
AN1149/0699 1/17

APPLICATION NOTE

HANDLING SUSPEND MODE ON A USB MOUSE
by Microcontroller Division Application Team

INTRODUCTION

All USB devices must support Suspend mode. Suspend mode enables the devices to enter
low-power mode if no bus activity is detected for more than 3.0 ms.

Like USB keyboards and pointing devices, USB mice must be able to exit Suspend mode if a
button has been pressed or if a movement has been detected. This feature is called Remote
wake-up mode. A Remote wake-up involves a Resume sequence on the USB lines and re-
covery of communication between the mouse and the host.

The following application note describes the implementation of Suspend and Remote wake-up
modes on a USB mouse using the ST7263 microcontroller. The first chapter focuses on the
recommendations before entering Suspend mode. Then a description of the RC external cir-
cuit for handling Remote wake-up mode is detailed. It contains power management recom-
mendations and RC value proposals. The third chapter describes Resume mode. Then
chapter 4 and chapter 5 describe software implementation and program flow.

It is assumed that the reader is familiar with the ST7263 microcontroller and USB.

1

2/17

Table of Contents

17

1

INTRODUCTION . 1

1 ENTERING SUSPEND MODE . 3

1.1 SPECIFICATION . 3

1.2 ST7263 IMPLEMENTATION . 3

1.3 RECOMMENDATIONS BEFORE ENTERING SUSPEND MODE 3

2 EXITING SUSPEND MODE . 4

2.1 SPECIFICATION . 4

2.2 ST7263 IMPLEMENTATION . 4

2.3 EXTERNAL RC CIRCUIT IMPLEMENTATION . 4

2.4 PHOTO TRANSISTORS TIMING REQUIREMENTS . 7

2.5 RC TIME CONSTANT CALCULATION . 8

3 RESUME MODE . 10

4 SOFTWARE IMPLEMENTATION . 11

5 PROGRAM FLOW . 13

REFERENCE DOCUMENTS . 16

3/17

HANDLING SUSPEND MODE ON A USB MOUSE

1 ENTERING SUSPEND MODE

1.1 SPECIFICATION

The USB mouse must be able to enter Suspend mode from any powered state. It goes into
suspend mode when it detects a constant idle state on the USB data lines for more than 3.0
ms. (No Start Of Frames are issued by the Host for more than 3.0 ms). Any bus activity keeps
the mouse out of the suspend state.

When the mouse is in the suspend state, it must draw less than 500 µA from the bus.

1.2 ST7263 IMPLEMENTATION

All the ST7263 microcontroller USB events are managed by interrupts. As soon as a constant
idle state occurs for more than 3.0 ms, the SUSPEND bit of the interrupt status register
(ISTR) is set by hardware. Then, the firmware determines the interrupt origin by reading the
ISTR register, sets a bit in a software register (bmUsbIntFlag), and clears the interrupt flag.
The USB polling routine reads the software register (bmUsbIntFlag) to determine the USB in-
terrupt source and jumps to the corresponding interrupt routine.

To get the 500 µA specification, the ST7263 microcontroller must be placed in HALT low-
power mode. HALT mode is entered by executing the HALT instruction in the SUSPEND in-
terrupt routine. The internal oscillator is then turned off, causing all internal processing to be
stopped, including the operation of the on-chip peripherals.

1.3 RECOMMENDATIONS BEFORE ENTERING SUSPEND MODE

Special care must be taken of the ST7263 port configuration before entering Suspend mode.

The Ports A and C contain integrated pull-up resistors. If these Ports are configured as inputs,
they draw about 50 µA on each pin. (See ST7263 Data Sheet electrical characteristics). This
means that the 8 Port A pins and the 3 port C pins could draw 550 µA together. Consequently
it would be impossible to get the 500 µA current consumption specification.

Then Port A and Port C must then be therefor configured as outputs before entering Suspend
mode. Correct voltage values must be applied to the output pins to make the current con-
sumption as low as possible.

Port B does not contain any integrated pull-up resistor, but external pull-up resistors are im-
plemented in hardware at the photo transistor outputs. Thus it is strongly recommended to
configure these as outputs and to apply a 5V value on each pin before entering Suspend
mode.

2

4/17

HANDLING SUSPEND MODE ON A USB MOUSE

2 EXITING SUSPEND MODE

2.1 SPECIFICATION

A USB mouse can be woken-up from Suspend state by switching the bus state to the resume
state, by normal bus activity, or by signalling a reset. A Mouse device can be woken-up by ac-
tions associated with internal functions and then cause signalling on its upstream connections
to wake or alert the rest of the system. This feature is called remote wake-up.

2.2 ST7263 IMPLEMENTATION

All the ST7263 microcontroller USB events are managed by interrupts.

The ST7263 microcontroller exits Suspend mode when one of the following events occurs:

a) USB reset on the USB data lines for more than 10 ms min and 20 ms max.

The microcontroller exits Halt mode and jumps to the USB reset interrupt routine.

b) Resume signal on the USB data lines from upstream devices for at least 20 ms.

The microcontroller exits Halt mode and jumps to the USB_end_suspend interrupt routine.

c) External interrupt on a pin of the microcontroller (It can either be a rising or falling edge or
a level change). The oscillator is then turned on, the microcontroller exits Halt mode and
jumps to the corresponding interrupt routine.

This external interrupt is very important for managing remote wake-up mode. As described in
the previous section, when the microcontroller enters HALT mode, it must draw less than 500
µA average and it must be able to check if a mouse button has been pressed or if the mouse
as been moved. This implies that external interrupt must periodically wake-up the microcon-
troller to make it check its port states.

The following section proposes a cost effective solution for generating this periodic external in-
terrupt.

2.3 EXTERNAL RC CIRCUIT IMPLEMENTATION

During Suspend mode, as the internal oscillator has been turned off, we must use an external
event to generate an interrupt on a dedicated pin of the microcontroller. Moreover this interrupt
signal must occur periodically.

The most common and cost-effective solution consists of using an external RC circuit.

5/17

HANDLING SUSPEND MODE ON A USB MOUSE

Figure 1. RC external circuitry

An external capacitor loads through an external resistor. This capacitor is connected to the
PB5 external interrupt pin of the microcontroller. As soon as the capacitor load has reached
the Low-to-High trigger level, the external interrupt vector is set. Then, the entire microcon-
troller is woken-up: The internal oscillator is turned on, causing all internal processing to
resume, including the operations of the on-chip peripherals.

If the mouse has moved or if the buttons have been pressed, the application performs a Re-
mote Wake-up sequence, otherwise the application discharges the capacitor and re-enters
suspend mode.

Figure 2. shows the RC circuit behaviour when the mouse is not moved.
Figure 2. RC circuit behaviour in suspend mode

VDD

VSS

PB5

ST7263

R

C

PAx

PBx

Photo Transistors
and

buttons

PB5 is successively configured as
an input with interrupt during suspend phase

and as an output during a wake-up phase

Oscillator activity

External capacitor charge
and discharge

Zoom in Figure 3

6/17

HANDLING SUSPEND MODE ON A USB MOUSE

During the charge of the capacitor, the microcontroller is in low-power mode, it draws only
about 250 µA. As soon as the charge of the capacitor reaches the low-to-high interrupt trigger
value (about 3.35 V), the microcontroller wakes-up. The oscillator is then turned on and a sta-
bilization time is required before releasing CPU clock cycles. This stabilization time is 4096
CPU clock cycles. During this activity phase, the microcontroller draws about 20 mA. This os-
cillator wake-up phase is shown in Figure 3.
Figure 3. Oscillator Wake-up sequence

4096 CPU Clocks

External capacitor charge

Oscillator activity

and discharge

For these 800 µs, the micro draws 20 mA

7/17

HANDLING SUSPEND MODE ON A USB MOUSE

2.4 PHOTO TRANSISTORS TIMING REQUIREMENTS

To check if the mouse has moved, it is necessary to compare the current state of the Photo
transistor outputs with the previous ones (recorded before entering suspend mode).

As soon as the microcontroller executes its program code, the infra red LEDs of the mouse are
turned on. However, to establish the previous Photo transistor values (especially in case of
high level values) a certain amount of time is required. This period is less than 200 µs with the
components used . This is due to current establishment in the infra-red diode.
Figure 4. Photo transistor behaviour

Mouse infra red power supply
active on low level

Photo transistor output
high level establishment

External capacitor charge
and discharge

Oscillator activity

220 µs
to the program code
handling before re-entering

corresponding

HALT mode

At this point, the current value is read
and compared to the previous one.
If the mouse has not been moved, the mouse re-enters suspend mode
otherwise we perform a remote wake-up sequence

8/17

HANDLING SUSPEND MODE ON A USB MOUSE

2.5 RC TIME CONSTANT CALCULATION

As shown on the previous oscillogram, the microcontroller is active for 800 µs and it draws 20
mA. It is in low-power mode during the rest of the period and draws about 250 µA.

The following equation enables you to calculate the correct value of the RC time period to be
within the Suspend mode 500 µA average max current specification:

Example:

If you choose 450 µA to stay well within the specification and with the following parameters:

Imax = 20 mA - WakeupTime = 800 µs - Imin = 250 µA

You obtain the following equation:

A Period value of 80 ms is obtained.

The RC value can then be calculated to get this period.

You need to pay attention to 2 parameters:

– The high level voltage imposed by the high trigger level (about 3.4V with a +/- 10% variation).

– The input impedance of the pin which modifies the equivalent resistance of the RC circuit.

The following table presents some RC values and the corresponding time periods and con-
sumption measured on a ST7263 microcontroller.

Depending on the application supporting Suspend mode, you will have to find a compromise
between the suspend interval time and the suspend average current.
Table 1. RC Value proposal

Note 1: Suspend mode consumption has been measured with Ports A and C configured as
outputs (This has been done to avoid additional current consumption in their pull-up resistors)

RC Values Suspend interval time Suspend average current
C= 330 nF - R= 1 MΩ t= 306 ms I= 400 µA

C= 330 nF - R= 670 KΩ t= 200 ms I= 405 µA
C= 330 nF - R= 330 KΩ t= 97 ms I= 440 µA
C= 100 nF - R= 670 KΩ t= 80 ms I= 450 µA
C= 100 nF - R= 330 KΩ t= 37 ms I= 540 µA (out of spec.)

Specvalue Imax WakeupTime)× Imin Period WakeupTime–()×()+()
Period

--=

450µs
20mA 800µs)× 250(µA Period 800µs–()×+()

Period
--=

9/17

HANDLING SUSPEND MODE ON A USB MOUSE

Note 2: A USB Mouse is a Human Interface Device. This means that it is manipulated by an
operator at quite a low frequency. For mouse pointing devices, the best compromise is ob-
tained by chosing an RC value which allows you to enter remote wake-up mode and fre-
quently check the device sensor states (10 times per second is enough).

10/17

HANDLING SUSPEND MODE ON A USB MOUSE

3 RESUME MODE

As soon as a different value has been read from the buttons or photo transistor outputs, the
microcontroller performs a Remote Wake-up sequence to resume the communication flow be-
tween the Device and the Host.

An example of such a sequence is shown in Figure 5.
Figure 5. Resume state behaviour

Note that the DM and DP lines are maintained in Resume state for 21.6 ms while the USB
specification release 1.1 requires the device to assert Resume signalling for a period between
10 ms and 15 ms. In fact the device asserts Suspend state for only 12 ms and then the host
maintain this state for 21.6 ms. This 20 ms minimum Resume signalling time insures that all
devices in the network that are enabled to see the resume are woken-up.

commute from constant idle state
to Resume state for a

Previous Photo transistor value

Photo Transistor
output

Oscillator
activity

(checked every 80 ms)

DM line

DP line
period for 10 to 15 ms

The Mouse is moved by user

11/17

HANDLING SUSPEND MODE ON A USB MOUSE

4 SOFTWARE IMPLEMENTATION

In the following section, all the programs have been developed using the Hiware C compiler
Toolchain. ST provides a complete architecture as well as firmware drivers to help you de-
velop your application quickly and easily. A list of reference documents is provided at the end
of the application note.

Depending on the ST7263 microcontroller, all USB events are managed by interrupt. When an
USB event occurs, a flag of the Interrupt State Register (ISTR) is set by hardware. Then, the
firmware determines the interrupt origin by reading the ISTR register, sets the corresponding
bit in a software register (bmUsbIntFlag), and clears the interrupt flag. The USB polling routine
reads the software register (bmUsbIntFlag) to determine the USB interrupt source and jumps
to the corresponding interrupt routine.

Each interrupt routine sets the global variable “bmUsbState” to the corresponding USB state:
SOF, Ennumerated, Suspended or Remote wake-up.

In the Check_UsbState.c file you only have to adapt your code to the example given below to
handle resume and remote wake-up modes. Don’t forget to put all the I/Os in low-power mode
in order to draw less than 500µA.

Figure 6. shows the flow-chart of the main application loop.

12/17

HANDLING SUSPEND MODE ON A USB MOUSE

Figure 6. USB Suspend / Remote wake-up handling

The remote wake-up command is sent from device to Host. This happens when the microcon-
troller has been suspended and an external interrupt (PB5) restarts the oscillator. To send a
remote wake up signal, the bmUsbState variable is set in the Check_UsbState.c file if the
mouse has been moved. Otherwise, we re-enter Suspend mode.

if (bmUsbState &
SUSPEND)

if (bmUsbState &
REMOTE_WAKEUP)

N

N

Application
(Check_Mouse_State)

Y

Before_bmUsbState function

After_bmUsbState function

HALT
(Low-Power mode instruction)

Main Application loop

if the Mouse
moved

External interrupt Detection

N

bm_UsbSate =
REMOTE_WAKEUP

Done

Force Resume signal on
USB bus

Y

Done

Y

13/17

HANDLING SUSPEND MODE ON A USB MOUSE

5 PROGRAM FLOW

The following code gives an example of a USB Mouse application for handling suspend and
remote wake-up modes.
/*--

ROUTINE NAME : Before_Enter_Suspend

INPUT/OUTPUT :

DESCRIPTION : This function details what we have to do before entering suspend

mode

/*--

void Before_Enter_Suspend(void)

{

unsigned int k; // variable used in the capacitor discharge loop

PADDR = 0xFF; // The 2 Ports are configured in output for minimum

current consumption

PCDDR = 0xFF;

SetBit(PBDDR,5); // PB5 in output mode (external RC circuit)

ClrBit(PBDR,5); // Clr PB5 : Discharge the external capacitor

for (k=17; k>0;k --) // 50us loop: This time interval is mandatory to

asm nop; // completly discharge the external capacitor

Previous_Suspend_State = (PBDR & 0xD8); // Read the Phototransistor value be-

fore entering SUSPEND

Current_Suspend_State = Previous_Suspend_State;

SetBit(PCDR,0); // Switch OFF the Mouse LED

ClrBit(PBDDR,5); // PB5 configured in input mode (We let the capacitor

charge)

Wake_Up_Flag = 0;

ITRFRE |= 0x20; // Enable IT6 (PB5)

}

/*--

ROUTINE NAME : After_End_Suspend

INPUT/OUTPUT :

DESCRIPTION : This function details what we have to do after exiting from suspend

mode

/*--

void After_End_Suspend(void)

{

unsigned int j; // variable used in the 200 us loop

if (Wake_Up_Flag == 1)

{

ClrBit(PCDR,0); // switch on the Mouse LED

SetBit(PBDDR,5); // PB5 in output mode (external RC circuit)

ClrBit(PBDR,5); // Clr PB5 : Discharge the external capacitor

ITRFRE |= 0x20; // Re enable IT5

for (j=68; j>0; j--) // 200us loop: This time interval is mandatory to let

14/17

HANDLING SUSPEND MODE ON A USB MOUSE

asm nop; } // each Phototransistor reach his previous value

}

/*--

ROUTINE NAME : Check_BmUsbState

INPUT/OUTPUT :

DESCRIPTION : This subroutine polls the USB global variable bmUsbState

/*--

void Check_BmUsbState(void)

{

if(bmUsbState & SUSPEND)

{

Before_Enter_Suspend();

asm

{

Loop: halt; // Enters suspend mode

}

/***** return from interrupt in SUSPEND Mode *******/

After_End_Suspend();

Current_Suspend_State = (PBDR & 0xD8); // Filter on the 4 X-Y axis Optocou-

pler sensors

if (Current_Suspend_State == Previous_Suspend_State)

{

Current_Suspend_State = Previous_Suspend_State;

SetBit(PCDR,0); // switch OFF the Mouse Led

ClrBit(PBDDR,5); // PB5 configured in input (We let the capacitor

charge)

ITRFRE |= 0x20; // Re enable IT6

Wake_Up_Flag = 0;

asm jp Loop;

}

else

{

ITRFRE = 0x00; // Disable IT6 (PB5)

bmUsbState &= ~SUSPEND; // Reset "Go Suspend"

bmUsbState |= REMOTE_WAKEUP; // Set "Remote Wake-up"

ClrBit(PBDDR,5); // PB5 configured in input

}

}

if(bmUsbState & REMOTE_WAKEUP)

RemoteWakeup();

15/17

HANDLING SUSPEND MODE ON A USB MOUSE

if(bmUsbState & SOF)

{

bmUsbState &= ~SOF; // Reset the SOF bit

Mouse_Counter++; // This variable is used to refresh the Cursor Position

}

if(bmUsbState & SOF)

nop;

}

/*--

ROUTINE NAME : INT_IT1IT8

INPUT/OUTPUT : None

DESCRIPTION : Rising edge interrupt

COMMENTS :

/*--

#pragma TRAP_PROC SAVE_REGS

void INT_IT1IT8(void)

{

 if(bmUsbState & SUSPEND) // We are in suspend mode

{

if((PBDR & 0x20) == 0x20)

Wake_Up_Flag =1;

}

}

16/17

HANDLING SUSPEND MODE ON A USB MOUSE

REFERENCE DOCUMENTS

– ST7263 Data Sheet

– AN 1017 Using the ST7 Universal Serial Bus Microcontroller

– AN 1069 Developing an ST7 USB Apllicaton

– AN 989 Starting with ST7 Hiware C.

– AN 1064 Writing Optimized Hiware C Language for ST7

A general training for ST7 (hardware and development tools) is available on the ST7 CD-
ROM.

The USB Descriptor tool DT2.4 is available on the USB website at URL http//www.usb.org

17/17

HANDLING SUSPEND MODE ON A USB MOUSE

"THE PRESENT NOTE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS WITH INFORMATION
REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME. AS A RESULT, STMICROELECTRONICS
SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO
ANY CLAIMS ARISING FROM THE CONTENT OF SUCH A NOTE AND/OR THE USE MADE BY CUSTOMERS OF
THE INFORMATION CONTAINED HEREIN IN CONNEXION WITH THEIR PRODUCTS."

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without the express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

1999 STMicroelectronics - All Rights Reserved.

Purchase of I2C Components by STMicroelectronics conveys a license under the Philips I2C Patent. Rights to use these components in an
I2C system is granted provided that the system conforms to the I2C Standard Specification as defined by Philips.

STMicroelectronics Group of Companies
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain

Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

