
AN1148/0699 1/40

APPLICATION NOTE

USING THE ST7263 FOR DESIGNING A USB MOUSE
by Microcontroller Division Application Team

INTRODUCTION

This application note describes the implementation of a cost-effective USB Mouse using the
ST7263 microcontroller. A detailed description of low-consumption power management mode
(resume mode) is given in section 5.

ST provides a complete architecture as well as firmware drivers to help you develop your ap-
plication. A list of reference documents is provided at the end of the application note. It is as-
sumed that the reader is familiar with the ST7263 microcontroller and USB.

1

2/40

Table of Contents

40

1

INTRODUCTION . 1

1 MOUSE BASIC . 4

1.1 OPTO-MECHANICAL DESCRIPTION . 4

1.2 PHOTO TRANSISTOR DETECTORS . 4

1.3 DISPLACEMENT DIRECTION DETECTION . 5

2 INTRODUCTION TO THE ST7263 MICROCONTROLLER . 6

3 HARDWARE IMPLEMENTATION . 7

4 SOFTWARE IMPLEMENTATION . 9

4.1 DEVICE ENUMERATION AND CONFIGURATION . 9

4.1.1 USB Reset . 9
4.1.2 Enumeration . 9

4.2 USB MOUSE DESCRIPTORS . 10

4.2.1 Descriptor Structure . 10
4.2.2 Device Descriptors . 11
4.2.3 Configuration Descriptor . 12
4.2.4 Report Descriptor . 13
4.2.5 String Descriptor . 14

4.3 DATA TRANSFER . 15

4.3.1 Control transfer with endpoint 0 . 16
4.3.2 Interrupt transfer with endpoint 1 . 17

5 POWER MANAGEMENT . 18

5.1 USB SUSPEND MODE IMPLEMENTATION . 18

5.1.1 Special requirements on Photo transistors . 20
5.1.2 RC value proposal . 20

5.2 REMOTE WAKE-UP MODE . 21

6 PROGRAM ARCHITECTURE . 23

6.1 FIRMWARE LAYERS . 23

6.2 MOUSE HANDLING ROUTINES . 24

6.2.1 Check_mouse_state subroutine . 26
6.2.2 Check_bmUsbstate subroutine . 28

3/40

Table of Contents

CONCLUSION . 30

REFERENCE DOCUMENTS . 30

C CODE SOURCE . 31

4/40

USING THE ST7263 FOR DESIGNING A USB MOUSE

1 MOUSE BASIC

There are three ways of encoding the displacements of a mouse: mechanical, opto-mechan-
ical and optical. Because of its relatively high resolution and reliable behaviour on a wide
range of surfaces, the opto-mechanical mouse is the most common found on the market.

1.1 OPTO-MECHANICAL DESCRIPTION

An opto-mechanical mouse uses a rolling ball, slotted wheels, LEDs and encoders to translate
the two-dimensional mouse movement into electrical signals.
Figure 1. Mouse mechanical hardware

To track mouse movements, a rubber ball transmits the vertical and horizontal displacements
to two perpendicular rollers, with a slotted wheel connected at one end. A double Photo tran-
sistor cell is associated with each slotted wheel to track the X-axis and Y-axis displacements.

1.2 PHOTO TRANSISTOR DETECTORS

The encoder consists of an infra-red LED on one side of the slotted wheel and two superim-
posed photo transistor detectors on the other side. During a mouse displacement, the slotted
wheel crosses the infra-red signal so that the photo transistor detectors conduce alternatively
one after the other. This is illustrated in Figure 2.

stabilizer

slotted wheel

Mouse ball

Photo Transistor
Sensors

Y-axis Roller

Third Mouse Axis

Led

Led X-axis roller

2

5/40

USING THE ST7263 FOR DESIGNING A USB MOUSE

Figure 2. X-Axis roller opto-mechanical detail

1.3 DISPLACEMENT DIRECTION DETECTION

Two photo transistor sensors implemented on the same physical component enable the direc-
tion detection of the axis supporting the slotted wheel. They deliver quadrature signals as il-
lustrated in Figure 3.
Figure 3. Photo transistors output waveforms

slotted wheel

infra red rays

T1 T2

infra-red LED

Photo transistors 1 and 2 Slotted Wheel moves right

slotted wheel moves leftslotted wheel moves right

T1

T2

off

on on

offT1

T2off

on

off

on

6/40

USING THE ST7263 FOR DESIGNING A USB MOUSE

2 INTRODUCTION TO THE ST7263 MICROCONTROLLER

The ST7263 microcontrollers form a sub family of the ST7 dedicated to USB applications. The
devices are based on an industry-standard 8-bit core and feature an enhanced instruction set.
They operate a a 24MHz oscillator frequency. Under software control, the ST7263 MCUs may
be placed in either Wait or Halt modes, thus reducing power consumption.

The S7263 Microcontrollers include a ST7 Core, up to 16K program memory, up to 512 bytes
RAM, 19 I/O lines and the following on-chip peripherals:

- USB Low speed interface with 3 endpoints with programmable in/out configuration using
DMA architecture with embedded 3.3V voltage regulator and transceivers (no external com-
ponents are needed).

- 8-bit Analog-to-Digital converter (ADC) with 8 multiplexed analog inputs.

- Industry standard asynchronous SCI serial interface (8K & 16K ROM versions).

- Watchdog.

- 16-bit Timer featuring an External clock input, 2 Input Captures, 2 Output Compares with
Pulse Generator capabilities.

- Fast I2C Multi Master interface (16K only).

- Low voltage reset ensuring proper power-on or power-off of the device.

The following application as been implemented on a ST72633, a microcontroller version with
4K ROM and 256 bytes RAM.

7/40

USING THE ST7263 FOR DESIGNING A USB MOUSE

3 HARDWARE IMPLEMENTATION

The Figure 4 shows a typical circuit for a low-cost USB mouse using the ST7263.

A 24Mhz ceramic resonator is connected to the clock inputs of the microcontroller. The ex-
ternal oscillator frequency is divided by 3 to get the internal clock (8Mhz for CPU and Periph-
erals) and by 4 to get the 6 Mhz USB frequency. The resonator should be placed close to the
OSCIN and OSCOUT pins.

The embedded voltage regulator generates the 3.3V reference for USB interface on the US-
BVCC pin. A 1.5 KΩ resistor is connected from the USBVCC pin to USBDM line to signal that
the mouse as a low-speed device.

The three Mouse buttons (Left, middle and right) are connected to port A pins 7, 6 and 5 re-
spectively. These pins are configured as input with 20kΩ Pull-up resistors. As the left and right
buttons are connected to falling edge external interrupts, they can be used to exit suspend
mode.

The X, Y and Z encoders are all connected to Port B pins configured as input without pull-up.
Note that the outputs of the Photo transistors are connected to the microcontroller via 20kΩ
Pull-up resistors. These resistors are not integrated inside the microcontroller. This is to allow
you to modify the maximum range of the Photo transistor output signals.

Pin PB5 is connected to an external RC circuit to implement the wake up interrupt function.
This is explained in more detail in the Power management chapter (section 5).

The Two pins, PC0 and PC1, drive the mouse LEDs for X-Y axis and for Z axis respectively.

8/40

USING THE ST7263 FOR DESIGNING A USB MOUSE

Figure 4. Hardware Implementation

GND

GND

GND

VCC

GND

GND

VCC

VCC VCC

VCC VCC

VCC

VCCVCC

GND GND GND

GND

GND

GND

VCC

VCC

PB5

PB6

PB2

OSCIN

NRESET

PB1

PA6PB3

PB4

OSCOUT

PC0

VSSA

VSS

PB7

PB5

PA5

PC2

VPP

NRESET

PA7

USBVCC

VDDAVDD

USBDP

USBDM

PC1

USBOE

XT1

24MHZ

C6
100n

C3

33p/3p

C4

33p/3p

R7

10k

OPTO X1LED1 OPTO X2
R3
20k

R2
20k

C7
100NF

C2
100NF

+
C1
1u

OPTO Y1LED2 OPTO Y2
R6
20k

R5
20k

R9
20kOPTO Z2LED3

R10
20kOPTO Z1

R4
430

R11
600

SW3 Right SW2 Middle

C5
100n

R8

10k

SW1 Left

U1

ST72E63

15

21

20

18

1716

14

13

31

12

30

29

28

27

24

23

22

6

19

5

4

2

3

8

321

11

10

7

9

26

25

PB2/AIN2

PA4/ICAP1/IT1

PA5/CAP2/IT2

PA7/OCMP2/IT4

PB0/AIN0PB1/AIN1

PB3/AIN3

PB4/AIN4/IT5

USBVCC

PB5/AIN5/IT6

USBDM

USBDP

VSSA

PA0/CPUCLK

NC

PA2/SCL

PA3/EXTCLK

PC1/TDO

PA6/OCMP1/IT3

PC2/USBOE

VSS

OSCOUT

OSCIN

NRESET

VDDAVDD

Vpp/TEST

PB6/AIN6/IT7

PC0/RDI

PB7/AIN7/IT8

PA1/SDA

NC

R1 1.5k

J1

USB CONNECTOR

1
2
3
4

Data-

Data+

Z Wheel Encoder

Y Wheel Encoder

X Wheel Encoder

ST7263

9/40

USING THE ST7263 FOR DESIGNING A USB MOUSE

4 SOFTWARE IMPLEMENTATION

4.1 DEVICE ENUMERATION AND CONFIGURATION

When a USB device is attached, the host issues a reset signal. When the reset signal is re-
leased, the device enters the enumerated state.

4.1.1 USB Reset

The USB reset is independent from the chip reset. A USB reset signal resets the USB inter-
face peripheral but not the ST7 core and the other peripherals.

When a USB reset signal is detected on the bus, the RESET bit in the ISTR register is set and
a USB interrupt is generated. All the USB interface registers are reset.

4.1.2 Enumeration

The host performs a bus enumeration to identify the attached device and to assign a unique
address to it. The device responds to the requests sent by the host during the enumeration
process on its default pipe (endpoint 0).

Enumeration steps:

a. Get Device descriptor

The host sends a get device descriptor request. The device replies with its device descriptor
to report its attributes (Device Class, maximum packet size for endpoint zero).

b. Set address

A USB device uses the default address after reset until the host assigns a unique address
using the set address request. The firmware writes the device address assigned by the host in
the DADDR register.

c. Get configuration

The host sends a get configuration. The device replies with its configuration descriptor, inter-
face descriptor and endpoint descriptor. The configuration descriptor describes the number of
interfaces provided by the configuration, the power source (Bus or Self powered) and the max-
imum power consumption of the USB device from the bus. The Interface descriptor describes
the number of endpoints used by this interface. The Endpoint descriptor describes the transfer
type supported and the bandwidth requirements.

d. Set Configuration

The host assigns a configuration value to the device based on the configuration information.
The device is then in configured state and can draw the amount of power described in the con-
figuration descriptor. The device is now configured and ready to be used.

For more information, see also the USB specification, chapter 9, “USB Device Framework”.

10/40

USING THE ST7263 FOR DESIGNING A USB MOUSE

4.2 USB MOUSE DESCRIPTORS

USB protocol can configure devices at start-up or when they are plugged-in at run time. These
devices are divided into various device classes. Each device class defines the common be-
haviour and protocols for devices that serve similar functions.

4.2.1 Descriptor Structure

The HID class consists primarily of devices that are used by humans to control the operation
of computer systems. Mice, like all pointing devices, are typical examples of HID class de-
vices.

The information about a USB mouse are stored in segments of its ROM. These segments are
called Descriptors and are divided into several types: Device Descriptor, Configuration De-
scriptor, Interface Descriptor, HID Descriptor, Endpoint Descriptor, String Descriptor and Re-
port Descriptor. All Descriptors (except String Descriptor) are mandatory in this application.

Figure 4 illustrates the Descriptor structure.
Figure 5. Descriptor structure for a Mouse: Human Interface Device (HID)

Device
descriptor

Configuration
descriptor

Interface
descriptor

Endpoint
descriptor

HID
descriptor

Report
descriptor

Physical
descriptor

Class
Subclass
Vendor

Product
Version

The Class field defines the device has a
HID class device

Standard Descriptors

Class-Specific Descriptors

String
descriptor

Optionnal
Descriptor

11/40

USING THE ST7263 FOR DESIGNING A USB MOUSE

4.2.2 Device Descriptors

At the top level, a descriptor includes two tables of information referred to as the Device De-
scriptor and the String Descriptor. A standard USB Device Descriptor specifies the Product ID
and other informations about the device. For example, Device Descriptor fields primarily in-
clude: Class, Subclass, Vendor, Product, Version.

The following code corresponds to USB Mouse Descriptors applied to a two-buttons, two- axis
opto-mechanical mouse.

const Byte DeviceDescriptor[] = {

0x12, // bLength

0x01, // bDescriptorType

0x00, // bcdUSB

0x01, // bDeviceClass

0x00,

0x00, // bDeviceSubClass

0x00, // bDeviceProtocolconst Byte DeviceDescriptor[] = {

0x12, // bLength

0x01, // bDescriptorType

0x00, // bcdUSB

0x01, // bDeviceClass

0x00,

0x00, // bDeviceSubClass

0x00, // bDeviceProtocol

0x08, // bMaxPacketSize0

0x83, // idVendor

0x04,

0x02, // idProduc

0x00,

0x06, // bcdDevice

0x00,

INDEX_MANUFACT, // Index of string descriptor describing manufacturer

INDEX_PRODUCT, // Index of string descriptor describing product

INDEX_SERIALNUM, //Index of string descriptor describing the device’s se-

rial number

0x01 // bNumConfigurations

};

12/40

USING THE ST7263 FOR DESIGNING A USB MOUSE

4.2.3 Configuration Descriptor

This Descriptor divided into several segments includes Interface Descriptor, HID descriptor
and Endpoint Descriptor:
const Byte ConfDescriptor[] = {

// Configuration descriptor
0x09, // bLength: Configuration Descriptor size

0x02, // bDescriptorType: Configuration

0x22, // wTotalLength: 34 Bytes returned

0x00,

0x01, // bNumInterfaces: 1 interface

0x01, // bConfigurationValue: Configuration value

0x00, // iConfiguration: Index of string descriptor describing the configu-

ration

0x60, // bmAttributes: Bus powered and Remote wake up

0x0A // MaxPower 20 mA

// Interface descriptor
0x09, // bLength: Interface Descriptor size

0x04, // bDescriptorType: Interface descriptor type

0x01, // bInterfaceNumber: Number of Interface)

0x00, // bAlternateSetting: Alternate setting

0x01, // bNumEndpoints: one endpoint used

0x03, // bInterfaceClass: HID

0x01, // bInterfaceSubClass: No subclass

0x02, // bInterfaceProtocol: Mouse

0x00, // interface: Index of string descriptor

// HID descriptor
0x09, // bLength: HID Descriptor size

0x21, // bDescriptorType: HID

0x00, // bcdHID: HID Class Spec release number

0x01,

0x21, // bCountryCode: Hardware target country US

0x01, // bNumDescriptors: Number of HID class descriptors to follow

0x22, // bDescriptorType

REPORTDESCSIZE_L, // wItemLength: Report descriptor length low bite

REPORTDESCSIZE_H,

// Endpoint descriptor
0x07, // bLength: Endpoint Descriptor size

0x05, // bDescriptorType: Endpoint descriptor type

0x81, // bEndpointAddress: Endpoint Address (IN)

0x03, // bmAttributes: Interrupt endpoint

0x08, // wMaxPacketSize: 8 Byte max

0x00,

0x0A // bInterval: Polling Interval (8 ms)

};

13/40

USING THE ST7263 FOR DESIGNING A USB MOUSE

4.2.4 Report Descriptor

The Report Descriptor is different from the other descriptors in that it is not simply a table of
values. It is made up of items that provide information about the data provided by each control
in a device. Input items are used to tell the host what type of data will be returned as input to
the host for interpretation, wether the data is absolute or relative and other pertinent informa-
tion. By looking at a Report Descriptor alone, an application knows how to handle incoming
data, as well as what the data could be used for. The following descriptor describes a two-but-
tons, two-axis USB Mouse.

const Byte ReportDescriptor[] = {

0x05, 0x01, // USAGE_PAGE (Generic Desktop)

0x09, 0x02, // USAGE (Mouse)

0xa1, 0x01, // COLLECTION (Application)

0x09, 0x01, // USAGE (Pointer)

0xa1, 0x00, // COLLECTION (Physical)

0x05, 0x09, // USAGE PAGE (Buttons)

0x19, 0x01, // USAGE_MINIMUM (01)

0x29, 0x03, // USAGE_MAXIMUM (03)

0x15, 0x00, // LOGICAL_MINIMUM (0)

0x25, 0x01, // LOGICAL_MAXIMUM (1)

0x95, 0x03, // REPORT_COUNT (3)

0x75, 0x01, // REPORT_SIZE (1)

0x81, 0x02, // INPUT (Data,Var,Abs)

0x95, 0x01, // REPORT_COUNT (1)

0x75, 0x05, // REPORT_SIZE (5)

0x81, 0x01, // INPUT (Cnst)

0x05, 0x01, // USAGE PAGE (Generic Desktop)

0x09, 0x30, // USAGE (X)

0x09, 0x31, // USAGE (Y)

0x15, 0x81, // LOGICAL_MINIMUM (-127)

0x25, 0x7F, // LOGICAL_MAXIMUM (127)

0x75, 0x08, // REPORT_SIZE (8)

0x95, 0x02, // REPORT_COUNT (2)

0x81, 0x06, // INPUT (Data,Var,Relative)

0xc0, // END_COLLECTION

0xc0, // END_COLLECTION

};

14/40

USING THE ST7263 FOR DESIGNING A USB MOUSE

4.2.5 String Descriptor

The previous descriptors can contain references to string Descriptors that provide displayable
information describing a descriptor in human-readable form. The inclusion of string Descrip-
tors is optional. String Descriptors use UNICODE encoding.

In the following String Descriptor example, all fields can be modified to enter your own manu-
facturer index, product index and serial number index. In this case, some fields have to be re-
placed by a #define NAME at the top of the <descript.h> file, these defines are needed by the
USB protocol layer to handle the report sending transaction.

#define STRINGDESCSIZE 82 // String descriptor Length

#define INDEX_MANUFACT 0x04 // Index of String Descriptor describing manufacturer

#define LENGTH_MANUFACT 0x26 // Manufacturer length

#define INDEX_PRODUCT 0x2A // Index of String Descriptor describing product

#define LENGTH_PRODUCT 0x22 // Product length

#define INDEX_SERIALNUM 0x4C // Index of String Descriptor describing serial

number

#define LENGTH_SERIALNUM 0x06 // Serial number length

const Byte StringDescriptor[] = {

0x04, // bLength : Length of String descriptor

0x03, // bDescriptorType

0x09, // bString US English

0x04,

LENGTH_MANUFACT, // bLength: Length of String descriptor

0x03, // bDescriptorType

uS, uT, // Manufacturer

uM, ui, uc, ur, uo, ue, ul, ue, uc, ut, ur, uo, un, ui, uc, us,

LENGTH_PRODUCT, // bLength: Length of String descriptor

0x03, // bDescriptorType

uS, uT, u7, u2, u6, u3, uSPACE, uU, uS, uB, uSPACE, uM, uo, uu, us, ue,

LENGTH_SERIALNUM,

0x03, // bDescriptorType

uS, uT,

LENGTH_ADDSTRING0,

0x03,

// Add your string

LENGTH_ADDSTRING1,

0x03

// Add your string

};

15/40

USING THE ST7263 FOR DESIGNING A USB MOUSE

4.3 DATA TRANSFER

The USB Mouse should be able to receive data on endpoint 0 and send data through endpoint
0 and endpoint 1. The transfer types supported by this application are:

1. Control transfer with endpoint 0 (SETUP and IN and OUT tokens)

2. Interrupt transfer with endpoint 1 (IN token)

Figure 6 presents the different USB packet types encountered in this application.
Figure 6. USB Low-speed packet formats

All the decoding / encoding operations on the USB frames are handled by firmware. The fol-
lowing figure describes the interaction between the received token packet and the hardware
registers of the ST7263 USB interface.
Figure 7. Token packet reception

The firmware must determine the data transfer direction and the endpoint number which has
sent or received data by reading the IDR and PIDR registers.

PID0 PID1 PID2 PID3 PID0 PID1 PID2 PID3 Packet Identifier Field

DATA CRC16PID

ADDR ENDP CRC5PID

PID

Token (OUT, IN, SETUP)

Data packet

Handshake (ACK, NAK, STALL)

8bits 7bits 4bits 5bits

0~8bytes 16bits

PID ADDR ENDP CRC5

Write into
Must match with

Endpoint Reception Register

Token Packet

TP3 TP2 - - - - - -

CTRL DTOG
RX

STAT
[1]

STAT
[0]

EnA[3] EnA[2] EnA[1] EnA[0]

- ADD6 ADD5 ADD4 ADD3 ADD2 ADD1 ADD0

7

DADDR register

IDR register

Must match with

16/40

USING THE ST7263 FOR DESIGNING A USB MOUSE

The following table shows the data transfer direction corresponding to each PID.

4.3.1 Control transfer with endpoint 0

All control transfers are supported by endpoint 0. There can be control transfers with data
phase and control transfers without data phase. As a consequence, a control transfer may
have three transaction stages: a Setup stage, a Data stage (not for no-data control transfer)
and a Status stage.

Figure 8 shows an example of control transfer with one data IN stage.
Figure 8. Control transfer

The use of DMA architecture allows the endpoint definition to be completely flexible. The re-
ceived and send data are stored in RAM buffers assigned to the DMA of the USB interface.
The DMA buffers are in a contiguous RAM area. The firmware must write the starting address
of the DMA memory area in the DMAR register and in the DA7 and DA6 bits of the IDR reg-

PID name Data transfer direction
SETUP, OUT from host to device

IN from device to host

Packet # Sync SETUP ADDR ENDP CRC5
SETUP Token

231 00000001 0xB4 0x00 0x0 0x08

Packet # Sync DATA0 DATA CRC16
SETUP data token

232 00000001 0xC3 80 06 00 01 00 00 40 00 0x8829

Packet # Sync ACK
ACK handshake from ST7

233 00000001 0x48

Packet # Sync IN ADDR ENDP CRC5
IN token of data IN stage

234 00000001 0x96 0x00 0x0 0x08

Packet # Sync DATA1 DATA CRC16
data returned by ST7

235 __000001 0xd2 12 01 00 01 00 00 00 08

Packet # Sync ACK
ACK handshake from host

236 00000001 0X48

Packet # Sync OUT ADDR ENDP CRC5
OUT token of status OUT stage

237 00000001 0x87 0x00 0x0 0x08

Packet # Sync DATA1 DATA CRC16
Zero length data packet sent by host

238 00000001 0xd2 0x0000

Packet # Sync ACK
ACK handshake from ST7

239 00000001 0x48

S
E
T
U
P

D
A
T
A

S
T
A
T
U
S

17/40

USING THE ST7263 FOR DESIGNING A USB MOUSE

ister. The six least significant bits of the IDR register are managed by hardware. For detailed
information on the mapping, see the USB interface chapter of the ST7263 data sheet.

4.3.2 Interrupt transfer with endpoint 1

After the enumeration phase, the host continuously issues IN tokens through the endpoint 1
interrupt pipe. As the mouse has some data to return to the host, it returns three bytes of data
(for a 2-axis mouse) or four bytes of data (for a 3-axis mouse).

These bytes are in format used for the boot report format for USB Mouse so that the data can
be correctly interpreted by the BIOS. As shown in Figure 9, the first byte contains Left, middle
and right buttons states, the second and the third bytes contain the relative displacement of
the X and Y Axis respectively, since the last transaction. An optional fourth byte contains the
Z relative displacement.

When the mouse has some data to return to the host through the interrupt pipe, it must write
this data in the DMA buffer and enable endpoint 1 in transmission by setting the EP1RA to
VALID. The host polls endpoint 1 with a polling interval given in the endpoint descriptor by
sending an IN token. The hardware interface replies with STALL, NAK or data.
Figure 9. Byte definition of boot report for USB Mouse

X Position Y Position
Middle Button

Right Button

Left Button

XX X X X X X X X X X X X X X X X X X

1st Byte 2nd Byte 3rd Byte

X XXXXXXX

Z Position

4th Byte

()

18/40

USING THE ST7263 FOR DESIGNING A USB MOUSE

5 POWER MANAGEMENT

The Suspend mode has been introduced in the USB specification to make an attached device
enter low-power mode if no bus activity is detected for more than 3.0 ms.

Moreover, an attached device must be able to leave the suspend state if the Host issues a
Reset signal, a Resume signal or if the device issues a remote wake-up sequence.

5.1 USB SUSPEND MODE IMPLEMENTATION

Depending on the USB mouse functionality, The application must issue a remote wake-up se-
quence if a movement has been detected on one of the Photo transistor outputs or if one of the
mouse buttons has been pressed. Then the application must periodically check the port states
without consumming more than 500 µA average.

To support the suspend mode specification, the ST7263 microcontroller enters low-power
mode by executing the HALT instruction. The internal oscillator is then turned off, causing all
internal processing to be stopped, including the operation of the on-chip peripherals. We can
exit HALT mode by receiving a reset signal, an End Suspend Interrupt coming from the USB
peripheral or an external interrupt (edge detection).

In order to be within the 500 µA suspend mode specification, the most common solution con-
sists of using an external RC circuit.
Figure 10. RC external circuitry

An external capacitor loads trough an external resistor. This capacitor is connected to the PB5
external interrupt pin of the microcontroller. As soon as the capacitor load has reached the
Low-to-High trigger level, the external interrupt vector is set. Then, the entire microcontroller is
woken-up by hardware (Oscillator, core and Peripherals). If the mouse has moved or if the
buttons have been pressed, the application must perform a Remote Wake-up sequence, oth-
erwise, we discharge the capacitor and re-enter suspend state.

Figure 11 shows the RC circuit behaviour when the mouse is not moved.

VDD

VSS

PB5

ST7263

R

C

PAx

PBx

Photo Transistors
and

buttons

19/40

USING THE ST7263 FOR DESIGNING A USB MOUSE

Figure 11. RC circuit behaviour in suspend mode

During the charge of the capacitor, the microcontroller is in low-power mode, it draws only
about 250 µA. As soon as the charge of the capacitor reaches the interrupt trigger level, the
microcontroller wakes-up. The oscillator is then turned on and a stabilisation time is required
before releasing CPU clock cycles. This stabilization time is 4096 CPU clock cycles. During
this activity phase, the microcontroller draws about 20 mA. This oscillator wake-up phase is
shown in Figure 12.
Figure 12. Oscillator Waking-up sequence

Oscillator activity

External capacitor charge
and discharge

4096 CPU Clocks

External capacitor charge

Oscillator activity

and discharge

20/40

USING THE ST7263 FOR DESIGNING A USB MOUSE

5.1.1 Special requirements on Photo transistors

To check if the mouse has moved, it is necessary to compare the current state of the Photo
transistor outputs with the previous ones (recorded before entering suspend mode).

As soon as the microcontroller performs program code operations, the Mouse infra-red LED is
turned on. However, to establish the previous Photo transistor values (especially in case of
high level values) a certain amount of time is required. This period is lower than 200 µs for the
components used. This is due to current establishment in the infra-red diode.
Figure 13. Photo transistors behaviour

5.1.2 RC value proposal

To summarize, the microcontroller is active for 800 µs and it draws 20 mA during this period.
Then it is in low-power mode for the rest of the period (drawing about 250 µA). This means it
is quite easy to calculate the correct value of the RC time period to enter suspend mode 500
µA average max current specification:

Mouse infra red power supply
active on low level

Photo transistor output
high level establishment

External capacitor charge
and discharge

Oscillator activity

Specvalue Imax WakeupTime)× Imin Period WakeupTime–()×()+()
Period

--=

21/40

USING THE ST7263 FOR DESIGNING A USB MOUSE

Example:

If you choose 450 µA to stay well within the specification and with the following parameters:

Imax = 20 mA - Wakeup Time = 800 µs - Imin = 250 µA

A Period value of 80 ms is obtained.

The RC value can then be calculated to get this period.

You need to pay attention to 2 parameters:

– The high level voltage imposed by the high trigger level (about 3.4V)

– The input impedance of the pin which modifies the equivalent resistance of the RC circuit.

The following table presents some RC values and the corresponding time periods and con-
sumption measured on a ST7263 microcontroller.

Depending on the application supporting the suspend mode, the developer will have to find a
compromise between the suspend interval time and the suspend average current.
Table 1. RC Value proposal

Note 1: The suspend mode consumption has been measured with Ports A and C configured
as outputs. This has been done to avoid additional current consumption in their pull-up resis-
tors.

Note 2: A USB Mouse is a Human Interface Device. This means a device manipulated at quite
low frequencies. The best compromise is obtained by choosing a RC value which allows you
to enter in remote wake-up mode and to check the device sensor states frequently (more than
10 times per second).

5.2 REMOTE WAKE-UP MODE

As soon as a different value has been read from the buttons or photo transistor outputs, the
microcontroller performs a Remote Wake-up sequence to resume the communication flow be-
tween the Device and the Host.

An example of such a sequence is shown on Figure 14.

RC Values Suspend time period Suspend average current
C= 330 nF - R= 1 MΩ t= 306 ms I= 400 µA

C= 330 nF - R= 670 KΩ t= 200 ms I= 405 µA
C= 330 nF - R= 330 KΩ t= 97 ms I= 440 µA
C= 100 nF - R= 670 KΩ t= 80 ms I= 450 µA
C= 100 nF - R= 330 KΩ t= 37 ms I= 540 µA (out of spec.)

22/40

USING THE ST7263 FOR DESIGNING A USB MOUSE

Figure 14. Resume state behaviour

Note that the DM and DP lines are maintained in Resume state for 21.6 ms while the USB
specification release 1.1 requires the device to impose resume signalling for a period between
10 ms and 15 ms. In fact the device imposes the suspend state for only 12 ms and then the
host maintain this state for 21.6 ms. This 20 ms minimum time of resume signalling insures
that all devices in the network that are enabled to see the resume are woken-up.

commute from constant idle state
to Resume state during

Previous Photo transistor value

Photo Transistor
output

Oscillator
activity

(checked every 80 ms)

DM line

DP line
an interval between 10 and 15 ms

The Mouse is moved by user

23/40

USING THE ST7263 FOR DESIGNING A USB MOUSE

6 PROGRAM ARCHITECTURE

6.1 FIRMWARE LAYERS

The program architecture is divided in several layers from the hardware register low level layer
to the mouse handling high level layer. This makes modifications easier at any level.

This is shown by the Architecture Overview in Figure 15.
Figure 15. Architecture Overview

USB HAL: The USB Hardware Abstraction Layer (HAL) exports the major functions which di-
rectly access the ST7263 hardware registers. It handles all registers from the SIE (Serial In-
terface Engine) macrocell which is the peripheral that handles USB exchanges at the lowest
level.

USB Protocol Handling: This layer manages the USB protocol. It handles the different trans-
action during USB SETUP, DATA and STATUS stages. It replies to the standard requests
used for device enumeration (SET_ADDRESS, GET_CONFIGURATION...).

USB AIL: The USB Application Interface Layer (AIL) exports all functions needed for any HID
application. It allows the application to receive specific requests from Host software through a
Control Pipe (Endpoint 0). It also contains functions for sending data through the Control Pipe
(Endpoint 0) or the Interrupt Input Pipe (Endpoint 1).

USB Layers

* Mouse specific

Conditional *
compilation

Mouse Handling *

USB HAL

USB AIL

USB Protocol Handling
Static Data *
(descriptors)

The conditional compilation is related to
the number of buttons (2 or 3) and the
number of Axis (X, Y or X, Y and Z)

In the static data descriptor field, String
descriptor (containing manufacturer index
, product index and serial number index in
human readable form) is optional.

AIL: Application Interface Layer

HAL: Hardware Abstraction Layer

24/40

USING THE ST7263 FOR DESIGNING A USB MOUSE

6.2 MOUSE HANDLING ROUTINES

In the following section, all the programs have been developed using the Hiware C compiler
Toolchain. ST provides a complete architecture as well as firmware drivers to help you de-
velop your application quickly and easily. A list of reference documents is provided at the end
of the application note.

According to the ST7263 microcontroller, all USB events are managed by interrupt. When an
USB event occurs, a flag of the Interrupt State Register (ISTR) is set by hardware. Then, the
firmware determines the interrupt origin by reading the ISTR register, sets the corresponding
bit in a software register (bmUsbIntFlag), and clears the interrupt flag. The USB polling routine
reads the software register (bmUsbIntFlag) to determine the USB interrupt source and jumps
to the corresponding interrupt routine.

Each interrupt routine sets the global variable “bmUsbState” to the corresponding USB state:
SOF, Ennumerated, Suspended or Remote wake-up.

The Mouse handling routine is divided into two subroutines continuously executed by the mi-
crocontroller. A first subroutine is affexted to the mouse sensor management. The second
subroutines is dedicated to the BmUsbState management.

These two subroutines can be interrupted by USB or other microcontroller interrupt vectors.
Some conditional events involve the execution of other subroutines.

25/40

USING THE ST7263 FOR DESIGNING A USB MOUSE

Figure 16. Mouse software subroutines overview

UsbReset
(Reset + Enumeration phases)

My_Init
(Mouse variables initialisation)

While (1)

Application
(Check_Mouse_State)

Application
(Check_bmUsbState)

USB Polling

Mouse Handling

Condition always true
-> Uninterrupted Loop

MAIN PROGRAM ROUTINE

1rst Mouse Subroutine

2nd Mouse Subroutine

26/40

USING THE ST7263 FOR DESIGNING A USB MOUSE

6.2.1 Check_mouse_state subroutine

The first subroutine called check_mouse_state (See Figure 17) handles all the variations on
the external sensors (buttons and photo transistors).

This subroutine handles the different states of the buttons and of the photo transistors on the
mouse. The mouse state informations are sent only if one of the different sensors has been
moved. In the other case, the mouse answers the host IN-tokens by issuing non-acknowledge
(NAK) tokens.

If one of the mouse axis has moved, a first subroutine determines the X-Y direction, a second
subroutine counts the variation increments and a third subroutine transmits this variation only
if the Mouse_counter variable has reached the Check_increment constant value.

The Mouse_counter value is incremented as soon as a Start of Frame (SOF) is encountered.
It is refreshed at the end of the transmission subroutine. By default this value is set to 5 in the
usr_var.h file. The modification of the Check_increment constant value affects the amplitude
of the cursor’s displacements on the screen of your PC. Then, depending on your display unit
format, you can either choose a small or a high amplitude cursor displacement.

27/40

USING THE ST7263 FOR DESIGNING A USB MOUSE

Figure 17. Check_mouse_state subroutine

Check_Left_Button

Check_Right_Button

Check_XY_State

If X_Value !=
X_Previous X_Moved=1

If Y_Value !=
Y_Previous Y_Moved=1

Check_Movement

Check_XY_State

Count_XY_Variations

Transmit_XY_Variations

Check_Mouse_State

If X_Moved Determine
X_Mouse_Sens

If Y_Moved Determine
Y_Mouse_Sens

X_Increment ++

Y_Increment ++

Count_XY_Variations

If Mouse_Counter >
CHECK_INCREMENT

Transmit_Endpoint1
(XY State)

Transmit_XY_Variation

28/40

USING THE ST7263 FOR DESIGNING A USB MOUSE

6.2.2 Check_bmUsbstate subroutine

The second subroutine called check_bmUsbstate (See Figure 18) is specifically for the USB
bus state variations like Start of Frame (SOF), device Enumerated, suspend mode and remote
wake-up mode.
Figure 18. Check_bmUsbstate subroutine

if (bmUsbState &
SUSPEND)

if (bmUsbState &
REMOTE_WAKEUP)

N

N

Application
(Check_Mouse_State)

Y

Before_bmUsbState function

After_bmUsbState function

HALT
(Low-Power mode instruction)

Main Application loop

if the Mouse
moved

External interrupt
Detection

N

bm_UsbSate =
REMOTE_WAKEUP

Done

Force Resume signal on
USB bus

Y

Done

Y

if (bmUsbState &
SOF) Mouse_Counter++

Check_bmUsbState This Variable enables
to send the new

relative Mouse Position

each 5 ms

29/40

USING THE ST7263 FOR DESIGNING A USB MOUSE

Special care must be taken to the port configuration that the microcontroller must perform be-
fore enter and after exit Suspend State. This means that all the external devices that can draw
current must be disabled. Two dedicated subroutines have been created to handle previous
and post Suspend states.

Two time routines have been included in the suspend state condition subroutine:

- The first 50µs time routine is mandatory to completely discharge the external capacitor.

- The second 200µs time routine is mandatory to let the photo transistor reach its previous
value after having woken-up the microcontroller. (This last period concerns the establishment
of the current in the infra-red diodes).

These two time values can be modified by users according to the characteristics of the ex-
ternal components used in the application (especially external capacitor value and infra-red
current establishment time).

30/40

USING THE ST7263 FOR DESIGNING A USB MOUSE

CONCLUSION

Because of their functionality and hot insertion properties, Universal Serial Bus Devices are
capable of replacing all previous serial and parallel devices. Low speed Human Interface De-
vices like mice are especially directed by this protocol.

The above application note describes the implementation of a low cost USB Mouse using the
ST7263 microcontroller. All USB requirements like transceiver, Serial Interface Engine,
Voltage regulator and DMA architecture have been implemented on the chip around an in-
dustry-standard 8-bit optimized core. All these features make the USB Mouse developed with
the ST7263 microcontroller efficient, rapid and low-cost.

REFERENCE DOCUMENTS

– ST7263 Data Sheet

– AN 1017 Using the ST7 Universal Serial Bus Microcontroller

– AN 1069 Developing an ST7 USB Apllicaton

– AN 989 Starting with ST7 Hiware C.

– AN 1064 Writing Optimized Hiware C Language for ST7

A general training for ST7 (hardware and development tools) is available on the ST7 CD-
ROM.

The USB Descriptor tool DT2.4 is available on the USB website at URL http//www.usb.org

31/40

USING THE ST7263 FOR DESIGNING A USB MOUSE

C CODE SOURCE

1. Check_Mouse_State.c
/*--

ROUTINE NAME : Check_Left_Button

INPUT/OUTPUT :

DESCRIPTION :

--*/

void Check_Left_Button(void)

{

if(!(PADR & 0x80) && !(Left_Pressed)) // Left Button pressed

{

Left_Pressed = 1;

ReportIdLength = 3;

ReportIdArray[0] = 0x01; // Report ID for Switches

ReportIdArray[1] = 0x00; // Report ID for for X Axis

ReportIdArray[2] = 0x00; // Report ID for for Y Axis

TransmitEP1(&ReportIdArray[0], ReportIdLength);

}

else if((PADR & 0x80) && (Left_Pressed)) // Left Button relaxed

{

Left_Pressed = 0;

ReportIdLength = 3;

ReportIdArray[0] = 0x00; // Report ID for Switches

ReportIdArray[1] = 0x00; // Report ID for for X Axis

ReportIdArray[2] = 0x00; // Report ID for for Y Axis

TransmitEP1(&ReportIdArray[0], ReportIdLength);

}

}

/*--

ROUTINE NAME : Check_Right_Button

INPUT/OUTPUT :

DESCRIPTION :

--*/

void Check_Right_Button(void)

{

if(!(PADR & 0x40) && !(Right_Pressed)) // Right Button pressed

{

Right_Pressed = 1;

ReportIdLength = 3;

ReportIdArray[0] = 0x02; // Report ID for the Right Switch

ReportIdArray[1] = 0x00; // Report ID for X Axis

ReportIdArray[2] = 0x00; // Report ID for Y Axis

TransmitEP1(&ReportIdArray[0], ReportIdLength);

32/40

USING THE ST7263 FOR DESIGNING A USB MOUSE

}

else if((PADR & 0x40) && (Right_Pressed)) // Right Button Relaxed

{

Right_Pressed = 0;

ReportIdLength = 3;

ReportIdArray[0] = 0x00; // Report ID for Switches

ReportIdArray[1] = 0x00; // Report ID for X Axis

ReportIdArray[2] = 0x00; // Report ID for Y Axis

TransmitEP1(&ReportIdArray[0], ReportIdLength);

}

}

/*--

ROUTINE NAME : X_Mouse_Sens

INPUT/OUTPUT :

DESCRIPTION : checking if the mouse as moved

--*/

void X_Mouse_Sens(void) // Mouse routine for X sign detection (opto sensors on one

axis)

{

switch (X_Value)

{

case 0x80 :

{

if (X_Previous == 0x00) X_Sens = 1; // on the right

else if (X_Previous == 0xC0) X_Sens = 0; // on the left

break;

}

case 0xC0 :

{

if (X_Previous == 0x80) X_Sens = 1; // on the right

else if (X_Previous == 0x40) X_Sens = 0; // on the left

break;

}

case 0x40 :

{

if (X_Previous == 0xC0) X_Sens = 1; // on the right

else if (X_Previous == 0x00) X_Sens = 0 // on the left

break;

}

case 0x00 :

{

if (X_Previous == 0x40) X_Sens = 1; // on the right

else if (X_Previous == 0x80) X_Sens = 0; // on the left

break;

33/40

USING THE ST7263 FOR DESIGNING A USB MOUSE

}

default :

break;

}

}

/*--

ROUTINE NAME : Y_Mouse_Sens

INPUT/OUTPUT :

DESCRIPTION : checking if the mouse as moved

--*/

void Y_Mouse_Sens(void) // Mouse routine for X sign detection (opto sensors on one

axis)

{

switch (Y_Value)

{

case 0x10 :

{

if (Y_Previous == 0x00) Y_Sens = 1;// go up

else if (Y_Previous == 0x18) Y_Sens = 0;// go down

break;

}

case 0x18 :

{

if (Y_Previous == 0x10) Y_Sens = 1; // go up

else if (Y_Previous == 0x08) Y_Sens = 0; // go down

break;

}

case 0x08 :

{

if (Y_Previous == 0x18) Y_Sens = 1;// go up

else if (Y_Previous == 0x00) Y_Sens = 0; // go down

break;

}

case 0x00 :

{

if (Y_Previous == 0x08) Y_Sens = 1;// go up

else if (Y_Previous == 0x10) Y_Sens = 0; // go down

break;

}

default :

break;

}

}

34/40

USING THE ST7263 FOR DESIGNING A USB MOUSE

/*--

ROUTINE NAME : Check_Movement

INPUT/OUTPUT :

DESCRIPTION :

--*/

void Check_XY_State(void)

{

X_Value = (PBDR & 0xC0); // (PB6 and PB5)

if ((X_Value != X_Previous) && (X_Moved == 0)) // X-Axis mouse has moved

since last routine access

X_Moved = 1;

else // ((X_Value == X_Previous) && (X_Moved == 1))

X_Moved = 0;

Y_Value = (PBDR & 0x18); // (PB3 and PB4)

if ((Y_Value != Y_Previous) && (Y_Moved == 0))// Y-Axis mouse has moved

since last routine access

Y_Moved = 1;

else

Y_Moved = 0;

}

/*--

ROUTINE NAME : Count_XY_Variations

INPUT/OUTPUT :

DESCRIPTION :

--*/

void Count_XY_Variations(void)

{

if (X_Moved)

{

X_Mouse_Sens();

X_Increment++;

X_Previous = X_Value;

}

if (Y_Moved)

{

Y_Mouse_Sens();

Y_Increment++;

Y_Previous = Y_Value;

}

}

/*--

35/40

USING THE ST7263 FOR DESIGNING A USB MOUSE

ROUTINE NAME : Transmit_XY_Variations

INPUT/OUTPUT :

DESCRIPTION :

--*/

void Transmit_XY_Variations(void)

{

 ReportIdLength = 3;

if (Mouse_Counter > 2000)// Reset Mouse_Counter before negative value.

Mouse_Counter=0;

if ((Mouse_Counter > CHECK_INCREMENT) && ((X_Increment != 0) ||

(Y_Increment != 0)))

{

ReportIdLength = 3;

if ((X_Sens == 0) && (Y_Sens == 0)) // Mouse go on left and down

{

ReportIdArray[1] = ~X_Increment; // Negative X Increment Value

ReportIdArray[2] = Y_Increment; // Positive Y Increment Value

}

if ((X_Sens == 1) && (Y_Sens == 0)) // Mouse go on right and down

{

ReportIdArray[1] = X_Increment; // Positive X Increment Value

ReportIdArray[2] = Y_Increment; // Positive Y Increment Value

}

if ((X_Sens == 0) && (Y_Sens == 1)) // Mouse go on left and up

{

ReportIdArray[1] = ~X_Increment; // Negative X Increment Value

ReportIdArray[2] = ~Y_Increment; // Negative Y Increment Value

}

if ((X_Sens == 1) && (Y_Sens == 1)) // Mouse go on right and up

{

ReportIdArray[1] = X_Increment; // Positive X Increment Value

ReportIdArray[2] = ~Y_Increment; // Negative Y Increment Value

}

TransmitEP1(&ReportIdArray[0], ReportIdLength);

X_Increment = 0;

Y_Increment = 0;

Mouse_Counter = 0;

}

}

36/40

USING THE ST7263 FOR DESIGNING A USB MOUSE

/*--

ROUTINE NAME : Check_Movement

INPUT/OUTPUT :

DESCRIPTION :

--*/

void Check_Movement(void)

{

Check_XY_State();

Count_XY_Variations();

Transmit_XY_Variations();

}

/*--

ROUTINE NAME : Check_Mouse_State

INPUT/OUTPUT :

DESCRIPTION :

--*/

void Check_Mouse_State(void)

{

Check_Left_Button();

Check_Right_Button();

Check_Movement();

}

/*--

ROUTINE NAME : MOUSE_HANDLING

INPUT/OUTPUT :

DESCRIPTION :

--*/

void MOUSE_HANDLING(void)

{
Check_Mouse_State();

Check_BmUsbState();

}

37/40

USING THE ST7263 FOR DESIGNING A USB MOUSE

2. Check_bmUsbState.c

/*--

ROUTINE NAME : Before_Enter_Suspend

INPUT/OUTPUT :

DESCRIPTION : This function details what we have to do before entering in suspend

mode

--*/

void Before_Enter_Suspend(void)

{

unsigned int k;// variable used in the capacity discharge loop

PADDR = 0xFF; // The 2 Ports are configured in output for min current con-

sumption care

PCDDR = 0xFF;

SetBit(PBDDR,5); // PB5 in output mode (external RC circuit)

ClrBit(PBDR,5); // Clr PB5 : Discharge the external capacity

for (k=17; k>0;k --){ // 50us loop: This time interval is mandatory to

asm nop;// completly discharge the external capacity

}

Previous_Suspend_State = (PBDR & 0xD8); // Read the Phototransistor value

before entering in SUSPEND

Current_Suspend_State = Previous_Suspend_State;

SetBit(PCDR,0); // Switch OFF the Mouse LED

ClrBit(PBDDR,5); // PB5 configured in input mode (We let the capacity

charge)

Wake_Up_Flag = 0;

ITRFRE |= 0x20; // Enable IT6 (PB5)

}

/*--

ROUTINE NAME : After_End_Suspend

INPUT/OUTPUT :

DESCRIPTION :

--*/

void After_End_Suspend(void)

{

unsigned int j; // variable used in the 200 us loop

if (Wake_Up_Flag == 1)

{

ClrBit(PCDR,0); // switch on the Mouse LED

38/40

USING THE ST7263 FOR DESIGNING A USB MOUSE

SetBit(PBDDR,5); // PB5 in output mode (external RC circuit)

ClrBit(PBDR,5); // Clr PB5 : Discharge the external capacity

ITRFRE |= 0x20; // Re enable IT6

for (j=68; j>0; j--){ // 200us loop: This time interval is mandatory

to let

asm nop; // each Phototransistor reach his previous value

}

}

}

/*--

ROUTINE NAME : Check_BmUsbState

INPUT/OUTPUT :

DESCRIPTION :

--*/

void Check_BmUsbState(void)

{

if(bmUsbState & SOF) // Start of frame occurs

{

bmUsbState &= ~SOF; // Reset the SOF bit

Mouse_Counter++; // This variable is used to refresh the Cursor Posi-

tion

}

if(bmUsbState & ENUMERATED) // Device is enumerated

asm nop;

if(bmUsbState & SUSPEND)

{

Before_Enter_Suspend();

asm

{

Loop: halt; // Enters suspend mode

}

/***** return from interrupt in SUSPEND Mode *******/

After_End_Suspend();

Current_Suspend_State = (PBDR & 0xD8); // Filter on the 4 X-Y axis

Optocoupler sensors

if (Current_Suspend_State == Previous_Suspend_State)

{

Current_Suspend_State = Previous_Suspend_State;

SetBit(PCDR,0); // switch OFF the Mouse Led

39/40

USING THE ST7263 FOR DESIGNING A USB MOUSE

ClrBit(PBDDR,5); // PB5 configured in input (We let the capaci-

ty charge)

ITRFRE |= 0x20; // Re enable IT5

Wake_Up_Flag = 0;

asm jp Loop;

}

else

{

ITRFRE = 0x00; // Disable IT6 (PB5)

bmUsbState &= ~SUSPEND; // Reset "Go Suspend"

bmUsbState |= REMOTE_WAKEUP; // Set "Remote Wake-up"

ClrBit(PBDDR,5); // PB5 configured in input

}

}

if(bmUsbState & REMOTE_WAKEUP)

{

RemoteWakeup();

}

}

Int7263.c
/*--

ROUTINE NAME : INT_IT1IT8

INPUT/OUTPUT : None

DESCRIPTION : Rising edge interrupt

COMMENTS :

--*/

#pragma TRAP_PROC SAVE_REGS

void INT_IT1IT8(void)

{

 if(bmUsbState & SUSPEND) // We are in suspend mode

{

if((PBDR & 0x20) == 0x20)

Wake_Up_Flag =1;

ITRFRE |= 0x20;

}

}

40/40

USING THE ST7263 FOR DESIGNING A USB MOUSE

"THE PRESENT NOTE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS WITH INFORMATION
REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME. AS A RESULT, STMICROELECTRONICS
SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO
ANY CLAIMS ARISING FROM THE CONTENT OF SUCH A NOTE AND/OR THE USE MADE BY CUSTOMERS OF
THE INFORMATION CONTAINED HEREIN IN CONNEXION WITH THEIR PRODUCTS."

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without the express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

1999 STMicroelectronics - All Rights Reserved.

Purchase of I2C Components by STMicroelectronics conveys a license under the Philips I2C Patent. Rights to use these components in an
I2C system is granted provided that the system conforms to the I2C Standard Specification as defined by Philips.

STMicroelectronics Group of Companies
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain

Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

