. ISP programming time evaluation table

Where:

TCPU is the CPU period in seconds (down to 0.125µs),

NbyteR is the number of bytes able to be downloaded in RAM (up to 255)

NbyteF is the number of bytes to be programmed in FLASH (up to 16 Kbytes i.e. 16386)

Tprog is the Typical Flash erase and program cycle (8ms)

Tinit is the time between the end of the reset phase and the first rising edge on ISPCLK. Tinit

is device dependent)

Table 2. Initialization time (Tinit) according the ST7.

ISP mode
selection/

reset

Downloading code
in RAM

Bootrom Execution

FLASH Programming Bootstrap Execution

Data Transfer Flash
ProgrammingI/O Protocol SPI Protocol

 4096 * TCPU

25 * 8 *NbyteR * TCPU

+ Tinit

8 * 25 * TCPU* NbyteF 4 * TCPU* NbyteF Tprog* NbyteF /16

ST7 FLASH ST72C104 ST72C124 ST72C171 ST72C215 ST72C216 ST72C254 ST72C314 ST72C334 ST72C411

Tinit

(CPU clock)
45 45 45 45 45 45 45 45

1602 ISPSC

1609 ISPN

13/25

PROGRAMMING ST7 FLASH MICROCONTROLLERS IN ISP MODE

3 ST72C254 ISP PROGRAMMING EXAMPLE

3.1 APPLICATION EXAMPLE

The example described here shows how to program the ST72C254 using ISP. The down-
loading is done from another ST72C254 (acting as a programming tool). The boot-strap pro-
gram described in this document, programs the FLASH and the Option bytes of the ST72254
using the ISP protocol (not the SPI protocol).

Figure 11. Application Circuit

In this example, there is no external clock on the application board because the ST72C254 is
configured to use its internal oscillator: a 4 MHz RC oscillator (TCPU=250ns).

As shown in Section 2.2, ISP is performed in three steps:

– Select ISP mode

– Download code in RAM

– Execute code in RAM

3.1.1 Select ISP mode

Entering ISP mode is done by generating 33 pulses on the ISPSEL pin during the reset phase
(window of 256 cycles).

APPLICATION BOARD

ST72C254

PB0

PB1

PB2

PB3

PB7

ST72C254

RESET

ISPCLK

ISPDATA

ISPSEL

LED (light ON when download complete)

PROGRAMMING TOOL

14/25

PROGRAMMING ST7 FLASH MICROCONTROLLERS IN ISP MODE

3.1.2 Downloading code in RAM

After selecting ISP mode, the ST72C254 fetches the reset vector into a common bootrom. The
bootrom which is then executed, receives data serially through the ISPDATA pin and stores it
in the RAM area. Downloading the code in RAM is done sequentially from the lsb address of
the RAM (0x0080 in the ST72254).

The number of bytes to be downloaded is specified in the first byte transfer (and stored in ad-
dress 0x0080 of the RAM). The number of downloaded bytes can not exceed 255.

The transmission speed is controlled by the ST72C254 by generating ISPCLOCK. The PB1
pin of the programming tool is configured as input with pull-up in order to tie the ISPCLK line
high until the ISPCLK drives the line. When the ST72C254 is ready to read the first bit, it gen-
erate a low transition on ISPCLK. The programming tool sends the first bit. The ST72C254
generate a high transition and stores this bit.

3.1.3 Executing code in RAM

After downloading the code in RAM, the downloaded program (boot-strap program) is exe-
cuted. Depending on the downloaded program in RAM, the memory programming can be
completely customized.

In this example, the bootstrap program is written to read 8 Kbytes through the ISPDATA pin
(using the I/O protocol) and program them in the FLASH. The Bootstrap also programs the 2
option bytes with a predefined value.

The bootstrap code located in the file ‘bootstra.asm’ is located in ROM at the address E000h-
E0FFh. This code will be executed in the RAM of the ST72C254 to be programmed, so the ab-
solute label value will be wrong. To get around this, you can use the following directives.

segment byte at 81-14F ’ramexe254’

 segment ’ramexe254 > rom_boot’

The code following these directives will be place in the segment ‘rom_boot’ but it will be
linked to be executed in the segment ‘ramexe254’ .

15/25

PROGRAMMING ST7 FLASH MICROCONTROLLERS IN ISP MODE

3.2 CODE & FLOWCHART

3.2.1 Programming tool flowchart

Switch on download LED

Init I/O Port

Reset ST72C254
and send 33 rising edges

Read ‘boot’ program
(stored in E000-E0FF)

and send it to ST72C254

Read ‘ prog’ data: 256 bytes
to send: store in E100-E1FF

and send it 32 times
to ST72C254

32*256=8Kbyte

START

STOP

16/25

PROGRAMMING ST7 FLASH MICROCONTROLLERS IN ISP MODE

3.2.2 Programming tool code
ST7/

;**

; TITLE LOAD_ISP.ASM

; AUTHOR ST7 Application Group

; DESCRIPTION Program ST72254 in ISP mode

; Note: THIS FILE MUST BE LINKED BEFORE BOOTSTRA.ASM

;**

 TITLE "LOAD_ISP.ASM"

 #INCLUDE "ST72254.INC"

 #define ISPDATA 2

 #define ISPCLK 1

NB_BYTEEQU $FF ; Number of bytes loaded in RAM of ST72254

BYTES

 segment ’ram0’

PTR DS.B 1

WORDS

 segment byte ’rom_boot’

.boot DC.B {NB_BYTE-1}

; The address ’boot’ must be place at the first address of the

; segment ’rom_boot’. So this file must be linked before the

;file ’bootstra.obj’ which uses also the segment ’rom_boot’

;**

; MAIN PROGRAM

; ============

;

;**

 segment ’rom3’

.main LD A,#32 ; Init PTR to 32, In this example, 256 bytes

LD PTR,A ; will be send 32 times (256 * 32 = 8 Kbytes)

LD A,#%10001101 ; \ PB7 -> OUT -> Operation OK

 LD PBDDR,A ; | PB3 -> OUT -> Conn to ISPSEL of ST72254

 LD A,#%10001111 ; | PB2 -> OUT -> Conn to ISPDATA of ST72254

 LD PBOR,A ; / PB1 -> IN Pull-Up -> Conn to ISPCLK of ST72254

 BRES PBDR,#ISPDATA ;PB0 -> OUT -> Conn to RESET of ST72254

17/25

PROGRAMMING ST7 FLASH MICROCONTROLLERS IN ISP MODE

CALL tempo ;

 LD X,#33 ; \ 33 Pulses to enter ISP mode

BSET PBDR,#0 ; | RESET = 1

edges BSET PBDR,#3 ; | ISPSEL = 1

 BRES PBDR,#3 ; | ISPSEL = 0

 DEC x ; | 16*33 = 528 cycles

 JRNE edges ; /

 CALL send_prog_in_ram

CALL send_prog_in_eeprom

BSET PBDR,#7 ; Inform that Programming is complete

end_f JP end_f ; Infinite loop

;**

; TEMPO PROGRAM

; =============

;

;**

.tempo LD A,#$80

tp DEC A

JRNE tp

 ret

;**

; SEND 1 BYTE ROUTINE

; ===================

;

;**

.send_1_byte

LD X,#$08 ; Receive 8 bits

trans1 BTJT PBDR,#ISPCLK,trans1 ; low transition

 RLC A ; A.0 put in carry

JRC emi1 ;

emi0 BRES PBDR,#ISPDATA; Data = 0

 JRA trans2 ;

emi1 BSET PBDR,#ISPDATA; Data = 1

trans2 BTJF PBDR,#ISPCLK,trans2 ; high transition

 DEC X ; decrement counter

 JRNE trans1 ; All bits sent ?

RET

18/25

PROGRAMMING ST7 FLASH MICROCONTROLLERS IN ISP MODE

;**

; SEND PROG IN ST72254 RAM

; ========================

;**

.send_prog_in_ram

CLR Y ; Clear Y

data LD A,(boot,Y) ; Read BOOT_PROG at adr 80h of 254

 CALL send_1_byte ; Send each byte

 INC Y ;

 CP Y,#NB_BYTE ; All bytes sent

JRNE data ; If not, continue

RET

19/25

PROGRAMMING ST7 FLASH MICROCONTROLLERS IN ISP MODE

;**

; SEND PROG IN ST72254 EEPROM ROUTINE

; ===================================

;;**

.send_prog_in_eeprom ;

data2 CLR Y ; Reset pointer

data1 LD A,(prog,Y) ; Read byte to send

CALL send_1_byte ; Send byte

INC Y ; Go to the next byte

CP Y,#$00 ; 256 bytes sent ?

 JRNE data1 ; If not, continue

DEC PTR ; Else, Dec PTR, send 256 bytes

JRNE data2 ; All 8 Kbytes loaded ? If not, continue

RET

;***

;

; CODE THAT WILL BE PUT IN EEPROM OF THE ST72254

;

;***

*

segment ’rom2’

.prog DC.B $20,$20,$20,$53,$54,$37,$20,$4D,$69,$63,$72,$6F,$73,$20,$20,$20

DC.B $46,$4C,$41,$53,$48,$20,$50,$52,$4F,$47,$52,$41,$4D,$49,$4E,$47

DC.B $20,$20,$20,$53,$54,$37,$20,$4D,$69,$63,$72,$6F,$73,$20,$20,$20

DC.B $46,$4C,$41,$53,$48,$20,$50,$52,$4F,$47,$52,$41,$4D,$49,$4E,$47

DC.B $20,$20,$20,$53,$54,$37,$20,$4D,$69,$63,$72,$6F,$73,$20,$20,$20

DC.B $46,$4C,$41,$53,$48,$20,$50,$52,$4F,$47,$52,$41,$4D,$49,$4E,$47

DC.B $20,$20,$20,$53,$54,$37,$20,$4D,$69,$63,$72,$6F,$73,$20,$20,$20

DC.B $46,$4C,$41,$53,$48,$20,$50,$52,$4F,$47,$52,$41,$4D,$49,$4E,$47

DC.B $20,$20,$20,$53,$54,$37,$20,$4D,$69,$63,$72,$6F,$73,$20,$20,$20

DC.B $46,$4C,$41,$53,$48,$20,$50,$52,$4F,$47,$52,$41,$4D,$49,$4E,$47

DC.B $20,$20,$20,$53,$54,$37,$20,$4D,$69,$63,$72,$6F,$73,$20,$20,$20

DC.B $46,$4C,$41,$53,$48,$20,$50,$52,$4F,$47,$52,$41,$4D,$49,$4E,$47

DC.B $20,$20,$20,$53,$54,$37,$20,$4D,$69,$63,$72,$6F,$73,$20,$20,$20

DC.B $46,$4C,$41,$53,$48,$20,$50,$52,$4F,$47,$52,$41,$4D,$49,$4E,$47

DC.B $20,$20,$20,$53,$54,$37,$20,$4D,$69,$63,$72,$6F,$73,$20,$20,$20

DC.B $46,$4C,$41,$53,$48,$20,$50,$52,$4F,$47,$52,$41,$4D,$49,$4E,$47

20/25

PROGRAMMING ST7 FLASH MICROCONTROLLERS IN ISP MODE

3.2.3 Bootstrap program flowchart

Program 16 bytes in FLASH

Init I/O Port

Init FLASH Control register

Store bytes read on ISPDATA

START

Start at HIGHAD

16 bytes
received

256 bytes
received

Increment High Byte of HIGHAD

8 Kbytes
received

YES

YES

YES

NO

NO

NO

STOP

21/25

PROGRAMMING ST7 FLASH MICROCONTROLLERS IN ISP MODE

3.2.4 Bootstrap program code
ST7/

;***

; TITLE BOOTSTRA.ASM

; AUTHOR ST7 Application Group

; DESCRIPTION Bootstrap loaded Program used by ISP programming

;

; PB5 = ISPDATA

; PB6 = ISPCLOCK

;

; ***** CHANGE LOADED ADRESS *****

; - Change start address in (1)

; - Change low part of the address in (2) and in (4)

; - Change High part of the address in (3)

;

; ***** Change OPTION BYTE *****

; - Change Option byte 1 in (5)

; - Change Option byte 2 in (6)

;

;***

TITLE "LOAD_ISP.ASM" ;

 #INCLUDE "ST72254.INC"

 segment byte at 81-14F ’ramexe254’

 segment ’ramexe254>rom_boot’

; the following code is located in the segment ’rom_boot’

; but all the labels are calculated to be placed

BYTES ; in the RAM of the ST72254 starting at the address 80h.

 ; Boot code program start at 81h.

; 1st byte at 80h-> Nb of bytes

.HIGHADDC.W $E000 ; (1) Adr where prog will be load in FLASH

.LOWAD DC.B $00 ; (2) Copy of the low part of the address

.IDCODEDC.B $02 ; Not use in this version

.COUNT DC.B $00 ; Variable COUNT

WORDS

;**

; MAIN PROGRAM OF THE BOOT

; ========================

;

;**

22/25

PROGRAMMING ST7 FLASH MICROCONTROLLERS IN ISP MODE

.begin

RSP

 LD A,#$40 ; \ PB6 (SCK) is output

 LD PBDDR,A ; |

LD PBOR,A ; /

 BRES PBDR,#6 ; ISPCLOCK = 0

 LD A,EEXCSR ; read continuously

 AND A,#$F8 ; Mask reserved bit

CALLR eep_prg ; Program FLASH

CALLR ob_prg ; Program Option Byte

inf_loop

JRA inf_loop ; Infinite loop

;**

; OPTION BYTE LOADED PROGRAM

; ==========================

;

;**

.ob_prg

LD A,#$E0 ; (3) High part ----> CHANGE HERE

LD HIGHAD,A ;

LD X,#$00 ; (4) Low part -----> CHANGE HERE

LD {HIGHAD+1},X

BSET EEXCSR,#2 ; OPT=1

BSET EEXCSR,#1 ; LAT=1

OB_1 LD A,#$FC ; (5) OB_1 ---------> CHANGE HERE

LD ([HIGHAD.w],X),A; Store OB_1

 INC X ; Go to the second OB

OB_2 LD A,#$6D ; (6) OB_2 ---------> CHANGE HERE

LD ([HIGHAD.w],X),A ; Store OB_2

CALLR flashp

BRES EEXCSR,#2 ; OPT=0

RET

;**

; FLASH LOADED PROGRAM

; =====================

;**

.eep_prg

LD A,#$0F ; \ Program FLASH 16 by 16

 LD COUNT,A ; /

start BSET EEXCSR,#1 ; Write data latches E2LAT=1

 BRES EEXCSR,#0 ; Program data latches PGM=0

n_data CALLR read_data ; Program data

23/25

PROGRAMMING ST7 FLASH MICROCONTROLLERS IN ISP MODE

 LD ([HIGHAD.w],X),A ; Write to FLASH the latched data

 CP X,COUNT ; 16 bytes stored ?

 JRNE suit0 ; If not -> go to suit0

 JRA suit1 ; Else -> go to suit1

suit0 INC X ; Go to next address

 JRNE n_data ; and program it

suit1 INC X ; \

 CALLR flashp ; | Program the 16latched datas in FLASH

 LD A,COUNT ; | Re-init COUNT

 ADD A,#$10 ; | and go to the next address

 LD COUNT,A ; /

 CP X,#00 ; Verify if 256 bytes send

 JRNE start ; If not, continue (jump to start)

 LD A,#$0F ; \

 LD COUNT,A ; | If yes, re-init COUNT

 INC HIGHAD ; | Increment High part of address

LD A,HIGHAD ; | Verify if address FFFFh was prog

CP A,#00 ; | and if yes ---> exit

JREQ end_eep ; /

 JRA start ;

end_eepRET

;**

; FLASH 16 DATAS WRITE PROGRAM

; =============================

;**

.flashp

 BSET EEXCSR,#0 ; Program data latches PGM=1

waitprg

BTJT EEXCSR,#1,waitprg ; Wait end of prog E2LAT =0

 BRES EEXCSR,#0 ; Program data latches PGM=0

 RET

;**

; RECEIVE 1 BYTE PROGRAM

; ======================

;**

.read_data

 BRES PBDR,#6 ; ISPCLOCK = 0

 CLR A ;

 LD Y,#$08 ; Will receive 8 bits

n_bit ;

BSET PBDR,#6 ; ISPCLOCK = 1

24/25

PROGRAMMING ST7 FLASH MICROCONTROLLERS IN ISP MODE

BTJF PBDR,#5,read ; read a bit of ISPDATA

read RLC A ; Put read bit in LSB of A

 BRES PBDR,#6 ; ISPCLOCK = 0

 DEC Y ; Decrement counter

 JREQ fin ; If 8 bits receive -> exit

 JRA n_bit ; If not, continue

fin RET

 END

25/25

PROGRAMMING ST7 FLASH MICROCONTROLLERS IN ISP MODE

"THE PRESENT NOTE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS WITH INFORMATION
REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME. AS A RESULT, STMICROELECTRONICS
SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO
ANY CLAIMS ARISING FROM THE CONTENT OF SUCH A NOTE AND/OR THE USE MADE BY CUSTOMERS OF
THE INFORMATION CONTAINED HEREIN IN CONNEXION WITH THEIR PRODUCTS."

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without the express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

2000 STMicroelectronics - All Rights Reserved.

Purchase of I2C Components by STMicroelectronics conveys a license under the Philips I2C Patent. Rights to use these components in an
I2C system is granted provided that the system conforms to the I2C Standard Specification as defined by Philips.

STMicroelectronics Group of Companies
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain

Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

