
AN1046/0199 1/32

APPLICATION NOTE

ST7 UART EMULATION SOFTWARE
by Microcontroller Division Application Team

1 INTRODUCTION

All members of the STMicroelectronics ST7 Series of Microcontrollers feature a 16 bit timer
with several possibilities such as output compares and input captures.

This note describes a technique for emulating an RS232 UART with the ST7 timer without any
additional hardware. Only two pins are required for the serial communication.

The first part of this note will explain the protocol used for serial communication and how to
adapt it for the ST7 timer. The other sections of this note describe more precisely how the pro-
gram deals with transmitter mode and receiver mode.

Timings are used to illustrate the important points.

The user can easily adapt the example to his own application as only a small amount of code
is required by the UART program.

The software was tested by connecting a ST72251 to the serial port of a PC and communi-
cating in all possible modes.

2 UART COMMUNICATIONS PROTOCOL

An UART is a two-way communications interface (Universal Asynchronous Receiver Trans-
mitter).

A hardware UART is made of two cells and can work in FULL DUPLEX mode (transmitter and
receiver together). The software module developed below supports full duplex functionality.
However, it can be configured in transmitter mode only or receiver mode only. This application
note briefly explains the UART protocol and how to configure the module for operation.

1

ST7 UART EMULATION SOFTWARE

2/32

PROTOCOL:

1 Start bit corresponding to the beginning of the frame.

7 or 8 bits of data corresponding to the data to receive or transmit.

1 Stop bit corresponding to the end of the frame.

3 BAUD RATE

The Baud Rate is used to configure the transfer speed. For a hardware cell, the transfer speed
is an input clock ratio formed by a pre-defined divider.

For the software module, we will use the timer to generate the different speeds, using both the
internal clock and the timer clock divider. A pulse period can be calculated using the following
formula:

Example:

If a 16 MHz crystal is used, the corresponding period is 62.5 ns but, as a clock divider is im-
plemented within the ST7, the real period is 125 ns.

When using the timer, a prescaler is used and can be configured in the timer Control Register
2 (bits C0 and C1).

To sum up: CLOCK in = 16 MHz

1/16 MHz = 62.5 ns

62.5 ns x 2 = 125 ns ST7 Core Internal clock (fCPU)

125 ns x 4 = 0.5 µs Timer prescaler divider

The pulse period on the line will be 0.5 µs long.

So, if a 1200 baud rate is required for the application, the input value you will have to configure
in the program will be:

1/1200 = 833 µs = 1666 x 0.5 µs or 682 hex.

Start Data Stop

VR02135B

1

3/32

ST7 UART EMULATION SOFTWARE

In the software, two 8-bit registers (SH and SL) contain the speed value:

SH = 06 h

SL = 82 h

Again, in receiver mode, a half period is required to sample each data, so the next parameter
you’ll have to provide to the UART program is the Half Speed, coded over two 8-bit registers
(HSH and HSL):

833 / 2 = 416 µs = 833 x 0.5 µs or 341 hex

and

HSH=03h

HSL=41h

LSB MSB

Data Stop

VR02135C

Start

833 s

416 s
Samples used in receiver
mode only

VR 0 2 1 3 5 D

1

ST7 UART EMULATION SOFTWARE

4/32

STANDARD TRANSFER SPEED SUPPORTED :

6 standard speeds are supported by the UART program.

A simple calculation based on the previous one allows you to configure the program for each
required speed. You can also check the constant.asm file which contains the hex value for
each of the following baud rates.

1200 baud

2400 baud

4800 baud

9600 baud

19200 baud

28800 baud

Refer to the last chapter of this application note for more details on supported speeds.

4 TRANSMITTER MODE

According to the previous calculation, each bit is transmitted on the line with the same dura-
tion. But, care must be taken about the protocol used here.

Instead of starting a communication with a start bit, when the UART function is called within
the main program, we first generate a stop condition and, after the STOP bit length, we gen-
erate the start bit.

This way of proceeding insures that a correct start condition will be generated on the line what-
ever the previous pin level.

So, the frame looks like this, with LSBs sent first :

DonnØes
S t op

Start

L S B M S B

t im e

V R0 21 35 E

1

5/32

ST7 UART EMULATION SOFTWARE

5 RECEIVER MODE

Receiver mode is more complicated than transmitter mode because of potential errors or
noise created by the connections and wiring. So, a simple sampling function cannot ensure a
proper bit decision.

A 2 to 1 majority voting system is used to determine the bit level on the line. Three samples are
taken on the line at mid period and a decision is taken based on the sampling process.

A falling edge followed by a low level on the receive pin will start the process while a one level
after the 9 first bits stands for a stop condition.

So, if a glitch occurs on the line, generating a falling edge detection, it won’t be considered as
a start bit unless it is followed by a low level for a bit duration.

PRINCIPLE :

Once the UART routine is called and when it is configured in receiver mode only, the input pin
waits for a falling edge. Once an edge is detected, an interrupt is generated and the half dura-
tion of the bit (HSL and HSH registers) is loaded in the timer output compare registers (OCLR
and OCHR). When the output compare interrupt occurs, the sampling process is done and a
low level must be detected on the line (it’s a start bit). If not, a flag is set meaning that the frame
is incorrect and the software stops. But if yes, a full bit duration is added to the output compare
value of the timer so that the same sampling process will be executed in the middle of the first
data bit.

After all eight data bits have been received, the UART program tests if the bit received is at a
high level for the stop bit. Once again, if not, the same flag (frame error) is used to warn that
the frame is not good.

A flag indicates when the transmission is over and the data received is located in a RAM reg-
ister.

D a t a St opStart

Sampl ing

V R 0 2 1 3 5 G

1

ST7 UART EMULATION SOFTWARE

6/32

EXAMPLES:

1. For a data bit: if two samples out of the three are ”0” then the data is a 0 but, as one of the
sample was a 1, the Noise Frame flag in the status register is set.

2. For the Start bit: two samples out of the three taken must be zeros. If not, the frame error
flag is set in the status register and the frame is incorrect.

3. For the Stop bit: two samples out of the three taken must be ones. If not, the frame error flag
is set in the status register and the frame is incorrect.

6 FUNCTIONAL DESCRIPTION

The UART is controlled through 6 registers. We’ve already seen 4 of them, SH, SL, HSL and
HSH for the transmission speed and the two others are SCSR and SCCR2, respectively for
Status Register and for Control Register.

CONTROL REGISTER SCCR2 :

The register is described below:

bit 0 => 7/8 If this bit is set, the transmission or the reception is 7 bits long.

bit 1 => Sev If this bit is set, another byte will be transmitted on the line.

Care must be taken when you decide to set this bit, refer to the timing explanation later in this
document.

bit 2 => Rx If this bit is set, the receiver function is enabled.

bit 3 => Tx If this bit is set, the transmitter function is enabled.

bit 4 => Ready This bit is read only. When set, it indicates that the UART can accept
another byte. Refer to the timing explanation further in this document.

bit 5 to 7 Unused.

Notes :

1) The reset value of this register is 00h.

2) When Te = 1 and Re=1, full duplex mode is enabled and the transfer throughput cannot ex-
ceed 9600 baud.

SCCR2 7/8RxTx

b0b7

Ready

VR02135H

1

7/32

ST7 UART EMULATION SOFTWARE

STATUS REGISTER

bit 0 => X Unused

bit 1 => fe Frame Error: When set, this bit indicates that the reception is incorrect
(start bit or stop bit invalid).

bit 2 => nf Noise Frame: When set, this bit indicates that some noise interfered on

the line but that the result is still coherent.

bit 3 and 4 => X Unused.

bit 5 => rdrf Receive Data Register Full: When set, this flag indicates that all the

bits of the data register are received.

bit 6 => tc Transmit Complete: When set, this flag indicates that a whole frame
has been sent, including the stop bit and the start bit.

bit 7 => X Unused

The fe and nf flags are used to control the result of the communication.

The rdrf flag is used to control receiver mode (when set, the data can be read in the received
data register).

The tc flag is used to control transmitter mode (when set, the data has been sent on the line).

DATA REGISTERS :

The UART has three data registers:

SCDAT_EMIT for the data that have been transmitted on the Tx line.

SCDAT_REC for the data that have been received on the Rx line.

NEWDATA for the next byte to be transmitted on the Tx line.

fenf

b0b7

rdrftcSCSR X XX X

VR02135I

1

ST7 UART EMULATION SOFTWARE

8/32

PARTICULAR TIMINGS FOR SEV AND READY FLAGS :

In transmitter mode, the UART might have to send more than one byte.

The two flags Ready and SEV (for Several) in the SCCR2 register are used to handle a hand-
shake protocol.

When the UART is sending bits on the Tx line, a shift register is used to serialise the data
stream. However, the user must indicate to the UART if there’s another byte to send after-
wards. The timings are:

Between bit 1 and bit 9, the UART can accept another byte (READY = 1) at any time.

If the user wants to send a byte, he has to load the data in the NEWDATA register and set the
SEV bit.

When bit 9 is being transferred on the line, the UART indicates that it cannot accept another
byte (READY = 0) and tests the SEV flag. If set, then the content of NEWDATA will be loaded
in the SCDAT_EMIT register for the next transfer. The UART resets the SEV bit and puts
READY to high meaning that the user can send another byte if necessary.

If reset, a stop is generated and further transmission can be achieved only by calling the
UART routine again.

The 10th bit will be followed by a STOP and a START bit and after this, the byte will be trans-
ferred on the Tx line.

LSB MSB

1 2 3 4 5 6 7 8 9 10Bit n :

Ready

Sev

User wants to
send a data
(ready line was at high level)

9th bit: the
ready line goes
low for more than one
bit period.
(Test if sev bit = 1)

The UART cell

the new data to send is
latched in the UART

resets the sev
bit and put the
ready line high.

VR02135J

1

9/32

ST7 UART EMULATION SOFTWARE

7 HARDWARE DESCRIPTION

The routine runs on the ST72251 microcontroller and uses one 16-bit timer. Three timer func-
tions are used: the two output compares and the input capture 1 of timer A.

- 2 lines are used for Tx and Rx. Tx is the Output Compare pin 1 of timer A (PB1)

and Rx is the Input Capture pin 2 of timer A (PB2).

Note : The routine uses all resources of Timer A. For correct handling, it’s better not to use
timer A for other tasks if you can use timer B instead.

8 SOFTWARE DESCRIPTION

To use the UART program, follow this procedure:

■ Configure the speed registers in the constant.asm file according to the chosen mode.

■ Configure the SCCR2 register to indicate which mode is enabled (transmitter only,
receiver only, full duplex).

■ Configure the PB1 pin in order to put PB1 at high level and reset the OLV1 bit of the TACR1
register (see main asm program for precise details).

■ Load the data to transmit in the NEWDATA register, if transmitter mode is chosen.

■ and finally, make the

CALL UART

This is all you have to do in order to use the UART. The following chapter explains how the
UART works but if you wish, you can skip this chapter and go directly to the example given at
the end of this document.

MICROCONTROLLER ST7225

port B2

port B1 TX

RX

VR02135K

1

ST7 UART EMULATION SOFTWARE

10/32

TRANSMITTER MODE:

The first step in transmitter mode, is to initialise the PB1 pin to a high level.

However, a simple bit set (bset instruction) doesn’t ensure a proper level on the pin.

As we are using the alternate function of the PB1 pin, the bset instruction will turn the I/O mode
on but will not change the pin level properly.

To initialise it correctly, an output compare with OLVL1 = 1 must first be done.

By polling the OCF1 flag of Timer A status register (TASR) you can verify that the pin is cor-
rectly set and the rest of the program can continue.

The second step of transmitter mode is to set the TE flag in the SCCR2 register and then to
program the UART.

When the “CALL UART” has been done, the routine reads the alternate counter value and
adds the bit period depending on the transmission speed and loads the calculated value in the
output compare 1 registers. OLVL1 is reset in order to generate the start bit (remember that
the sequence is STOP, START, DATA...). The main program can resume as the UART rou-
tine is, for now, over.

When the counter reaches the output compare value, a low level is applied on the line
(OLVL1=0), the interrupt routine loads a new value (old output compare value + bit period) in
the output compare registers and, the OLVL1 bit is set or reset depending on the first data bit
(data bits are shifted serially in the carry).

When a frame has been transmitted, the TC flag is set and you can send another frame.

1

11/32

ST7 UART EMULATION SOFTWARE

The following timing represents a full transmission.

”CALL UART”

Set ready
Reset sev
if necessary

IT

LSB MSB

1 2 3 4 5 6 7 8 9 100

First IT: OLVL1 copied to PB1

UART initialization,
PB1 pin = 1 with a first output
compare.
OLV1=0 for the next output compare
(= start bit).

0:

1: STOP bit,

2: START bit. During the interrupt routine, the output compare registers are loaded
with the next output compare value and OLV1 is configured according
to the LSB value.

Second IT IT IT IT IT IT

Reset READY flag
test if there is another

byte to send

This last
IT is generated
only if there is
another byte
to send, else
no IT is
generated and
the line is left
high.

Time

ItIT

VR02135L

1

ST7 UART EMULATION SOFTWARE

12/32

Notes :

– Between two interrupts, the main program is free for other tasks. The UART program
works with interrupts only.

– All interrupts are OUTPUT COMPARE 1 interrupts (OCF1 flag).

– Interrupts coming from other devices will not disturb operations provided they are shorter
than a bit duration minus the UART IT length, i.e provided that the interrupt length fits be-
tween two interrupts from the UART.

RECEIVER RUNNING MODE:

Once the UART has been configured in RECEIVER mode, the software waits for a falling
edge on the PB2 pin which represents the start bit. To detect the falling edge, the input capture
interrupt is turned on and the first interrupt routine is executed.

As soon as the falling edge is detected, the input capture routine disables the input capture in-
terrupt on the pin (a high to low transition between two data bits must not be seen as a start
bit!) and the half bit duration is added to the alternate counter value to load the output compare
2 registers.

Once the first output compare 2 interrupt occurs, we are in the middle of the start bit, and the
sampling process starts. If everything went right (2 or 3 samples at 0), the routine adds a full
bit duration to the old output compare value and loads it in the output compare registers.

CALL UART

ready

sev

tc

tx

Only one byte is sent, so tc
is set, otherwise, it stays low
until last byte is reached.

VR02135M

1

13/32

ST7 UART EMULATION SOFTWARE

The next output compare 2 interrupt will occur in the middle of the first data bit, the sampling
process will tell which level was received (0 or 1).

The process continues until the stop bit detection. The last interrupt triggers the input capture
interrupt on the PB2 pin in order to detect the next start bit.

-At the end of the reception, the RDRF flag is set.

The following timing represents a full reception:

Notes:

– Between two interrupts, the main program is free for other tasks. The UART works with in-
terrupts only.

– Interrupts coming from other peripherals (or external pins) should be disabled so as not to
disturb the sampling process.

Note concerning full duplex mode:

Although receiver and transmitter mode can run at 19200 baud, full duplex mode is slower due
to the interrupt routine length. In fact, each routine has its own execution time and if another in-
terrupt occurs at this moment it cannot be served.

LSB MSB

”CALL UART”

1 2 3 4 5 6 7 8 9

IT ITIT IT

Time

Input Capture Interrupt

IT ITITITIT

Input Capture
interrupt turned
on.Input Capture

interrupt turned off.

IT

Output Compare 2 interrupts

10

VR02135N

1

ST7 UART EMULATION SOFTWARE

14/32

The following table gives the precise length of each routine.

For example, the following is an example using the information given in the table:

If you are in receiver mode, the worst case you can encounter is when you are in the middle
of the frame. Between the time you get the output compare 2 interrupt and when you exit the
subroutine there are 177 CPU cycles.

So, this means that, if a CPU cycle is 125 ns long, the fastest transmission you can accept is:

177 x 125 ns = 22,125 µs between two data bits.

Consequently:

28800 baud <=> 34,72 µs

19200 baud <=> 52.08 µs

are both possible transmission rates.

In full duplex mode, two consecutive worst cases must be taken into account.

So the worst case that could occur is

177 + 94 = 271 CPU cycles = 33,875 µs

The closest standard speed to this worst case is:

19200 baud <=> 52.08 µs

9600 baud <=> 104,17 µs

which are both possible transmission rates.

From To Receiver
Full du-

plex
Trans-
mitter

Worst Case

Call UART
RET in-
struction

68 CPU
cycles

236 CPU
cycles

174 CPU
cycles

Word = 8 bits

ICAP2 interrupt
IRET in-
struction

78 CPU
cycles

X X X

OUTPUT COMPARE
2 interrupt

IRET in-
struction

177 CPU
cycles

X X
Data processing, no special case
(start or stop bit)

OUTPUT COMPARE
1 interrupt

IRET in-
struction X X

94 CPU
cycles

Normal data processing

1

15/32

ST7 UART EMULATION SOFTWARE

The total number of bytes for the routine is: 393 bytes of ROM + 37 more bytes for the PB1 pin
initialisation in the main program and 18 bytes in the RAM memory space for internal varia-
bles.

9 COMMUNICATION WITH A PC

The ST7 emulated UART cannot be directly connected to a PC, as it uses the RS232 protocol.

The electrical and protocol characteristics of RS232 are different from those provided by the
Timer I/O pins. In RS232 communication, the high level is typically +7V and the low level is
typically -7V, while the Timer peripheral works at TTL levels (0, +5V).

Furthermore, the polarities are different. A ‘1‘ bit coming from the Timer corresponds to a ‘0‘ bit
in RS232, and a ‘0‘ bit to a ‘1‘ bit. This is true for all bits including the start and stop bits .

So it is necessary to implement a conversion between the PC and the ST7. In the application,
a MAX232 is used for this purpose. An overview schematic is presented below (Figure 1.).
Figure 1. Overview Schematic

Be sure that the three main devices (PC, ST7, MAX232) have the same electrical reference
(GND).

The Receive Data pin (RD) of the serial port of the PC must correspond to the OCMP1 pin of
the ST7, and the Transmit Data pin (TD) to the ICAP1 pin.

Note for the main program example:

When using the UART in full duplex mode, there’s no time left in the main program for other
tasks. You must disable all other interrupt sources in order to make a correct full duplex trans-
mission.

In transmitter mode, the following flowchart is given as an example for handling the different
flags (tc, ready, sev).

PC

TERMINAL

serial port TD
RD

GROUND

MAX232

INOUT
OUTIN

ST72251

GND

GND

GND

ICAP1 pin
OCMP1 pin

1

ST7 UART EMULATION SOFTWARE

16/32

An upper level subroutine called ”send_data” has been written. Use it in your main program if
you want to send a data with the UART program.

To conclude, a transmission example is shown illustrating all cases with different states of the
sev and ready bits.

Call send_byte

data to
send ?

test if
SEV = 1

?

test
if ready
= 0 ?

ret

ret

load Newdata

load Newdata
Sev = 1

Ret

Ret

call UART

N

N

Y

Y

Y

N

Resynchronisation
process

VR02135O

17/32

S
T

7
U

A
R

T
E

M
U

L
A

T
IO

N
S

O
F

T
W

A
R

E

sev bit

sev bit

ready bit

tx line

tx line

ready bit

P S DATA P S DATA P S DATA

P S DATA

test test test

call send_data call send_datacall send_data call send_data call send_data

test

call send_data

Resynchronisation :
Both lines are low !

CALL UART !

P: Stop bit
S: Start bit

No write allowed
Both lines are high

No write allowed
Both lines are high

Sev bit = 0 so it means that
the users forgot to put it at 1.
The ready bit goes low because of
the desynchronisation VR02135A

ST7 UART EMULATION SOFTWARE

18/32

10 SOFTWARE

The assembly code given below is guidance only. The file cannot be used alone. The com-
plete software can be found in the ST.COM website.
st7/

;**

; TITLE: UART.ASM

; AUTHOR: Microcontroller Division Applications Team

; DESCRIPTION: Main program

;**

TITLE “UART.ASM”

;**

; |

; THIS PROGRAM PERFORMS a softwareU A R T IN TRANSMITTER OR RECEIVER modes |

; (<=> HALF DUPLEX UART)and also a FULL DUPLEX mode for fast data exchange |

; |

;**

; Start bit’s falling edge detected with the timer’s input capture function.

; |

; |

; | Start <------------------ Data ---------------------> Stop

; | | |

; | ----| |-----|-----|-----|-----|-----|-----|-----|-----|-----|---------

; |---->| | b0 b1 b2 b3 b4 b5 b6 b7 |

; |_____|-----|-----|-----|-----|-----|-----|-----|-----|

;

; Samples ||| ||| ||| ||| ||| ||| ||| ||| ||| |||

; |

; (only in receiver mode)

; The UART is controlled by two registers (SCCR2 and SCSR) and has three

; data registers (SCDAT_REC, SCDAT_EMIT and NEWDATA).

; The two control registers are described below while SCDAT_REC is the

; data register for incoming bytes, SCDAT_EMIT is the data register for outgoing

; byte and NEWDATA is the data register which holds the next value to transfert.

19/32

ST7 UART EMULATION SOFTWARE

; SCCR2: Control register

;

; -------------- ----------

; |x|x|x|Rd|tx|rx|sev|7/8|

; -------------- ----------

; ---- | | | | |

; | | | | | |

; Unused | | | | Frame length: 1= 7 data bits in byte, 0= 8 data bits.

; | | | Several bytes: If you want to send another byte after the

; | | | one which is being transfered.

; | | receive function turned on if set.

; | transmit function turned on if set.

; Ready flag: When set, the uart can accept another byte

; SCSR: Status register

;

; -------------- ----------------

; |tdre|tc|rdrf|x|x|nf|fe|Start|

; -------------- ----------------

; | | | | | |-> Start_bit : When set, the UART must generate a start bit

; | | | | Frame error. When set, the frame is not valid

; | | | Noise Frame. The flag is set when 1 of the three samples

; | | | taken in the frame is different from the two others.

; | | Receive data register full : When the byte is received the flag is set.

; | Transmit completed: End of frame (with the stop bit)

; transmit data register empty: Data register empty.

;

;-------------- ---

#include “st72251.inc” ; Insert register definition of the ST72251

#include “constant. inc”

;***

*

; USER PROGRAM

;**

WORDS

segment ‘rom’

;-------------- ---

; USER SOFTWARE

;-------------- ---

.main

ld A,#$08 ; negative edge only

ld MISCR,A ; normal mode

ST7 UART EMULATION SOFTWARE

20/32

ld X,#$80

.raz clr (X) ; Clear 62 bytes in RAM

inc X ; for full duplex mode

cp X,#$FF ; (to copy received data into RAM).

jrne raz

; Disable the timer interrupts

ld A,TASR ; clear status flags

clr TAOC1LR

clr TAOC2LR

rim ; IT output compare will be enabled when oclr is

clr TAOC1HR ; written.

clr TAOC2HR ; stop timer output compare 1 and 2

; Init PB1 pin

ld A,#$80 ; put the Output compare pin 1 ON

ld TACR2,A ; clock ratio = 4 <=> one bit = 1 µs

ld A,#$01

ld TACR1,A ; OLVL1=1 and no output compare interrupt

ld A,TAACHR ; read alternate counter (high byte)

ld sochr,A ; save value of high register

ld A,TAACLR ; read alternate counter register (low byte)

add A,#80 ; add 80 cycles to the current value

ld soclr,A ; to generate a first output compare

ld A,sochr ; in order to set the alternate level to ONE.

adc A,#00

ld sochr,A ; further compare inhibited

ld TAOC1HR,A

ld A,TASR ; clear flag of timer1

ld A,socl r

ld TAOC1LR,A ; start output compare

.pb1_init

btjf TASR,#6,pb1_init ; wait for the output compare flag

ld TAOC1HR,A ; further compare inhibited

; The compare1 function will be restored

; if transmission mode is selected.

; UART Initialisat ion

loopa clr Y

clr X

ld A,#$21

ld NEWDATA,A ;first character to send (“!”)

bset SCCR2,#re ; Receive mode selected

bset SCCR2,#te ; Transmit mode selected

call uart

21/32

ST7 UART EMULATION SOFTWARE

; **

; If you want to test the receiver function of the uart program, remove

; the comma to jump to the read loop; (re bit=1 and te=0)

; jp loop_read

; **

; **

; If you want to test the full duplex function of uart program, remove

; the comma to jump to the duplex loop; (re bit=1 and te=1)

jp loop_duplex

; ***

;***

; Sending of several independent characters to test the transmission

; function of uart program; (re bit=0 and te=1)

;***

loop5 btjf SCCR2,#ready,loop5 ;wait for the ready flag

bset SCCR2,#1 ; once the flag is set, set flag for another byte

ld A,#’j’ ; and load register

ld NEWDATA,A

loop7 btjt SCCR2,#ready,loop7 ; wait for the ready flag to go down

loop6 btjf SCCR2,#ready,loop6 ; wait for the ready flag to go up

bset SCCR2,#1 ; once the flag is set, set flag for another byte

ld A,#’-’ ; and load register

ld NEWDATA,A

loop11 btjt SCCR2,#ready,loop11 ; wait for the ready flag to go down

loop9 btjf SCCR2,#ready,loop9 ; wait for the ready flag to go up

bset SCCR2,#1 ; once the flag is set, set flag for another byte

ld A,#’s’ ; and load register

ld NEWDATA,A

loop12 btjt SCCR2,#ready,loop12 ; wait for the ready flag to go down

loop10 btjf SCCR2,#ready,loop10 ; wait for the ready flag to go up

bset SCCR2,#1 ; once the flag is set, set flag for another byte

ld A,#$32 ; and load register

ld NEWDATA,A

loop8 btjt SCCR2,#ready,loop8 ; wait for the ready flag to go down

bres SCCR2,#1 ; no other byte

loop2 btjf SCSR,#tc,loop2 ; Wait for transmition complete flag

loop jra loop

ST7 UART EMULATION SOFTWARE

22/32

;**

; If you want to test the transmission function of uart program and

; send more than one byte with the uart, you can still

; use this example of main program. An entire name is sent (“applications”).

;**

example

ld X,#11

begin ld A,(first_name,X) ; Load first character to send

ld NEWDATA,A

call uart

lp btjf SCSR,#tc,lp

bres SCSR,#tc ; Clear tc flag

DEC X

TNZ X

jreq over

jra begin

over ld A,(f irst_name,X) ; Sending of the last character

ld NEWDATA,A

call uart

lp2 btjf SCSR,#tc,lp2

bres SCSR,#tc ; Clear tc flag

;***

;***

.loop_duplex

btjt SCCR2,#ready,load_data ; Wait for the ready flag

btjt SCCR2,#1,res_flag ; Ready=0 and Sev=1 -> reset Sev flag

polling btjt SCSR,#rdrf,read_data ; Wait for the end of reception flag

btjt SCSR,#tc,end_transmit ; Wait for the transmition complete flag

jra loop_duplex

res_flag

bres SCCR2,#1 ; Instructions executed only when Ready=0

jra polling ; and Sev=1

load_data

btjt SCCR2,#1,exit ; test if sev = 1. If so, wait for ready to go down

bset SCCR2,#1 ;else, set flag for another byte

ld A,TAACLR ; and load register with counter’s low byte

ld NEWDATA,A ; for a random value

jrpl end_transmit

23/32

ST7 UART EMULATION SOFTWARE

exit jra polling

.end_transmit

bres SCSR,#tc ; clear flag

jra polling

.read_data

inc X

ld A,SCDAT_REC ; store data in RAM

ld (SCDAT_REC,x),A

bres SCSR,#rdrf ; clear frame received flag

jra polling

;***

;***

; The read loop shows how to receive three bytes from a master device.

;***

loop_read

read1 btjf SCSR,#rdrf,read1 ; Wait for the end of reception flag

ld A,SCDAT_REC

ld {SCDAT_REC+1},A

clr SCSR ; Read data and clear flag

read2 btjf SCSR,#rdrf,read2 ; Wait for the end of recept ion flag

ld A,SCDAT_REC

ld {SCDAT_REC+2},A

clr SCSR ; Read data and clear flag

read3 btjf SCSR,#rdrf,read3 ; Wait for the end of reception flag

ld A,SCDAT_REC

ld {SCDAT_REC+3},A

bset SCCR2,#ready

.loopr jra loopr

;***

; U A R T SUBROUTINE

;***

.uart btjt SCCR2,#seven,seven_bits ; Test the transmission’s length

ld a,#{8+2} ; The word’s length is eight bits

jra c_status

.seven_bits

ld a,#{7+2} ; The word’s length is seven bits

ST7 UART EMULATION SOFTWARE

24/32

.c_status

bres SCCR2,#1 ; Reset SEV bit for main program

bset SCCR2,#ready ; set ready bit for main program

ld cpt_bi t_emit,a

ld cpt_bi t_rec,a

ld nb_bit_emit,a

ld nb_bit_rec,a

ld a,NEWDATA ; get the new value to transfer

ld SCDAT_EMIT,a ; in the transmitter’s data register

clr SCSR ; clear all flags

btjt SCCR2,#re,receiver ; check if receiver was requested

.transmiter_only ; No, then Half duplex transmitter only

; No receiver function requested (= transmitter function)

; In transmitter mode, the real sequence is:

;

; |STOP|START|DATA7|DATA6|...|DATA0|

;

; rather then

;

; |START|DATA7|DATA6|...|DATA0|STOP|

;

; so the next two decrementations stand for the stop bit.

dec nb_bit_emit

dec cpt_bit_emit

; Timer Init ialization

bset TACR1,#6 ; enable the output compare interrupts

bres TACR1,#0 ; reset olv1 for the start bit

ld a,TAACHR ; Read the current free running counter value

ld sochr,a ; save value of high register

ld a,TAACLR

add a,#SL ; Add the bit duration and save the value

ld soclr,a

ld a,sochr

adc a,#SH

ld sochr,a ; further compare inhibi ted

ld TAOC1HR,a ; Load added value to the output compare 1 registers

ld a,TASR ; clear flag of timer1

ld a,socl r

ld TAOC1LR,a ; and start the output compare function

ret

25/32

ST7 UART EMULATION SOFTWARE

.receiver

dec nb_bit_rec

ld a,#$C0 ; Input capture and output compare interrupts

ld TACR1,a ; enabled.

bres TACR2,#1 ; Input Captureedge sensit ivity= fall ing edge

; test if we are in full_duplex mode

btjt SCCR2,#te,transmiter_only

ret

;-------------- ---

; TIMER A INTERRUPT ROUTINE

;-------------- ---

; Check which mode generated the timer A interrupt:

; Output Compare1 (transmission mode)

; Output compare2 (reception mode)

; Input Capture (reception mode)

.tima_rt

btjf TACR1,#7,continue ; Test if the input capt interrupt is enabled

btjt TASR,#4,start_reception ; Flag=1 so test input capture 2 flag

.continue ; else ICFE flag is reseted or it’s not the right

; edge on ICAP2

btjt TASR,#6,trans ; so test output compare 1 flag

; else output compare 2 flag

btjt TASR,#3,temp ; jump to the receiver function

iret

.temp jp recept

; re = 0 so transmit mode is selected

.trans

btjt SCSR,#start_bit,restart ; test if start flag is set

btjt SCSR,#tdre,arret ; if tdre is set transmissioncompleted

; so stop the timer

ld a,cpt_bit_emit ; test which bit is sending on the line

cp a,#1 ; test if there is only one bit left in the

jreq last_bit ; data register

bset SCCR2,#ready ; uart can accept another byte

.send sra SCDAT_EMIT ; shift the bits of the data register into

jrc one ; the carry. LSB first

bres TACR1,#0 ; change OLVL1 to 0 for the next compare

jra fin

ST7 UART EMULATION SOFTWARE

26/32

.one bset TACR1,#0 ; change OLVL1 to 1 for the next compare

; load the new timer value

; New output compare value = Old output compare value + bit length value

.fin dec cpt_bit_emit

.fin1 ld a,soclr ; add the duration value into save register

add a,#SL

ld soclr,a

ld a,sochr

adc a,#SH

ld sochr,a ; further compare inhibited

ld TAOC1HR,a

ld a,TASR ; clear flag of timer1

ld a,socl r

ld TAOC1LR,a ; start output compare

iret

.last_bit

bres SCCR2,#ready ; uart may read the NEWDATA register

btjt SCCR2,#1,one_more ; test if there’s another byte to transfer

bset SCSR,#tdre ; no, so the data transmission register has been sent.

bset TACR1,#0 ; set olv1 to keep line at high level (stop bit).

jp fin

.one_more

bset TACR1,#0 ; OLVL1 = 1 for the stop bit

bset SCSR,#start_bit ; one more byte, so set start bit

jp fin ; another byte must be transfered

.restart

bres TACR1,#0 ; OLVL1 = 0 for the start bit

ld a,nb_bit_emit ; get frame length

ld cpt_bi t_emit,a ; reset cpt_bit with frame length

bres SCSR,#start_bit ; clear start bit

ld a,NEWDATA

ld SCDAT_EMIT,a ; get new byte to send

bset SCCR2,#ready ; set ready bit for main program

bres SCCR2,#1 ; reset sev bit to inform the main program

; that the new data had been latched.

jp fin1 ; and wait for one period.

.arret ; Stop output compare

27/32

ST7 UART EMULATION SOFTWARE

ld a,TASR

clr TAOC1LR

clr TAOC1HR

bset SCSR,#tc ; The frame has been sent.

iret

;-------------- ---

; RECEIVE MODE: |

; y registe r is incremented when a high level is detected on RX line |

; x registe r is incremented when a low level is detected on RX line |

;-------------- ---

; Input capture condition

.start_reception

ld a,TAIC2HR ; Read the input capture value

ld sochr2,a ; MSB first and store value

ld a,TAIC2LR

ld soclr2,a

add a,#HSL ; add the half duration value into save register

ld soclr2,a

ld a,sochr2

adc a,#HSH

ld sochr2,a ; further compare inhibited

ld TAOC2HR,a

ld a,TASR ; clear timer’s flag

bres TACR1,#7 ; disable input capture interrupt

ld a,nb_bit_rec ; get frame length

inc a

ld cpt_bi t_rec,a

ld a,socl r2

ld TAOC2LR,a ; start output compare

iret ; and wait for output compare2 interrupt

; Test the stop bit condition on the line

.stop0

clr x

btjt PBDR,#rx,ST10 ; check 1st sample

bset SCSR,#nf

jp ST100

.ST10 inc x

.ST100 btjt PBDR,#rx,ST11 ; check 2nd sample

bset SCSR,#nf ; noise detected

ST7 UART EMULATION SOFTWARE

28/32

jp ST101

.ST11 inc x

.ST101 btjt PBDR,#rx,ST12 ; check 3rd sample

bset SCSR,#nf ; noise detected

jp ST113

.ST12 inc x

.ST113 cp x,#2

jrc f_error

jp t_received

f_error bset SCSR,#fe ; If a majority of samples are “0”

jp t_received ; then it’s an error.

.recept

push x ; save user’s registers

push y

dec cpt_bit_rec ; Test if we are receiving the last bit

ld a,cpt_bit_rec

jreq stop0 ; if so, then test only “1” samples

cp a,nb_bit_rec ; else, test if we are receiving the start bit

jreq start0 ; and if so , test only “0” samples

; If none of the above, we are receiving data bits

;

; process data sample

;

clr y

clr x

btjt PBDR,#rx,T10 ; check 1st sample

inc x ; sample = 0 so increment X

jrnc T20

.T10 inc y ; sample = 1 so increment Y

.T20 btjt PBDR,#rx,T30 ; check 2nd sample

inc x

jrnc T40

.T30 inc y ; second sample = 1 so increment Y

.T40 btjt PBDR,#rx,T50 ; check 3rd sample

inc x

jrnc T60

.T50 inc y

.T60 cp y,#3 ; if y= 3 and x = 0 a sample 1

jrne T61 ; has been detected three times

jp decal ; sample 1 into the SCDAT register

.T61 cp x,#3 ; if x= 3 and y= 0 a sample 0

29/32

ST7 UART EMULATION SOFTWARE

jreq T63 ; has been detected three times

bset SCSR,#nf

.T62 ld nbr_b1,y

ld a,x

cp a,nbr_b1 ; compare x and y to determine

jrc decal ; the value of the bit received

.T63 rcf ; Reset carry

jp decal11

.decal scf ; Set carry

.decal11

rrc SCDAT_REC ; Shift carry into the data register

jp fin0 ; 1st bit received = LSB

; Test the start bit condition on the line

.start0

clr x

btjf PBDR,#rx,S0 ; check 1st sample

bset SCSR,#nf

jp S00

.S0 inc x

.S00 btjf PBDR,#rx,S01 ; check 2nd sample

bset SCSR,#nf ; noise detected

jp S002

.S01 inc x

.S002 btjf PBDR,#rx,S02 ; check 3rd sample

bset SCSR,#nf ; noise detected

jp S003

.S02 inc x

.S003 cp x,#2

jrnc fin0 ; If the majority of the samples are “1”

bset SCSR,#fe ; it’s an error.

pop y ; restore user’s registers

pop x ; and quit UART’s routine

iret

; Load the new timer value

.fin0 ld a,soclr2 ; add the duration value into save register

add a,#SL

ld soclr2,a

ld a,sochr2

adc a,#SH

ld sochr2,a ; further compare inhibited

ST7 UART EMULATION SOFTWARE

30/32

ld TAOC2HR,a

ld a,TASR ; clear flag of timer1

ld a,socl r2

ld TAOC2LR,a ; start output compare

pop y ; restore user’s registers

pop x

iret

.t_received

bset SCSR,#rdrf ; The frame has been sent.

; Stop output compare

ld a,TASR ; clear interrupt flags

clr TAIC2LR ; Clear input capture flag

clr TAOC2LR

clr TAOC2HR ; Disable output compare

ld a,#$C0 ; Input capture and output compare interrupts

ld TACR1,a ; enabled.

bres TACR2,#1 ; Input Captureedge sensit ivity= fall ing edge

pop y ; restore user’s registers

pop x

iret

; **

; * *

; * INTERRUPT SUB-ROUTINES LIBRARY SECTION *

; * *

; **

dummy iret

ext1_rt iret

ext0_rt iret

sw_rt iret

spi_rt iret

timb_rt iret

i2c_rt iret

31/32

ST7 UART EMULATION SOFTWARE

;***

; INTERRUPT AND RESTART VECTORS *

;***

segment ‘vectit’

DC.W not used ;FFE0-FFE1h location

DC.W not used ;FFE2-FFE3h location

.i2c_it DC.W dummy_rt ;FFE4-FFE5h location

DC.W not used ;FFE6-FFE7h location

DC.W not used ;FFE8-FFE9h location

DC.W not used ;FFEA-FFEBh location

DC.W not used ;FFEC-FFEDh location

.timb_it DC.W dummy_rt ;FFEE-FFEFh location

DC.W not used ;FFF0-FFF1h location

.tima_it DC.W tima_rt ;FFF2-FFF3h location

.spi_rt DC.W dummy_rt ;FFF4-FFF5h location

DC.W not used ;FFF6-FFF7h location

.ext1_it DC.W dummy_rt ;FFF8-FFF9h location

.ext0_it DC.W dummy_rt ;FFFA-FFFBh location

.soft it DC.W dummy_rt ;FFFC-FFFDh location

.reset DC.W main ;FFFE-FFFFh location

; This last line refers to the first line.

; It used by the compiler/linker to determine code zone

END ; Be aware that the END directive should not

; stand on the left of the page like the label names.

ST7 UART EMULATION SOFTWARE

32/32

THE PRESENT NOTE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS WITH INFORMATION
REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME. AS A RESULT, STMICROELECTRONICS
SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO
ANY CLAIMS ARISING FROM THE CONTENT OF SUCH A NOTE AND/OR THE USE MADE BY CUSTOMERS OF
THE INFORMATION CONTAINED HEREIN IN CONNEXION WITH THEIR PRODUCTS.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without the express writ ten approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

 1999 STMicroelectronics - All Rights Reserved.

Purchase of I2C Components by STMicroelectronics conveys a license under the Philips I2C Patent. Rights to use these components in an
I2C system is granted provided that the system conforms to the I2C Standard Specification as defined by Philips.

STMicroelectronics Group of Companies
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands -

Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

http://www.st.com

