
AN1045/1098 1/15

APPLICATION NOTE

ST7 S/W IMPLEMENTATION OF I2C BUS MASTER
by Microcontroller Division Applications Team

INTRODUCTION

The goal of this application note is to implement an I2C communications software interface for
devices which have no I2C peripheral. The software of this application performs I2C master
transmitter and master receiver functions. The master chosen here is a ST72311 and the
slave is an EEPROM (M24C08).

The program described in this application note is in C language, a program in assembly lan-
guage is also available in the software library (see ST7 CD ROM on Internet).

1 CHARACTERISTICS

The main characteristics of this I2C software are:

■ 7-bit addressing

■ Master Transmitter/Receiver

■ Several data bytes sent and received (3 in this application)

■ Fscl = 62.5 kHz

■ Acknowledge management

■ Error management (AF)

The I2C synchronous communication needs only two signals: SCL (Serial clock line) and SDA
(Serial data line). The corresponding port pins are here PA4 for SCL and PA6 for SDA, like in
the real peripheral.

These two pins are configured as floating input (to have a high level applied on the pin or to re-
ceive data) or as output open drain (to have a low level applied on the pin or to output data).

Please refer to the ST7 datasheet for more details about port configuration.

1

2/15

ST7 S/W IMPLEMENTATION OF I2C BUS MASTER

1.1 COMMUNICATION SPEED

The communication speed is modifiable by using the function delay(time) which waits for a
given time period and then modifies the frequency of SCL.

Here Fscl is equal to 62.5 kHz. It can be easily reduced by increasing the period between two
clock cycles, but this speed is not far from the highest speed you can have (~70 kHz).

1.2 START, STOP CONDITION AND ACKNOWLEDGE GENERATION

The Start and Stop conditions are always generated by the master. In this software, there are
no bits to set to generate these conditions like in the real peripheral: you just have to call the
corresponding function (I2Cm_Start() and I2Cm_Stop()).

An Acknowledge is sent after an address or a data byte is received. When the master has to
receive an acknowledge from the slave, you have to call the function Wait_Ack() which reads
the SDA and SCL lines to recognize the acknowledge condition (the SDA line put at the low
state by the one which sends the acknowledge during one clock pulse). And when the master
has to send an acknowledge after receiving data from the slave, you have to call the function
I2Cm_Ack().

2 ST7 I2C COMMUNICATION APPLICATION

2.1 HARDWARE CONFIGURATION

The ST7 communication application hardware is composed of a ST72311 microcontroller
(which has no I2C peripheral) and any slave (an M24C08 EEPROM for example).
Figure 1. ST7 / E2PROM I2C Communication Application

ST72311

I2C

Vdd

Vss

SCL

5V

2x100Ω

SDA

2x12KΩ M24C08

SCL

SDA

Vss

E

2

3/15

ST7 S/W IMPLEMENTATION OF I2C BUS MASTER

2.2 INITIATING A COMMUNICATION

To initiate an I2C communication, first a start condition has to be generated and then the se-
lected slave address has to be sent, both by the master.

Here, this action is done by calling the function I2Cm_Start() followed by the sending of the
slave address with the least significant bit correctly set (0:transmission, 1:reception).

As the slave here is an EEPROM, two addresses have to be sent by the master to the slave:
the address of the slave and the address where you want to write or read into the EEPROM
(refer to Section 3: Communication frames).

2.3 SENDING A DATA BYTE ON THE I2C BUS

To transmit a new data byte from the ST72311, the addresses or data bytes previously trans-
mitted have to be completed correctly. This previous byte transmission check is done with the
reception of an acknowledge condition by the master. If an error is detected (AF: Acknowledge
Failure), the AF bit of the created I2C_SR2 register is cleared and the transmission is re-
started from the START condition.

When the previous data transmission is over, the application writes the new data byte to be
transmitted. The data to transmit is put on the created I2C_DR register and is sent bit by bit
through PADR (PA6=SDA), MSB first.

All the data to send to the slave (and the addresses too) are stored in a table.

2.4 RECEIVING A DATA BYTE ON THE I2C BUS

To receive a new data byte, the previous data byte to receive has to be completed correctly.
This byte reception check is done with the sending of an acknowledge condition by the
master. An AF can’t occur on the master side because it’s the master that sends the acknowl-
edge condition. If there is a problem with the reception of this acknowledge, it’s up to the slave
to manage this problem.

The frame in this case (master receiver) is: the master after sending the first Start condition
and the two addresses, has to resend a Start condition followed by the address of the
EEPROM, but this time with the least significant bit at 1 to make the slave understand it’s
waiting for the data (refer to Section 3: Communication frames).

When the master is receiver, after receiving the last data, it has to generate a non acknowl-
edge condition to be able to generate the STOP condition afterwards.

4/15

ST7 S/W IMPLEMENTATION OF I2C BUS MASTER

3 COMMUNICATION FRAMES

The communication protocol between the master and the slave is given in Figure 2. For more
details, please refer to the ST7 datasheet.
Figure 2. I2C Communication Protocol

4 FLOWCHARTS

Figure 3. Communication Application Flowchart

ACKSTART E2PROM @ SUB @ ACK DATA 1 ACK DATA 2 ACKDATA N-1 DATA N STOP

ACKSTART E2PROM @ SUB @ ACK DATA 1 ACK DATA N NACK STOPACKSTART E2PROM @

ACK

Write data from ST7 to E2PROM

Read data from E2PROM to ST7

INITIATE TRANSMISSION
(START + addresses)

END OF
BUFFOUT?

yes

no

SEND NEXT TABLE DATA

INITIATE TRANSMISSION
(START+@+START+@lsb=1)

STOP CONDITION

Master transmitter Master receiver

WAIT FOR NEXT DATA TO RECEIVE

LAST VALUE
TO RECEIVE?

no

yes

ACK?

yes

no

ACK?

yes

no

ACK?
no

yes

ACK

NON ACK

STOP CONDITION

5/15

ST7 S/W IMPLEMENTATION OF I2C BUS MASTER

Figure 4. Buffer of transmission structure

The buffer of transmission contains the EEPROM address, the sub address (the address
where you want to write into the EEPROM) and then the data to transmit.

In this application, a parameter called “n” allows you to modify the number of data to transmit
and then to receive. The number of data is “n-1”, that means that in this application, as 3 data
have to be sent, “n=4”.

The transmission function is based on a double shift: a shift of the “count” variable to call 8
times the function I2Cm_TxData (to send the 8 bis of one data) and a shift into the
I2Cm_TxData function to always send the MSB of the data (refer to Figure 5).

0 data nb-2

|
|

|
|

nb-3 data2

nb-2 data1

nb-1 sub @

nb EEPROM @

6/15

ST7 S/W IMPLEMENTATION OF I2C BUS MASTER

Figure 5. Flowchart of the transmission function

The reception function is also based on a double shift: a shift of the “count” variable to call 8
times the function I2Cm_RxData (to receive the 8 bis of one data) and a shift of a buffer into
the I2Cm_RxData function to receive the data bit by bit on the LSB (refer to Figure 6).

SDA configured as output

count=1

I2C_DR=buffout[j]

shift of count

I2Cm_TxData

count overflows?

yes

no

wait Acknowledge

ACK ok?

yes

no
AF=1

END

j--

j=FF?
no

yes

j=nb

7/15

ST7 S/W IMPLEMENTATION OF I2C BUS MASTER

Figure 6. Flowchart of the reception function

RCPT=1

shift of count

I2Cm_RxData

count overflows?

yes

no

I2Cm_Tx for addresses

transmission

count=1

SDA configured as input

no

AF?

no

yes

j=FF?

no

SDA configured as output

Acknowledge

buffin[j]=I2C_DR

j--

END

8/15

ST7 S/W IMPLEMENTATION OF I2C BUS MASTER

5 SOFTWARE

The assembly code given below is for guidance only.
/*************** * (c) 1998 STMicroelectronics ************* ****************

PROJECT : EVALUATION BOARD - ST7 I2C DEMO SYSTEM

COMPILER : ST7 HICROSS C (HIWARE)

MODULE : i2cm_drv .c

CREATION DATE : 01/09/98

AUTHOR : PPG Micro Division Application Team

-*-*-*-*-*-*-*-* -*--

THE SOFTWARE INCLUDED IN THIS FILE IS FOR GUIDANCE ONLY. STMicroelectronics

SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR CONSEQUENTIAL

DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM USE OF THIS SOFTWARE.

-*-*-*-*-*-*-*-* -*-

DESCRIPTION : ST7 I2C single master T/R peripheral software driver.

-*-*-*-*-*-*-*-* -*-

MODIFICATIONS :

27/08/98 - V1.0 - First version (error management:AF).

**************** ***/

#pragma NO_STRING_CONSTR

#define SDA 6

#define SCL 4

/* EXTERNAL DECLARATIONS

**************** *************************************/

/* List of all the variables defined in another module and used in this one. */

/* MODEL => #include {file_name}.h */

#include “map72311.h” /* Declaration of the I2C HW registers.*/

#include “lib_bits.h” /* Bit handling macro defini tions.*/

#include “variable.h”

/* FUNCTION DESCRIPTIONS

**************** *************************************/

void delay (unsigned char time)

{

asm

{

nop // time is stored in the Accumulator automatically

again: DEC A // when the function is called.

JRNE again // (15+6*time) clock cycles

}

}

9/15

ST7 S/W IMPLEMENTATION OF I2C BUS MASTER

/*-------------- --

ROUTINE NAME : I2Cm_Start

INPUT/OUTPUT : None.

DESCRIPTION : Generates I2C-Bus Start Condition.

COMMENTS :

---------------- --*/

void I2Cm_Start (void)

{

ClrBit(PADDR,SDA);/*SDA and SCL as floating input to have a high state*/

ClrBit(PADDR,SCL);

delay(10);

SetBit(PADDR,SDA); /*SDA as output open drain to have a low state*/

delay(4); /*waits 4.875 µs at a Fcpu=8MHz to keep the high state on SCL*/

SetBit(PADDR,SCL); /*SCL as output open drain to have a low state*/

delay(6); /*delay to wait after a START*/

}

/*-------------- --

ROUTINE NAME : I2Cm_Stop

INPUT/OUTPUT : None.

DESCRIPTION : Generates I2C-Bus Stop Condition.

COMMENTS :

---------------- --*/

void I2Cm_Stop (void)

{

SetBit(PADDR,SDA); /*configure SDA and SCL as output open drain to have a

low state*/

SetBit(PADDR,SCL);

ClrBit(PADDR,SCL); /*configure SCL as floating input to have a high state*/

delay(4); /*macro delay with time=4 (4.875 µs)*/

ClrBit(PADDR,SDA); /*configure SDA as floating input to have a high state*/

/*delay after the Stop did in main.c with Wait_1ms()*/

}

/*-------------- --

ROUTINE NAME : wait_Ack

INPUT/OUTPUT : None.

DESCRIPTION : Acknowledge received?

COMMENTS : Transfer sequence = DATA, ACK.

---------------- --*/

void wait_Ack (void)

{

SetBit(PADDR,SCL); /*output open drain to have a low level*/

ClrBit(PADDR,SDA); /*floating input, the slave has to pull SDA low*/

delay(1);

if (ValBit(PADR,SDA)) /*test of SDA level, if high -> problem*/

{ SetBit(I2C_SR2,AF);

10/15

ST7 S/W IMPLEMENTATION OF I2C BUS MASTER

ClrBit(I2C_SR1,ACK);

return;

}

delay(2);

if (ValBit(PADR,SDA)) /*test of SDA level, if high -> problem*/

{ SetBit(I2C_SR2,AF);

ClrBit(I2C_SR1,ACK);

return;

delay(5);

ClrBit(PADDR,SCL); /*start of the generation of 1 clock pulse*/

delay(1);

if (ValBit(PADR,SDA)) /*test of SDA level, if high -> problem*/

{ SetBit(I2C_SR2,AF);

ClrBit(I2C_SR1,ACK);

return;

}

delay(1);

if (ValBit(PADR,SDA)) /*test of SDA level, if high -> problem*/

{ SetBit(I2C_SR2,AF);

ClrBit(I2C_SR1,ACK);

return;

}

delay(1);

SetBit(PADDR,SCL); /*end of the clock pulse*/

SetBit(I2C_SR1,ACK);

delay(1);

SetBit(PADDR,SDA);/*reconfigure SDA as output to proceed at the next

transmission*/

}

/*-------------- --

ROUTINE NAME : I2C_nAck

INPUT/OUTPUT : None.

DESCRIPTION : Nonacknowledgegeneration from now.

COMMENTS : Transfer sequence = DATA, NACK.

---------------- --*/

void I2C_nAck (void)

{

ClrBit(I2C_SR2,ACK); /*Nonacknowledgewhen the master is receiver*/

}

/*-------------- ---

ROUTINE NAME : I2Cm_Init

INPUT/OUTPUT : None.

DESCRIPTION : I2C initialisation routine.

11/15

ST7 S/W IMPLEMENTATION OF I2C BUS MASTER

COMMENTS :

---------------- --*/

void I2Cm_Init (void)

{

count=0;

I2C_SR1=0;

I2C_SR2=0;

I2C_DR=0;

err_status=0;

t_count_err=0;

r_count_err=0;

SetBit(I2C_SR1,M_SL); /*Master mode: M_SL=1*/

}

/*-------------- ---

ROUTINE NAME : I2Cm_TxData

INPUT/OUTPUT : data byte to be transfered(MSB first) / None.

DESCRIPTION : Transmits a data b it.

COMMENTS : Transfer sequence = DATA, ACK, ...

---------------- --*/

void I2Cm_TxData (void)

{

SetBit(PADDR,SCL); /*low level on SCL */

if (I2C_SR2) /*check the communication error status.*/

{

err_status++;

t_count_err++;

if (t_count_err==0) t_count_err++;

}

else /*if no error*/

{

if (ValBit(I2C_DR,7))

SetBit(PADR,SDA); /*send a one*/

else

ClrBit(I2C_DR,7); /*send a zero*/

I2C_DR*=2;

ClrBit(PADDR,SCL); /*high state on SCL*/

delay(10);

}

}

/*-------------- --

ROUTINE NAME : I2Cm_RxData

INPUT/OUTPUT : Last byte to receive flag (active high) / Received data b it.

DESCRIPTION : Receive a data b it.

COMMENTS : Transfer sequence = DATA, ACK,...

---------------- --*/

12/15

ST7 S/W IMPLEMENTATION OF I2C BUS MASTER

void I2Cm_RxData (void)

{

if (!I2C_SR2) /*no communication error detected*/

{

buff*=2; /*shift I2C_DR to receive next bit*/

asm

{

nop

nop

nop

}

ClrBit(PADDR,SCL); /*rise the SCL line*/

do{

}while(ValBit (PADR,SCL)!=0); /*wait SCL at a high state*/

if(ValBit(PADR,SDA))

buff|=1; /*the received bit is 1*/

else

buff|=0; /*the received bit is 0*/

delay(10);

SetBit(PADDR,SCL); /*SCL at a low level*/

}

else

r_count_err++;

}

/*-------------- --

ROUTINE NAME : I2C_Ack

INPUT/OUTPUT : None.

DESCRIPTION : Send Ack to the slave.

COMMENTS :

---------------- --*/

void I2C_Ack(void)

{

ClrBit(PADR,SDA); /*the master pulls the SDA line low*/

SetBit(PADDR,SDA);

delay(10);

ClrBit(PADDR,SCL); /*waits the master takes the control of SDA*/

delay(10);

SetBit(PADDR,SCL);

delay(5);

ClrBit(PADDR,SDA); /*the master releases the SDA line*/

SetBit(I2C_SR1,ACK); /*ACK=1: Acknowledge sent by the master*/

}

/*-------------- --

13/15

ST7 S/W IMPLEMENTATION OF I2C BUS MASTER

ROUTINE NAME : I2Cm_Tx

INPUT/OUTPUT : send_taband nb, the number of data to transmit (with 2 addresses) /

None.

DESCRIPTION : Transmit data buffer.

COMMENTS : Most significant bytes first.

---------------- --*/

void I2Cm_Tx (char * buffout ,char)

{

SetBit(PADDR,SDA); /*configure SDA as an output to send data*/

for (j=nb;j!=0xFF;j--) /*2 @ and 3 data to send: from X=5 downto X=0*/

{

flag=0;

if ((j==(nb-2))&&(ValBit(I2C_SR1,RCPT))) /*EEPROM @ and sub @ sent*/

{

I2Cm_Start(); /*Start condition*/

j=nb; /*EEPROM @ with the LSB at 1 to send*/

flag=1;

}

count=1;

I2C_DR=buffout[j] ;

if (flag==1) I2C_DR=I2C_DR|1;/* if master receiver,the @ to send is A1*/

do

{ I2Cm_TxData(); /*sending of data bit per bit, MSB first*/

count*=2;

}while(count!=0);

wait_Ack(); /*wait ACK from the slave*/

if(!ValBit(I2C_SR1,ACK))

SetBit(I2C_SR2,AF);

if (flag==1) return; /*if master receiver, go back to I2Cm_Rx()*/

}

}

/*-------------- --

ROUTINE NAME : I2Cm_Rx

INPUT/OUTPUT : data byte to receive/ None.

DESCRIPTION : Read data from EEPROM.

COMMENTS : Most significant bytes first.

---------------- --*/

void I2Cm_Rx (char *buffin ,char nb)

{

SetBit(I2C_SR1,RCPT); /*master in receiver mode*/

I2Cm_Tx(&send_tab ,nb); /*send the addresses and wait ACK*/

if (ValBit(I2C_SR2,AF)) return; /*if AF -> go back to main and restart the

reception*/

for (j=(nb-2);j!=0xFF;j--)

{

14/15

ST7 S/W IMPLEMENTATION OF I2C BUS MASTER

count=1;

buff=0;

ClrBit(PADDR,SDA); /*SDA as floating input to read data from the EEPROM*/

do

{

I2Cm_RxData(); /*read data bit per bit, MSB first*/

count*=2;

}while(count!=0);

I2C_DR=buff;

if (j==0)

I2C_nAck(); /*non acknowledge to make the master generate the STOP*/

else

{

SetBit(PADDR,SDA); /*configure SDA as output*/

I2C_Ack(); /*to acknowledge read data*/

if (ValBit(I2C_SR2,AF))return;

}

buffin[j]=I2C_DR; /*store read data into buffin*/

}

}

/*************** *** (c) 1998 STMicroelectronics ******************END OF FILE/

15/15

ST7 S/W IMPLEMENTATION OF I2C BUS MASTER

THE PRESENT NOTE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS WITH INFORMATION
REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME. AS A RESULT, STMICROELECTRONICS
SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO
ANY CLAIMS ARISING FROM THE CONTENT OF SUCH A NOTE AND/OR THE USE MADE BY CUSTOMERS OF
THE INFORMATION CONTAINED HEREIN IN CONNEXION WITH THEIR PRODUCTS.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without the express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

 1999 STMicroelectronics - All Rights Reserved.

Purchase of I2C Components by STMicroelectronics conveys a license under the Philips I2C Patent. Rights to use these components in an
I2C system is granted provided that the system conforms to the I2C Standard Specification as defined by Philips.

STMicroelectronics Group of Companies
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands -

Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

http:/ /www.st.com

