
ST6 Assembler-Linker
(AST6-LST6)
User Manual

Release 2.0

November 2000

Ref: DOC-ST6ASMLK

USE IN LIFE SUPPORT DEVICES OR SYSTEMS MUST BE EXPRESSLY AUTHORIZED.
STMicroelectronics PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN
LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF
STMicroelectronics. As used herein:

1. Life support devices or systems are those
which (a) are intended for surgical implant into
the body, or (b) support or sustain life, and whose
failure to perform, when properly used in
accordance with instructions for use provided
with the product, can be reasonably expected to
result in significant injury to the user.

2. A critical component is any component of a life
support device or system whose failure to
perform can reasonably be expected to cause the
failure of the life support device or system, or to
affect its safety or effectiveness.

Table of Contents

3/95

Chapter 1: Introduction . 7

1.1 Installing the ST6 Assember-Linker (AST6-LST6) software 7

1.2 Launching the ST6 Assembler-Linker ... 8

1.3 How To Use This Guide .. 8

1.4 What Is Assembler Language? ... 8

1.5 Programming Strategies ... 9

1.5.1 Using Modular Source Files ... 9
1.5.2 Using Paged Program Space ... 9
1.5.3 Using a Single Source File ... 10

1.6 Debugging Executable Files ... 10

1.7 Loading Executable Files into ST6 Microcontrollers 11

1.8 ST6 Memory Structure .. 12

Chapter 2: Glossary of Terms . 13

Chapter 3: AST6 and LST6 Source and Generated Files 17

3.1 Source Files .. 17

3.1.1 Labels ... 18
3.1.2 Mnemonics ... 18
3.1.3 Operands .. 18
3.1.4 Comments .. 21

3.2 Generated Files .. 21

3.2.1 Executable and Data Space Symbol Files 21
3.2.2 Listing Files ... 22
3.2.3 Including a Map Section ... 24
3.2.4 Linker Memory Maps .. 25
3.2.5 Cross Reference Tables ... 26
3.2.6 Symbol Table Files ... 26
3.2.7 Error Reports .. 27

Chapter 4: Working with the Program Space . 29

4.1 Protecting Reserved Memory Areas ... 29

4.2 Using Absolute Objects .. 30

4.3 Paged Program Memory ... 30

4.3.1 Single-source Programs and Paging .. 31

4.4 Developing Programs for the Paged Area .. 31

4.4.1 Accessing Paged Program Space .. 34

4.5 ROM Masking ... 34

Table of Contents

4/95

Chapter 5: Working with The Data Space . 37

5.1 Example Data Space Definitions File ... 39

5.2 Paged Data Space .. 40

5.2.1 Writing to Data Pages ... 41
5.2.2 Accessing Data Pages ... 41

5.3 Using the Data ROM Window ... 42

5.4 Accessing Data Within the Data ROM Window .. 42

5.4.1 Using <label>.D and <label>.W .. 43

5.5 Example Data ROM Window Application ... 45

Chapter 6: Importing and Exporting Labels . 51

Chapter 7: Developing Macros . 53

7.1 Nesting Macros ... 53
7.2 Macro Parameters .. 54

7.3 Concatenating Symbols During Macro Expansion 55

Chapter 8: Using Conditional Assembly . 57

Chapter 9: Application Development Summary . 59

Chapter 10: Running AST6 . 61

10.1 Example .. 62

10.2 Warning Levels ... 63

10.3 AST6 Errors and Warnings ... 63

Chapter 11: Running LST6 . 65

11.1 Using Parameter Files .. 66

11.2 Examples .. 66
11.3 Errors and Warnings ... 67

11.4 Command Line Errors ... 67

11.5 LST6 Error Messages ... 68

Chapter 12: DIRECTIVES . 69

12.1 Editorial Conventions .. 69

12.2 Directive Summary ... 69

12.3 Directive Descriptions ... 71

12.3.1 ASCII, ASCIZ - Write Character String ... 71

Table of Contents

5/95

12.3.2 BLOCK - Reserve a Block of Memory .. 72
12.3.3 BYTE - Generate Bytes of Object Code 72
12.3.4 COMMENT - Set Comment Tabs ... 73
12.3.5 DEF - Define Data Space Location Characteristics 73
12.3.6 DISPLAY - Display a String .. 74
12.3.7 DP_ON - Enable Data Space paging ... 74
12.3.8 EJECT - Insert Listing Page Eject .. 75
12.3.9 ELSE - Begin Alternative Assembled Code 75
12.3.10 END - Define End of Source File .. 75
12.3.11 ENDC - End Conditionally Assembled Code 76
12.3.12 ENDM - End a Macro Definition ... 76
12.3.13 EQU - Assign a Value to the Label ... 76
12.3.14 ERROR - Generate Error Message .. 77
12.3.15 EXTERN - Define Symbols as External .. 77
12.3.16 GLOBAL - Define Symbols as Global ... 78
12.3.17 IFC - Begin Conditionally Assembled Code 79
12.3.18 INPUT - Read Source Statements from File 79
12.3.19 LABEL.D - Access Data in Data ROM Window 80
12.3.20 LABEL.P - Initialize PRPR or DRBR .. 81
12.3.21 LABEL.W - Initialize Data ROM Window Register 82
12.3.22 LINESIZE - Change Listing Characters Per Line 83
12.3.23 LIST - Start/Stop Listing ... 83
12.3.24 MACRO - Begin Macro Definition ... 84
12.3.25 MEXIT - End Macro Expansion .. 84
12.3.26 NOTRANSMIT - Don’t Transmit Data Space Symbols to LST6 ... 85
12.3.27 ORG - Set Program Origin ... 86
12.3.28 PAGE_D - Specify Page Number for .DEF 86
12.3.29 PL - Change Listing Lines Per Page .. 86
12.3.30 PP_ON - Enable Program Space paging 87
12.3.31 ROMSIZE - Set ROM Size for ROM Masking 87
12.3.32 SECTION - Begin Program Code Section 88
12.3.33 SET - Assign a Value to the Label .. 89
12.3.34 TITLE - Set Listing Page Header Title .. 89
12.3.35 TRANSMIT - Transmit Data Space Symbols to LST6 90
12.3.36 VERS - Define Target ST6 ... 90
12.3.37 W_ON - Enable Data ROM Window ... 91
12.3.38 WARNING - Generate Warning Message 91
12.3.39 WINDOW, WINDOWEND - Define Data Block in Program Space ...

91
12.3.40 WORD - Generate Words of Object Code 92

Table of Contents

6/95

Product Support . 93

Contact List ... 93

ST6 Assembler-Linker User Manual 1 - Introduction

7/95

1 INTRODUCTION

AST6 is a macro-assembler that translates files that are written in assembler
language into either executable files or object files. Executable files are files that
are loaded into ST6 microcontrollers and can then be executed. Object files are
intermediate files that you link together, forming a single executable file, using the
LST6 linker. Whether you use AST6 to create an executable file, or create object
files using AST6 then use LST6 to link them depends on your programming
strategy, this is discussed later in this introduction.

AST6 and LST6 support the whole range of ST6 microcontrollers, including all
variations and specifications.

1.1 Installing the ST6 Assember-Linker (AST6-LST6) software

1 Place the MCU on CD CD-ROM in your CD-ROM drive. The CD-ROM’s
autorun feature opens up a welcome screen on your PC.

If the autorun feature does not work, use Windows Explorer to browse to the
CD-ROM’s root folder, and double-click on welcome.exe .

2 Select Install Your Development Tools from the list of options. A new screen
appears listing the different families of STMicroelectronics MCUs.

3 Use your mouse to place the cursor over the ST6 TOOLS option. Choose ST
TOOLS and ST6 TOOLCHAIN from the lists that appear.

4 The install wizard is launched. Follow the instructions that appear on the
screen.

You can choose the package you wish to install. To install the complete ST6
Toolchain, select the “Complete Toolchain” option . This option will install the
WGDB6 debugger version your , as well as a Windows Epromer and ST6
Assembler-Linker software.

Alternatively, you can choose to perform a custom installation where you
choose which of the available software applications you wish to install.

Note: If you do not choose any options, but click Next> , the ST6 Assembler-Linker will be installed
by default.

5 Follow the instructions that appear on your screen. You will be prompted to
select the parallel port you wish to connect the emulator to, as well as the
program folder that the software will be installed to.

1 - Introduction ST6 Assembler-Linker User Manual

8/95

1.2 Launching the ST6 Assembler-Linker

From Windows 95, 98 or Windows NT, click the Start button, point to Programs
-> ST6 Tool Chain -> Development Tools -> Assembler-Linker . A MS-DOS
window will open, with an st6toolchain/asm/ prompt, ready for you to enter an
AST6 line command.

1.3 How To Use This Guide

This guide provides background information and instructions on how to develop
applications for AST6 and LST6.

Chapter 3 through to Chapter 8 describe AST6 and LST6 features and the options
available to you when developing programs for them. You should read these
sections before attempting to develop AST6/LST6 applications.

Chapter 9 summarizes the directives and options you must use in relation to the
structure of your application, and the tasks you must carry out during the
application development process.

Chapter 10 and Chapter 11 describe how to run AST6 and LST6, and the error
messages they may return.

Chapter 12 describes all the AST6 and LST6 directives, and gives instructions on
how to use them.

1.4 What Is Assembler Language?

Assembler language is a symbolic code in which you develop applications.
Symbolic code is made up of mnemonics and operands. Mnemonics are
commands that have meaningful names, for example the ADD mnemonic adds
two values together. Operands express complementary information to commands,
such as addresses and values. You can also use meaningful names in operands.
For example, a calendar application could use the symbolic name DATE for the
current date. Using symbolic mnemonics and operands simplifies the application
development process, by letting you use meaningful names in your application.
Files containing symbolic code are called source files.

Assembler programs are made up of the following elements:

• Machine instructions, or opcodes.

• Assembler Directives.

Machine instructions are codes that can be executed by the microcontroller without
translation. Refer to the Databook for the ST6 microcontroller you are using for a
full description of the machine instructions that it supports.

ST6 Assembler-Linker User Manual 1 - Introduction

9/95

Assembler directives control the assembly process. They can be used, for
example, to define macros, or specify where in the microcontroller’s memory,
executable code and data are stored. The AST6 and LST6 directives are listed in
Chapter 12 on page 69.

The source files in which you develop your application, and thus enter directives
and machine instructions, have the extension .ASM . You can write them using any
ASCII text editor.

1.5 Programming Strategies

Before you start developing an ST6 application, you must decide:

• Whether you want to develop your program in either modular source files or a
single source file.

• Whether or not you will use the paged program space feature. This feature is
described Section 4.3 on page 30.

The choice you make determines the process you perform to generate the final,
executable file.

1.5.1 Using Modular Source Files

Using modular source files means developing your program in a number of
modules. Each module is held in a separate source file. The advantages of
developing your program in modular source files are:

• Small programs are easier to debug, understand and maintain than large
programs.

• You can test the output of a module in relation to the process it performs on the
inputs.

• You can reuse modules in other programs.

1.5.2 Using Paged Program Space

The decision as to whether you use the paged program space is simple: if the final
executable file will require more than 4 Kbytes of memory when loaded into the
ST6, you must use the paged program space feature. Otherwise, you do not have
to use it.

If you develop your program in modular source files, or if you use the paged
program space feature, you must carry out the following steps in order to generate
an executable file:

1 - Introduction ST6 Assembler-Linker User Manual

10/95

1 Assemble each of the source files that make up the program individually, using
AST6. Assembled modular source files are called relocatable object files, and
have the extension .OBJ . The word relocatable is used, because the exact
location that the generated object code will have in the ST6 memory is
unknown. To generate these you must run AST6 with the -O option (see
Chapter 10 on page 61).

2 Link the assembled object files into a single, executable file, using LST6.
Executable files have the extension .HEX. The default file name generated by
LST6 is ST6.HEX. You can change this using the -O option when you run LST6.

1.5.3 Using a Single Source File

If you are developing a small program, that does not exceed 4 Kbytes, the
advantages of working with modular source files may not apply and you do not
have to use the paged program space feature. In this case, it is simpler to develop
your application in one module, since you can generate an executable file using
AST6, without having to go through the linkage phase using LST6. The file
generated by AST6 from a single-source file is called an absolute object, since you
specify the exact location of the executable file in the ST6 memory using the .ORG
directive (see Section 12.3.27 on page 86).

1.6 Debugging Executable Files

Once you have generated your executable files, you can test and debug them
using either the Windows-based ST6 program debugger, WGDB6, or the DOS-
based ST6 program debugger, ST6NDB. Both debuggers simulate the behavior of
your program when it is loaded into an ST6 microcontroller using either ST6
Simulator or the ST6 HDS Emulator.

The ST6 Simulator is a program that simulates the execution of ST6 programs.
You can use it with either Wave Form Editor, that simulates ST6 pin output, or the
Starter Kit board, that can emulate all transactions with the ST6 data space and
peripherals.

The ST6 HDS Emulator is a hardware system that enables real-time execution of
ST6 applications.

Note that if you want to use either of the debuggers, you must generate .DSD and
.SYM files during the assembly and link phases. Refer to Chapter 9 on page 59 for
instructions on how to generate these files.

ST6 Assembler-Linker User Manual 1 - Introduction

11/95

1.7 Loading Executable Files into ST6 Microcontrollers

Once your program is ready, you can load it into ST6 microcontrollers using the
EPROM programmer.

The following diagram summarizes the assembly and link processes.

Assembler
Source File

AST6
Assembler

File

WGDB6/ST6NDB

Debugger

ST6 Simulator

ST6 Emulator

ST6

Microcontroller

Listing
File

AST6
Assembler

Object
File

LST6
Linker

File (.HEX)
ExecutableListing

File

MAP
File

Process Using One Source File

(.ASM)

Executable

(.HEX)

Process Using Modular
Source Files

Assembler
Source File

(.ASM)

Assembler
Source File

(.ASM)

Assembler
Source File

(.ASM)

(.OBJ)

Object
File

(.OBJ)

Object
File

(.OBJ)

(.LIS)

(.LIS)
(.MAP)

(-L)
(-O)(-O) (-O)

AST6
Assembler

AST6
Assembler

(-L) (-M)

The letters in
brackets indicate
the run option needed
to generate each
file type.

Symbol

File
(.SYM)

(-S)

Data Space
Symbol File

(.DSD)

= non-readable
file

= readable
file

1 - Introduction ST6 Assembler-Linker User Manual

12/95

1.8 ST6 Memory Structure

The ST6 memory is divided into two principal components, the program space and
the data space.

The program space is an area of ROM in which the instructions to be executed, the
data required for immediate addressing mode instructions, and the user-defined
vectors are stored. It is addressed using the 12-bit Program Counter register. ST6
microcontrollers that have more than 4 Kbyte ROM optionally feature a paged
program space. This means that the ROM consists of a static area and up to 30
dynamic pages. When referencing a page, the page is selected using the Program
ROM Page Register (PRPR).

Using program space pagination imposes a number of program structure
requirements. Refer to Chapter 4 on page 29 for further details.

Source code that is stored in the program space can be divided into sections.
Sections are identified by a number, from 0 to 32. Each section starts at address 0
for the current module. Sections enable you to write source code in any order, but
specify the order in which they are linked into the final executable code. During the
link edit phase, sections are allocated to pages. By default, LST6 allocates
sections to pages by matching section numbers to page numbers, thus section 0 is
allocated to page 0, section 1 is allocated to page 1, and so on. The default size of
a section is 2 Kbytes, however you can modify this, as well as define which section
is stored in each page, using the -P option when you run LST6. You can allocate
any number of sections, from any source file, to a page in the program memory, as
long as their total size does not exceed that of the page, which is 2 Kbytes.

The data space is an area of RAM memory that stores all the data required by the
program. It also stores the standard ST6 registers. ST6 microcontrollers that have
more than 64 byte RAM feature a paginated data space. In paginated ST6 data
spaces, the area between addresses 0 and 3Fh is paginated into 64-byte RAM and
EEPROM pages. When referencing data in a paged area, the page is selected
using the Data RAM/EEPROM Bank Register (DRBR).

To provide you with additional data space, ST62 and ST63 family chips let you
store read-only data, such as look up tables and constants in the program space.
The area of program space used for storing data space information is called a Data
ROM Window.

ST6 Assembler-Linker User Manual 2 - Glossary of Terms

13/95

2 GLOSSARY OF TERMS

absolute object file . An object file whose location in memory is defined in the
source code using the .ORG directive. Absolute objects are can only be generated
from programs that are coded in one source file.

addressing mode . In order to decrease the size of instructions, and thus the
space they take in the program memory and the time needed to execute them,
instructions have different addressing modes, based on the minimum addressing
information required for each instruction.

assembler language . A symbolic code in which you develop applications, and
that is translated into object or executable files using an assembler.

AST6. The ST6 family macro-assembler that translates files that are written in
assembler language into either executable files or object files.

conditional assembly . The use of conditions in source files, according to which
the subsequent lines of code are or are not assembled. Conditional assembly can
be used to generate different program versions or executable files for different ST6
microcontrollers from the same source file.

cross reference table file (.X) . A file that lists the symbols used in a program, and
specifies the numbers of the lines that define or reference each symbol.

Data RAM/EEPROM Bank register (DRBR) . A register that selects the data page
to be accessed by the subsequent instruction(s).

Data ROM Window . An area in the data space (RAM) through which you can
access read-only data, such as look up tables and constants, that is stored in
blocks of up to 64 Kbytes in the program space (ROM).

Data ROM Window Register (DRWR) . A register that, together with an instruction
address, specifies the block of data in the program space to be accessed via the
Data ROM Window.

data space . An area of RAM memory that stores all the data required by the
program and the standard ST6 registers.

data space symbol file (.dsd) . A file that lists the data space symbols defined by
a program. DSD files are required by the ST6 debuggers.

directives . Commands that control the assembly process. They can be used, for
example, to define macros, or specify how executable code or data are stored in
the microcontroller’s memory.

2 - Glossary of Terms ST6 Assembler-Linker User Manual

14/95

dynamic pages . Virtual pages in the paged area of the program space. They are
repetitions of the same area of ROM whose real address is 0 to 7FFh. Each
dynamic page has a virtual address to distinguish it from the others.

emulator . A hardware device that simulates ST6 microcontrollers, enabling real-
time execution of ST6 applications.

entry point . The starting address from which executable files are written to the
program space.

error report file (.err) . A file to which error and warning messages that are
generated during assembly and linkage are optionally written.

executable file (.hex) . A file that is ready to be loaded to a microcontroller and
executed. ST6 executable file are in the Intel-HEX format.

expression . A constant or symbol, or any combination of the two, separated by an
arithmetic operator.

external label . Labels that are external to a module are those that are defined in
another module.

global symbol . Symbols that are defined in one source module, but that can be
used by others.

label . A meaningful name that can be used to specify a memory location or
symbol.

linker memory map file (.map) . Linker memory map files list the start, end and
size of all the sections in the program and the start locations and sizes of
relocatable objects.

listing file (.lis) . An ASCII text file that shows the lines of generated object code
together with the source code they were generated from.

LST6. The ST6 family linker, that links relocatable objects (assembled source file
modules) into a single, executable file that can be loaded into the ST6 memory.

machine instructions . Codes that can be executed by the microcontroller without
translation. Machine instructions are also called opcodes.

macro . A sequence of assembler instructions and directives that can be inserted
into the source program in place of the macro name. Macros enable you to simplify
code and reduce code development time by reusing frequently-used functions.

macro-assembler . An assembler that includes macro-generation capabilities.

map section . A section that can be included at the end of a listing file of an
absolute object, that lists the name, type and size of each section.

ST6 Assembler-Linker User Manual 2 - Glossary of Terms

15/95

mnemonic . An instruction that is converted into machine code by the assembler.
Mnemonics have meaningful names, for example the ADD mnemonic adds two
values together.

object file (.obj) . The file that is assembled from a source file that is one of many
source files on which a program is coded. The assembled object files that make up
a complete program must be linked using LST6 to create the final executable file.

opcode . See Machine Instructions.

operand . The part of an instruction line that specifies complementary information
for the instruction. Operands may contain:

• Numbers

• String and character constants

• Program Counter References

• Expressions

paging . A way of increasing the size of the data space, the program space or both
to beyond that of their addressable areas. This is done by duplicating an area of
each space into ‘pages’. Pages are not physical areas of memory, they are
repetitions of the same area, that are distinguished using virtual addresses.

program counter . A 12-bit register that points to the address of the instruction
currently being executed in the program space.

Program ROM Page Register (PRPR) . A register that indicates the program
space page to be accessed.

program space . The area of ROM memory in an ST6 microcontroller in which
programs are stored.

relocatable object . The separately-assembled source files that make up a
program. The word relocatable is used because the exact location that the
generated object code will have in the ST6 memory is unknown.

ROM Masking . A process that involves manually filling all reserved and unused
areas of ROM with a predefined value. ROM masking is recommended, since it
improves the reliability of your program when it is executed in the microcontroller.

sections . Divisions of code enabling you to write source code in any order, but
specify the order in which they are linked into the final assembled code. During the
link edit phase, sections are allocated to pages. By default, LST6 allocates
sections to pages by matching section numbers to page numbers, thus section 0 is
allocated to page 0, section 1 is allocated to page 1, and so on.

2 - Glossary of Terms ST6 Assembler-Linker User Manual

16/95

source file (.asm) .An ASCII text file, in which you write source program code.
Source files are made up of lines, each of which is terminated by a new line
characters. Each line may contain labels, mnemonics, operands and comments.

static area . The real addressable area of ROM. It includes two static pages:

• Page 1, which is the second page within the overlaid area.

• Page 32, which located in the area between addresses 0FF0h and 0FFFh, and
is thus not in the paginated area.

symbol table file (.sym) . A file that lists the value and type of each symbol in an
assembled program. Symbol table files are required by ST6 hardware emulators.

ST6 Assembler-Linker User Manual 3 - AST6 and LST6 Source and Generated Files

17/95

3 AST6 AND LST6 SOURCE AND GENERATED FILES

This section describes the format of AST6 source files, and the output files that
AST6 and LST6 generate either automatically or when requested.

3.1 Source Files

AST6 source files have the extension .asm . They are made up of lines, each of
which is terminated by a new line character.

Source files have the following format:

Each line may contain up to four types of information:

• Labels, which let you specify a memory location or symbol using a meaningful
name.

• Mnemonics, which are instructions that are converted into machine code.

• Operands, which specify complementary information for an instruction, such as
contents and symbols.

• Comments

These types of information must be entered in the above order. Each type of
information must be separated by one or more spaces. The total width of a line can
not exceed 400 characters. The following paragraphs describe labels, mnemonics
and operands.

DCO .set 0 ;initialize counter

.macro rmb symb

symb .def DCO

DCO .set DCO+1

.endm

Operands

Mnemonics

Labels

Comments

3 - AST6 and LST6 Source and Generated Files ST6 Assembler-Linker User Manual

18/95

3.1.1 Labels

Labels let you specify a memory location or symbol using a meaningful name.
When a label is defined, it takes the current value of the address counter.

Labels must start in column one. A label may contain up to eight of any of the
following characters:

• Upper case letters (A - Z)

• Lower case letters (a - z)

• Digits (0 - 9)

• Dollar sign ($)

• Underscore (_)

The first character of a label must be a letter or an underscore. Labels are case
sensitive.

3.1.2 Mnemonics

Mnemonics must be separated from the preceding label (if there is one) by a space
or a tab. Mnemonics can be the name of a machine instruction, an assembler
directive code or a macro call. If a mnemonic is omitted from a line, the program
counter is assigned to the label (if present).

3.1.3 Operands

Operands must be separated from mnemonics by one or more spaces. If more
than one operand is used, the operands must be separated by commas. Operands
may include:

• Numbers

• String and character constants

• Program Counter References

• Expressions

The following paragraphs describe these.

ST6 Assembler-Linker User Manual 3 - AST6 and LST6 Source and Generated Files

19/95

3.1.3.1 Numbers

The default radix for numbers is decimal. You can use numbers in other formats by
following the number with the appropriate letter:

In hexadecimal, the decimal digits 10 - 15 are represented by upper or lowercase
letters from A to F. Hexadecimal numbers that start with a letter must be preceded
by the number 0. All numbers are defined as 16-bit signed values.

For example, the decimal value 45 is represented by 01000101b in binary, 55o in
octal, and 2dh in hexadecimal.

3.1.3.2 String and Character Constants

String constants are strings of ASCII characters enclosed by double quotes. For
example: “This is an ASCII string”. Character constants are single ASCII character
enclosed by single quotes. For example ‘T’.

3.1.3.3 Program Counter Reference

You can use the $ sign to identify the current value of the program counter (PC) in
program space operands.

3.1.3.4 Expressions

Expressions in operands may contain numbers, labels or PC-relative references,
separated by operators. Expressions are evaluated from left to right during
assembly. Operators are evaluated according to their precedence, meaning that
some operators are evaluated before others. Expressions within parentheses are
evaluated first.

It is recommend that you use expressions containing program space symbols in jp/
call instructions and variants of PC-relative instructions, such as jrr and jrs.

This letter: Indicates this radix:

b or B Binary

o or O Octal

h or H Hexadecimal

3 - AST6 and LST6 Source and Generated Files ST6 Assembler-Linker User Manual

20/95

For example:

ldi value, const1

call subroutine1

subroutine1 ld A, value

jrz out

dec A

jp subroutine1

out ret

Such expressions are restricted to the following syntax:

expression = symbol

expression = symbol+constant_expression

expression = symbol-constant_expression

where ‘constant_expression’ contains absolute references only.

The following table lists the available operators and their precedence.

Operator
on

operand
Meaning Priority 1

1) The lowest value has the highest priority.

Example

+

-

~

*

/

%

>> n

<< n

+

-

&

^

I

unary plus

negation

(2’s complement)

Bit inversion

(1’s complement)

multiplication

division

modulo

right shift2

left shift2

addition

subtraction

bitwise and

bitwise exclusive or

bitwise inclusive or

1

1

1

2

2

2

2

2

3

3

4

5

6

+137

-137

~00111111 = 1100000

38*3 = 114

114/3 = 38

38h%3 = 2

038h+0FFh = 37h

0FFh-038h = 0C7h

00001111&11111111 = 00001111

00001111^11111111 = 11110000

01001001I00010010 = 01011011

ST6 Assembler-Linker User Manual 3 - AST6 and LST6 Source and Generated Files

21/95

3.1.4 Comments

Comments are preceded by a semicolon. AST6 ignores all characters that follow a
semicolon. Note that you can use semicolons in string and character constants.

3.2 Generated Files

This section describes the files that are generated by AST6 and LST6.

3.2.1 Executable and Data Space Symbol Files

Executable (HEX) and data space symbol (DSD) files are automatically generated
by AST6 if you run it without the -O option, or by LST6 if you use relocatable
objects.

HEX files are in the INTEL-HEX format.

Below is an example line of a HEX file:

The checksum is calculated by starting at 0, then subtracting each byte from the
previous result. Thus the total - the checksum = 0. For example, to calculate the
checksum of the above example:

00-02-08-A0-00-D4-4D-35=00

DSD files list the symbols in the data space. They are required by the ST6
debuggers.

2) Right shift and left shift the contents of the operand n places to the right or left
respectively. For example:

sav_a .def 08h
ldi sav_a, 0FFh
ldi A, sav_a >> 2 ; A=02h
ldi A, sav_a << 2 ; A=20h

:0208A000D44D35
Checksum
Second byte of data
First byte of data

Line type:
00 = data
01 = last line
First address of the line

Number of bytes in the line

Start of line indicator

3 - AST6 and LST6 Source and Generated Files ST6 Assembler-Linker User Manual

22/95

3.2.2 Listing Files

Listing files show the lines of generated object code together with the source code
they were generated from. To output a listing file, run AST6 with the -L option.

If you generate relocatable objects, you can update the listing files during the
linking process by running LST6 with the -I option. Listing files are named
<prog>.lis , where <prog> is the name of the assembled file.

Examples:

To generate a listing file for an absolute object (single-source file program):

AST6 -L myprog Generates the files myprog.lis, myprog.hex and myprog.dsd.

To generate a listing file for relocatable objects (modular file programs or programs
that use program space paging):

AST6 -L -O myprog1 Generates the files myprog1.lis and myprog1.obj.

AST6 -L -O myprog2 Generates the files myprog2.lis and myprog2.obj.

Then:

LST6 -I -O myprog myprog1 myprog2 Updates the files myprog1.lis and
myprog2.lis, and generates myprog.hex and myprog.dsd.

ST6 Assembler-Linker User Manual 3 - AST6 and LST6 Source and Generated Files

23/95

The following diagram shows an example AST6 listing file and describes what the
various columns mean.

22 P00 0000 5F10 S00 0000 22 add a,var1

23 23 .section1

24 P01 0800 BF20 S01 0000 24 and a,var2

25 P01 0802 DF30 S01 0002 25 sub a,var3

26 26

27 27 .section2

28 P02 1000 3F40 S02 0000 28 cp a,var4

29 P02 1002 0D1000 S02 0002 29 clr var1

30 30

31 31 mac_ ex1 var1

Source line

Source line number

Listing line number

Current page type
and number

Absolute section

Binary code

Current section

Relative section

address

address

3 - AST6 and LST6 Source and Generated Files ST6 Assembler-Linker User Manual

24/95

3.2.3 Including a Map Section

If you are using absolute objects (single-source file programs), you can include a
map section at the end of listing files. If you are using relocatable objects, you can
generate a separate map file using LST6 (see Section 3.2.4 on page 25).

The following diagram shows an example map section:

The type column indicates the section type, this can be text for program space
section or data for data space section.

To generate mapping information, run AST6 with the -M option as well as the -L
option. For example:

AST6 -L -M myprog Generates the files myprog.lis which includes a map
section, myprog.hex and myprog.dsd.

** SPACE ‘PAGE_0’ SECTION MAP **

| name | type | size |

|-----------------|--------|----------|

| PG0_0 | TEXT | 182 |

|_________________|________|__________|

Tue May 06 10:54:52 1997 file dummys.lis

page 19

** SPACE ‘PAGE_1’ SECTION MAP **

| name | type | size |

|-----------------|--------|----------|

| PG1_0 | TEXT | 158 |

|_________________|________|__________|

Tue May 06 10:54:52 1997 file dummys.lis

page 20

** SPACE ‘PAGE_32’ SECTION MAP **

| name | type | size |

|-----------------|--------|----------|

| PG32_0 | TEXT | 10 |

|_________________|________|__________|

ST6 Assembler-Linker User Manual 3 - AST6 and LST6 Source and Generated Files

25/95

3.2.4 Linker Memory Maps

If you are using relocatable objects (modular file programs or programs that use
program space paging), you can generate separate linker memory map files.
Linker memory map files list the start, end and size of all the sections in the
application and the start locations and sizes of relocatable objects. Link process
errors and warnings are also reported in linker memory maps.

Below is an example line of a linker memory map:

The type column in linker memory maps indicates the section type, this can be P

for program space section or Wfor Data ROM Window section.

To generate a linker memory map, run LST6 with the -M option. The default linker
memory map name is ST6.MAP. You can specify your own name by including the
-O option when running LST6. In this case the file is named <prog>.MAP , where
<prog> is the name of the assembled file. For example, the command:

LST6 -M -O myprog myprog1 myprog2

*** ST6 Linkage Editor: ‘dummys’ object file

Map ***

PROGRAM SECTIONS:

number start end size

------ ----- --- ----

0 0000 07FF 0182

1 0800 0F9F 014F

32 0FF0 0FFF 0010

WINDOW SECTIONS:

number start end size

------ ----- --- ----

0 0182 018A 0009

MODULE dummys.obj:

section type start size

------- ---- ----- ----

0 P 0000 0182

1 P 0800 014F

32 P 0FF0 0010

0 W 0182 0009

3 - AST6 and LST6 Source and Generated Files ST6 Assembler-Linker User Manual

26/95

generates the files myprog.sym, myprog.hex and myprog.dsd.

3.2.5 Cross Reference Tables

If you are using absolute objects (single-source file programs), you can generate
cross-reference tables. These list, for each symbol, the numbers of the lines that
define or reference that symbol. The line number that defines the symbol is
followed by an asterisk (*). To generate a cross-reference table, run AST6 with the
-X option. Cross reference tables are named <prog>.X, where <prog> is the name
of the assembled file. For example, the command:

AST6 -X myprog

generates the file myprog.X

3.2.6 Symbol Table Files

Symbol table files list the value and type of each symbol in the assembled code.
You must generate a symbol table file if you want to test your program using an
emulator. Below is an example line of a symbol table file:

If you are using absolute objects (single-source file programs), to generate a
symbol table file, run AST6 with the -S option. AST6 symbol table files are named
<prog>.sym , where <prog> is the name of the assembled file. For example, the
command:

AST6 myprog -S

generates the file myprog.sym

If you are using relocatable objects (modular file programs or programs that use
program space paging), to generate a symbol table file, run LST6 with the -S
option. The symbol table file is named ST6.SYM by default. You can specify your
own name by including the -O option when running LST6. In this case the file is
named <prog>.SYM, where <prog> is the name of the assembled file. For
example, the command:

LST6 -S -O myprog myprog1 myprog2

generates the files myprog.map, myprog.hex and myprog.dsd.

porta : EQU 00ff6h P

Symbol Type
P = program space symbol
C = constant
Full 16-bit symbol address

Symbol name

ST6 Assembler-Linker User Manual 3 - AST6 and LST6 Source and Generated Files

27/95

Note: If you run AST6 with the -O option (to generate a relocatable object), symbol table file
generation is disabled, since in this case the program space symbols are defined in the link
edit process.

3.2.7 Error Reports

By default, AST6 error and warning messages are displayed on screen, and
written to the listing file if you run AST6 with the -L option. You can choose to
record error and warning messages in a separate error file, by running AST6 with
the -E option. Error files are named <prog>.err, where <prog> is the name of the
assembled file. For example, the command:

AST6 -E myprog

generates the file myprog.err

LST6 writes errors to the file stdout .

3 - AST6 and LST6 Source and Generated Files ST6 Assembler-Linker User Manual

28/95

ST6 Assembler-Linker User Manual 4 - Working with the Program Space

29/95

4 WORKING WITH THE PROGRAM SPACE

The program space is an area of ROM memory in which the instructions to be
executed, the data required for immediate addressing mode instructions, and the
user-defined vectors are stored. It is addressed using the 12-bit Program Counter
register. The following diagram shows the ST6 program space structure.

4.1 Protecting Reserved Memory Areas

Certain areas of the program space are reserved, and must not be overwritten with
program code. The addresses of the reserved areas are different for each ST6
type, refer to the Databook for the ST6 you are using for further details.

To prevent reserved areas from being overwritten with program code, use the
.BLOCK directive. When the AST6 reaches the .BLOCK directive, it skips the
number of bytes specified in the .BLOCK operand. Refer to Section 12.3.2 on
page 72.

For example, the .BLOCK directive in the following lines of code prevents the area
from 0FF8h to 0FFBh from being overwritten:

ROM

ROM

0000h

07FFh
0800h

0FF0h

0FFFh
Interrupt and

Reset Vectors

Paged
Area

4 - Working with the Program Space ST6 Assembler-Linker User Manual

30/95

;****Interrupt vectors****

.section 32 ;Starts at 0FF0h

jp dummy ;AD converter Interrupt vector

jp tim_int ;TIMER Interrupt vector

jp dummy ;PORT B/C Interrupt vector

jp dummy ;PORT A Interrupt vector

.block 4

jp dummy ;NMI Interrupt vector

jp reset ;RESET vector

4.2 Using Absolute Objects

You can generate absolute objects if your program is made up of one module only
and you are not using a paged program memory. In this case, you can generate an
executable file using AST6 only.

When developing absolute object applications, use the .ORG directive to specify
the location of object code in the ST6 memory (see Section 12.3.27 on page 86).
.ORG specifies the starting address or the subsequent code.

Note that you can also use paging with single-source programs. See Section 4.3.1
on page 31 for further details.

4.3 Paged Program Memory

ST6 microcontrollers that have more than 4 Kbytes of ROM feature a paginated
program space.

This means that the ROM consists of a static area and up to 30 dynamic pages.
Dynamic pages are virtual, they are repetitions of the same area of ROM whose
real address is 0 to 7FFh. Each dynamic page has a virtual address to distinguish
it from the others. Virtual address are allocated in relation to the page number, as
shown in the table below.

The static area is the real addressable area of ROM. It includes two static pages:

• Page 1, which is the second page within the overlaid area.

• Page 32, which located in the area between addresses 0FF0h and 0FFFh, and
is thus not in the overlaid area. Page 32 stores the interrupt and reset vectors.

It is better to think of pages 1 and 32 as areas of static ROM, although they are
addressed as if they were pages.

To reference a page, the required page is selected using the Program ROM Page
Register (PRPR).

ST6 Assembler-Linker User Manual 4 - Working with the Program Space

31/95

You can perform jumps from the static area to any of the dynamic pages. You
cannot, however jump directly from one dynamic page to another without first
jumping to the static area. The following table shows the paged memory
characteristics:

The use of pages 2 to 31 is optional: use as many as are required to store your
program.

4.3.1 Single-source Programs and Paging

You can also develop programs that have a single source file, and that are not
linked using LST6, but do use the default sections: section 0, section 1 and section
32. To do this, all you have to do is include the .PP_ON directive at the beginning
of the source file. In this case, you can use the .SECTION directive to specify the
origin of your source file instead of .ORG.

4.4 Developing Programs for the Paged Area

Source code that uses paged memory must be divided into sections. Each section
is a block of code that can be allocated to a page during the link phase. Each
section starts at address 0 for the current module. Developing programs in
sections has the advantage that sections enable you to write source code in any
order, but specify the order in which they are linked into the final assembled code.
You can allocate any number of sections, from any source file, to a page in the
program memory, provided their total size does not exceed that of the page, which
is 2 Kbytes.

By default, LST6 allocates sections to pages by matching section numbers to page
numbers, thus section 0 is allocated to page 0, section 1 is allocated to page 1, and
so on. If you define more than once section with the same number, the sections are

Page No. Virtual Address Real Address Can jump to

0 0000 to 07FF 0000 to 07FF Page 1

1 0800 to 0FEF 0800 to 0FEF All pages

2 1000 to 17FF 0000 to 07FF Page 1

3 1800 to 1FFF 0000 to 07FF Page 1

n = 4 to 31 [n*800]-[(9n*80)+7FF] 0000 to 07FF Page 1

32 0FF0 to 0FFF 0FF0 to 0FFF All pages

4 - Working with the Program Space ST6 Assembler-Linker User Manual

32/95

mapped to their appropriate pages contiguously, in the order in which their holding
modules are listed when AST6 is executed.

The default size of a section is 2 Kbytes, however you can modify this, as well as
define which section is stored in which page, using the -P option when you run
LST6.

Allocating sections to pages using the -P option can be useful in two cases:

• For locating parts of the program, such as interrupt vectors, during the
debugging phase.

• For limiting the memory space taken by final executable code and ensuring it is
not written to any reserved areas of memory.

The -P option has the following format: -P<n>:<start>-<end>, where <n> is the
section number, <start> is the start address and <end> is the end address. For
example, the command:

LST6 -P0:000-3FF -P10:400-7FF

places section 10 in program page 0, at offset 400h.

ST6 Assembler-Linker User Manual 4 - Working with the Program Space

33/95

The .SECTION directive enables you to divide modules into sections. The
following diagram shows how LST6 allocates sections to pages when the -P option
is not used:

You must assemble source files that use paged memory as relocatable objects, by
executing AST6 with the -O option (see Chapter 10 on page 61).

Note: To be able to use this feature, you must include the .PP_ON directive in your source code.

Section 0

Section 4

Section 2

module0

Block of
code A

Block of
code B

Block of
code C

Section 3

Section 0

module1

Block of
code D

Block of
code E

Section 0

Section 4

Section 2

module2

Block of
code G

Block of
code H

Block of
code I

AST6 module0

Page 0 Page 1 Page 4Page 3Page 2

Block of
code A

Block of
code G

Block of
code E

Block of
code C

Block of
code I

Block of
code D

Block of
code H

Block of
code B

These modules:

Assembled as follows:

Are mapped as follows:

AST6 module1
AST6 module2

4 - Working with the Program Space ST6 Assembler-Linker User Manual

34/95

4.4.1 Accessing Paged Program Space

The Program ROM Page Register (PRPR) selects the page to be accessed. To
simplify the use of the PRPR, you can use the <label>.P notation to load the
location of the specified label to the PRPR. Thus, when jumping from one dynamic
page to another, a jump is first made to page 1, where the <label>.P notation is
used to load the target page. The jump is then made to the target. The following
example shows how to program a jump from section 4 to section 5 (that are
mapped to different pages during link editing):

.pp_on

PRPR .def 0cah ; define PRPR

.section 4

; ...

jp prs1 ;Jump to PRPR setter in page 1

caller nop

.section 1

...

prs1 ldi PRPR,target.p;set the page holding the label
”target” in PRPR

jp target ;jump to the label ”target”

return jp caller ; return to calling section

; ...

.section 5

; ...

target nop ;Start the process

; ...

jp return ;return to page 1

4.5 ROM Masking

ROM masking means manually filling all reserved and unused areas of ROM with
a predefined value. ROM masking is recommended, since it improves the reliability
of your program when it is executed in the microcontroller. To implement ROM
masking, you must execute LST6, or AST6 if LST6 is not being used, with the -D
option. By default, reserved and unused areas are filled with the value FFh. You
can change this by specifying the value you want to use after the -D option (see the
examples below). To enable AST6 or LST6 to perform ROM masking, you must
provide the following information:

• The target ST6 type, by including the .VERS directive in your source file. See
Section 12.3.36 on page 90.

ST6 Assembler-Linker User Manual 4 - Working with the Program Space

35/95

• The size of the ROM in the target ST6, by including the .ROMSIZE directive in
your source file. See Section 12.3.31 on page 87.

Examples:

The following lines of source code define the target as being an ST6200, with
1 Kbyte ROM.

.VERS ”ST6200”

.ROMSIZE 1

The following command fills reserved and unused areas with the value 04h (the
NOP instruction):

ast6 -d04 myprog

The following commands fill reserved and unused areas with the value FFh:

ast6 -O myprog

lst6 -d myprog

The following commands generate the file myprog.hex from myprog1.obj and
myprog2.obj, and fill reserved and unused areas with the value 04h:

ast6 -O myprog1

ast6 -O myprog2

lst6 -d04 -O myprog myprog1 myprog2

4 - Working with the Program Space ST6 Assembler-Linker User Manual

36/95

ST6 Assembler-Linker User Manual 5 - Working with The Data Space

37/95

5 WORKING WITH THE DATA SPACE

The data space is an area of RAM memory that stores the data required by the
program. It also stores the accumulator, indirect registers, short direct registers I/O
port registers, the peripheral data and control registers, the Data ROM Window
register and the Data ROM Window (see the Databook for the ST6 microprocessor
you are using for further details of its memory configuration). The following diagram
shows the structure of the ST6 data space:

You must define the characteristics of each byte that you want to use in the data
space using the .DEF directive (see Section 12.3.5 on page 73). This includes the
standard registers listed above. .DEF enables you to associate a label with an
address and define the following characteristics:
• Read and write access.
• Its value.
• Whether or not it is referenced in the .DSD file, which is used by the ST6

hardware emulator.

For example, all data space definition sections will include the following lines,
defining the accumulator (A) and the Index registers (X, Y, V and W):

a .def 0ffh, 0ffh, 0ffh

x .def 80h, 0ffh, 0ffh

y .def 81h, 0ffh, 0ffh

RAM/EEPROM
Paged Area

000h

03Fh
040h

070h
080h

081h
082h
083h
084h
0C0h

0FFh

Data ROM
Window

X Register

Y Register
V Register

W Register

RAM

DRWR

DRBR

Accumulator

PRPR

5 - Working with The Data Space ST6 Assembler-Linker User Manual

38/95

w .def 82h, 0ffh, 0ffh

v .def 83h, 0ffh, 0ffh

You cannot export data space symbol definitions, and thus share them with all the
source modules that make up a program, using the .GLOBAL directive. You should
therefore place all .DEF definitions in a separate file, that is included at the
beginning of each source module using the .INPUT directive (see Section 12.3.18
on page 79). An example of such a file is given in Section 5.1 on page 39.

Such multiple definition, however will cause a problem during the link edit phase:
LST6 will find as many definitions of the same addresses as there are modules,
and will thus generate appropriate error messages. This problem can be overcome
by preventing the multiple transmission of the definitions to LST6 using the
.NOTRANSMIT and .TRANSMIT directives (see Section 12.3.35 on page 90). You
must, however allow the transmission of the definitions file for one module, so that
its details are stored in the .DSD file.

The following example shows how to include a file named defs.h in the beginning
of the source modules that make up an application:

;module 1

.INPUT ”defs.h”

;...

;module 2

.NOTRANSMIT

.INPUT ”defs.h”

.TRANSMIT

;...

;defs.h

.pp_on

a .def ffh

;...

An alternative approach is to create a macro for defining data space definitions.
For example:

DCO .set 0 ;initialize data space location
;counter

.macro rmb symb

symb .def DCO

DCO .set DCO+1

.endm

rmb var1

rmb var2

ST6 Assembler-Linker User Manual 5 - Working with The Data Space

39/95

5.1 Example Data Space Definitions File

The following example data definitions file defines the data space for an ST626x
microcontroller.

; **************************************

; * REGISTER/VARIABLE DECLARATION *

; **************************************

x .def 080h,0ffh,0ffh,m

y .def 081h,0ffh,0ffh,m

v .def 082h,0ffh,0ffh,m

w .def 083h,0ffh,0ffh,m

a .def 0ffh,0ffh,0ffh,m

IOR .def 0c8h,0ffh,0ffh; Interrupt Option Register

DRWR.def 0c9h,0ffh,0ffh; DATA ROM Window Register

; **************

; * PORT A *

; **************

DRA .def 0c0h,0ffh,0ffh; Data Register A

DDRA.def 0c4h,0ffh,0ffh; Data Direction Register A

OPRA.def 0cch,0ffh,0ffh; Option register A

; **************

; * PORT B *

; **************

DRB .def 0c1h,0ffh,0ffh; Data Register B

DDRB.def 0c5h,0ffh,0ffh; Data Direction Register B

OPRB.def 0cdh,0ffh,0ffh; Option register B

; **************

; * PORT C *

; **************

DRC .def 0c2h,0ffh,0ffh; Data Register C

DDRC.def 0c6h,0ffh,0ffh; Data Direction Register C

OPRC.def 0ceh,0ffh,0ffh; Option register C

; **************

; * A/D CONVER *

; **************

ADCR.def 0d1h,0ffh,0ffh; Control register

ADR .def 0d0h,0ffh,0ffh; DATA r egister (result of conversion)

5 - Working with The Data Space ST6 Assembler-Linker User Manual

40/95

; **************

; * TIMER *

; **************

;TSCR1.def 0d4h,0ffh,0ffh ; TIMER STATUS control register

;TCR1.def 0d3h,0ffh,0ffh ; TIMER COUNTER register

;PSC1.def 0d2h,0ffh,0ffh ; TIMER PRESCALER register

; *********************

; * AUTO RELOAD TIMER *

; *********************

ARMC.def 0d5h,0ffh,0ffh ; AR MODE control register

ARSC0.def 0d6h,0ffh,0ffh ; AR STATUS control register 0

ARSC1.def 0d7h,0ffh,0ffh ; AR STATUS control register 1

ARLR.def 0d8h,0ffh,0ffh ; AR LOAD register

ARRC.def 0d9h,0ffh,0ffh ; AR RELOAD/CAPTURE register

ARCP.def 0dah,0ffh,0ffh ; AR COMPARE register

WDR .def 0d8h ;watchdog register

psc .def 0d2h,m

tcr .def 0d3h,m

tscr .def 0d4h,m

tmz .equ 7

eti .equ 6

tout .equ 5

dout .equ 4

psi .equ 3

5.2 Paged Data Space

Certain ST6 microcontrollers, that have more than 64 bytes of RAM feature a
paged data space. Refer to the Databook for the ST6 you are using for further
details. In paged ST6 data spaces, the area between addresses 0 and 3Fh is
paged into 64-byte RAM and EEPROM pages. When referencing a page, the
required page is selected using the Data RAM/EEPROM Bank Register (DRBR).

To implement data space paging you must include the directive .DP_ON (see
Section 12.3.7 on page 74) in your source module.

ST6 Assembler-Linker User Manual 5 - Working with The Data Space

41/95

5.2.1 Writing to Data Pages

The .PAGE_D directive defines the page to which subsequent data is written (see
Section 12.3.28 on page 86). The data following a .PAGE_D directive is written to
the page number specified by the directive. For example:

.DP_ON
PAGE_D 0

v1 .def 0
v2 .def 1
;...

.PAGE_D 1
count .def 0
colour .def 1
;...

5.2.2 Accessing Data Pages

The page of data to be accessed is defined using the Data RAM/EEPROM Bank
Register (DRBR). To avoid having to set DRBR each time you want to reference a
data page, you can use the <label>.P notation, that sets DRBR to the data page
holding the specified label.

The DRBR register selects the data page to be accessed according to the bit
number (0 to 7) that holds a 1. The DRBR is implemented in different ways,
depending on the ST6 you are using (see the Databook for the ST6
microprocessor you are using for further details).

The following example shows the use of <label>.p in selecting the data space page
to be accessed.

.DP_ON

RAMSW .def 0e8h

a .def 0ffh

.PAGE_D 2

xx .def 0

yy .def 1

; ...

.PAGE_D 1

ldi RAMSW,xx.p ;select data page
containing xx

ld a,xx

; ...

5 - Working with The Data Space ST6 Assembler-Linker User Manual

42/95

5.3 Using the Data ROM Window

To provide you with additional data space, ST62 and ST63 family microprocessors
let you store read-only data, such as look up tables and constants, in blocks of up
to 64 bytes in the program space. These blocks are accessed through the Data
ROM Window. Although the blocks of data are physically located in the program
space, the Data ROM Window, through which they are accessed is located at
addresses 40h to 7Fh in the data space.

To implement the Data ROM Window, you must include the .W_ON directive in the
beginning of your source files. You can allocate any number of blocks of data to a
continuous area of up to 64 bytes in the ROM. You can create as many 64-byte
blocks of data as you like within the ROM.

If you are generating relocatable object code, blocks of data to be stored in the
Data ROM Window can be delimited using the .WINDOW and .WINDOWEND
directives (see Section 12.3.39 on page 91). In this case, LST6 automatically
defines the defined blocks of data as accessible via the Data ROM Window, in the
order in which the modules are listed when LST6 is executed. It allocates blocks of
data to spaces left free in the ROM after the program sections have been allocated.
It does not necessarily use all the 64 bytes available for the Data ROM Window. An
example program that uses .WINDOW and .WINDOWEND is listed in Section 5.5
on page 45.

If you developing an absolute object, that will therefore not go through the link edit
phase, you cannot delimit the window using .WINDOW and .WINDOWEND
directives. In this case, you must define the boundary of the block of data to be
accessed using the Data ROM Window using the .BLOCK directive (see the
example on page 44).

5.4 Accessing Data Within the Data ROM Window

The location of the block of data in the ROM to be accessed by the Data ROM
Window is specified by the Data ROM Window Register (DRWR) and the address
operand of the instruction accessing its contents.

Bits 5 to 0 of the DRWR define the start address of the block to be accessed via the
Data ROM Window. Bits 5 to 0 of the address operand define the offset of the
address to be accessed from the beginning of the block pointed to by DRWR. If the
block of data to be accessed is within a ROM page, the PRPR must be used to
specify the page holding the block, in the same way that it is used to access any
area of paginated ROM.

ST6 Assembler-Linker User Manual 5 - Working with The Data Space

43/95

The following diagram shows how Data ROM Window addressing works.

5.4.1 Using <label>.D and <label>.W

To simplify the task of referencing data in the ROM via a Data ROM Window, AST6
includes two specific notations: <label>.D and <label>.W.

<label>.W enables you to set the DRWR to the block of data in ROM holding the
specified label (see Section 12.3.21 on page 82).

<label>.D enables you to set the offset to the specified label from the beginning of
the block of data in ROM pointed to by the DRWR (see Section 12.3.19 on
page 80). This is then used in the instruction address.

The following example shows how to access a constant, labelled CST1, that is held
in a Data ROM Window:

LDI DRWR, CST1.W ;Set the DRWR to the block of
;data holding CST1

LDI X, CST1.D ;Set the X register to the
;address of CST1

LDI A, 40h ;Load the value 40h into the
;accumulator

ADDI A, X ;Add the value held in CST1 to
;the accumulator contents (40h)

7 6 5 4 3 2 1 0

5 4 3 2 1 0

1 0

1 0 0 1 1 0 0 1

1 0 1 0 0 0

0 1 1 0 0 11 0 1 0 0 0

Data ROM Window Register Data space address in
instruction (40h - 7Fh)

Example:

DRWR =28h Instruction Address = 19h

ROM address = A19h

5 - Working with The Data Space ST6 Assembler-Linker User Manual

44/95

Some more complete examples of how to use the Data ROM Window are given
below.

Examples:

Using WINDOW and WINDOWEND to define a block of Data ROM Window data,
and label.W and label.D to reference that data:

.PP_ON ;Must be executed for LST6

.W_ON ;Enables the use of windows

a .def 0ffh

x .def 80h

DRWR .def 0cah ;Define Data ROM Window register

.WINDOW

cst2 .byte 22h

string2 .ascii ”ABCDEF”

; ...

.WINDOWEND

.section 2

ldi DRWR,cst2.W ;Select block holding cst2 and
;string 2

ld a,cst2.D ;put the address of cst2 into a

ldi x,string2.D ;put address of string2 into a

Using .BLOCK to delimit a block of Data ROM Window data, and label.W and
label.D to reference that data:

.PP_ON

.W_ON ;enables the use of windows

a .def 0ffh

x .def 80h

DRWR .def 0cah ;Define Data ROM Window register

.section2

; ...

.block 64-$%64 ;Define 64-byte boundary

cst1 .byte 0ceh

string1 .ascii ”abcdef”

; ...

.section 0

ldi DRW,cst1.W ;select block holding cst1 and
;string 1

ST6 Assembler-Linker User Manual 5 - Working with The Data Space

45/95

ld a,cst2.D ;put the address of cst2 into a

ldi x,string2.D ;put address of string2 into a

5.5 Example Data ROM Window Application

This example creates look-up tables in the ROM using the Data ROM Window.
There are four 64-byte data tables, that are cascaded in order to provide a 256
byte non-linear correction table. For clarity, the table is applied to a linear 8-bit
value, obtained from the ST6 on-chip analog-to-digital (A/D) converter. This
example can easily be adapted to a wide range of applications, such as
temperature sensing and control, frequency sensitivity correction, pattern
generation and binary to bcd conversion.

To implement a 256-byte correction table, the two MSBs of the A/D result are used
to reference one of the four 64-byte data tables. The remaining 6 LSBs of the result
specify the offset from the beginning of the appropriate table.

;----- ST6 Table Look-up with Data ROM window

.title “tables.st6”

.vers “ST6215”

.romsize 2

.PP_ON ;enable linker

.W_ON ;enable rom data window

;********************

;standard definitions

;********************

.input “c:\st6\input\std_def.st6” ;st6 standard def file

;**********************

;local definitions here

;**********************

tablemask .equ 11000000b ;mask for table number

offsetmask.equ 00111111b ;mask for offset value

rdw_start .equ 040h ;start of data-rom-window

watchtime .equ 0ffh ;watchdog timeout period

storeacc .def 084h,0ffh,0ffh ;store accumulator during
INT

result .def 085h,0ffh,0ffh,m;non-linear result storage

5 - Working with The Data Space ST6 Assembler-Linker User Manual

46/95

;**************

;initialisation

;**************

.section 1

restart:

reti ;ends reset condition

;enables nmi

ldi dwdr,#watchtime ;reload watchdog

clr a ;clear the
accumulator

set ior4,ior ;enable interrupts

;configure port c

ldi drpc,#10h

ldi orpc,#10h

ldi ddrpc,#00h ;pc4 is analog

;configure a/d

set pds,adcr ;power up the a/d

nop ;allow a/d to settle

ldi adcr,#0b0h ;enable a/d interrupt

;start conversion

;**************

;main code here

;**************

loop: ldi dwdr,#watchtime

jp loop ;continue

;***********

;subroutines

;***********

;**************************

;interrupt service routines

;**************************

ad_int: ldi dwdr,#watchtime

ld storeacc,a ;save accumulator

ld a,adr ;get a/d result

ld y,a ;make another copy of a/d

;result

andi a,#tablemask ;mask off lower six bits

;acc. now contains

ST6 Assembler-Linker User Manual 5 - Working with The Data Space

47/95

;table number

testtab0: cpi a,#00000000b ;table zero?

jrnz testtab1

ldi rdw,table0.w ;point to table zero

jp offset

testtab1: cpi a,#01000000b ;table one?

jrnz testtab2

ldi rdw,table1.w ;point to table one

jp offset

testtab2: cpi a,#10000000b ;table two?

jrnz testtab3

ldi rdw,table2.w ;point to table two

jp offset

testtab3: ldi rdw,table3.w ;point to table three

offset: ;rdw now points to the

;correct table

ld a,y ;re-load a/d result

andi a,#offsetmask ;mask off top bits

addi a,#rdw_start ;add in rdw start
address

ld x,a

;x now points to the correct value (in the correct table!)

ld a,(x)

ld result,a

;”result” now contains the non-linear value corresponding
to the linear

;result obtained from the temperature measurement

ldi adcr,#0b0h ;start new conversion

ld a,storeacc ;recover accumulator

reti

;********************************

; timer interrupt service routine

;********************************

tim_int: reti

pbc_int: reti

pa_int: reti

nmi_int: reti

5 - Working with The Data Space ST6 Assembler-Linker User Manual

48/95

;**************

; DATA TABLES *

;**************

.window

table0:

.byte 00h,00h,00h,00h,01h,01h,01h,01h

.byte 02h,02h,02h,02h,03h,03h,03h,03h

.byte 04h,04h,04h,04h,05h,05h,05h,05h

.byte 06h,06h,06h,06h,07h,07h,07h,07h

.byte 08h,08h,08h,08h,09h,09h,09h,09h

.byte 0ah,0ah,0ah,0ah,0bh,0bh,0bh,0bh

.byte 0ch,0ch,0ch,0ch,0dh,0dh,0dh,0dh

.byte 0eh,0eh,0eh,0eh,0fh,0fh,0fh,0fh

.windowend

.window

table1:

.byte 10h,10h,10h,11h,11h,11h,12h,12h

.byte 12h,13h,13h,13h,14h,14h,14h,15h

.byte 15h,15h,16h,16h,16h,17h,17h,17h

.byte 18h,18h,18h,19h,19h,19h,1ah,1ah

.byte 1ah,1bh,1bh,1bh,1ch,1ch,1ch,1dh

.byte 1dh,1dh,1eh,1eh,1eh,1fh,1fh,1fh

.byte 20h,20h,20h,21h,21h,21h,22h,22h

.byte 22h,23h,23h,23h,24h,24h,24h,24h

.windowend

.window

table2:

.byte 25h,25h,26h,26h,27h,27h,28h,28h

.byte 29h,29h,2ah,2ah,2bh,2bh,2ch,2ch

.byte 2dh,2dh,2eh,2eh,2fh,2fh,30h,30h

.byte 31h,31h,32h,32h,33h,33h,34h,34h

.byte 35h,35h,36h,36h,37h,37h,38h,38h

.byte 39h,39h,3ah,3ah,3bh,3bh,3ch,3ch

.byte 3dh,3dh,3eh,3eh,3fh,3fh,40h,41h

.byte 42h,43h,44h,45h,46h,47h,48h,49h

.windowend

.window

ST6 Assembler-Linker User Manual 5 - Working with The Data Space

49/95

table3:

.byte 4ah,4bh,4ch,4dh,4eh,4fh,50h,52h

.byte 54h,56h,58h,5ah,5ch,5eh,60h,62h

.byte 64h,66h,68h,6ah,6ch,6eh,70h,72h

.byte 75h,78h,7bh,7eh,81h,84h,87h,8ah

.byte 8dh,90h,93h,96h,99h,9ch,9fh,0a2h

.byte 0a6h,0aah,0aeh,0b2h,0b6h,0bah,0beh,0c2h

.byte 0c6h,0cah,0ceh,0d2h,0d6h,0dah,0deh,0e2h

.byte 0e6h,0eah,0eeh,0f2h,0f6h,0fah,0feh,0ffh

.windowend

;*******

;vectors

;*******

.section 32 ;section 0FF0h...

jp ad_int ;a/d interrupt vector

jp tim_int ;timer interrupt vector

jp pbc_int ;ports b&c interrupt vector

jp pa_int ;port a interrupt vector

nop ;4 reserved bytes

nop

nop

nop

jp nmi_int ;nmi interrupt vector

jp restart ;reset vector

.end

5 - Working with The Data Space ST6 Assembler-Linker User Manual

50/95

ST6 Assembler-Linker User Manual 6 - Importing and Exporting Labels

51/95

6 IMPORTING AND EXPORTING LABELS

Global symbols are those that are defined in one source module, but that can be
used by others. LST6 allows you to use two types of global symbol: labels that are
defined in program sections and labels that are defined in Data ROM Windows.
You cannot import and export labels that are defined in the data space using the
.DEF directive as global labels. Such labels should be defined in a separate file,
that is included at the beginning of each source module using the .INPUT directive
(see Chapter 4 on page 29 for further details on how to do this).

To specify a symbol that is defined by the current module, but will be referenced by
other modules, use the .GLOBAL directive (see Section 12.3.16 on page 78). A
symbol must be defined as global before it is defined.

To specify a symbol that is referenced by the current module, but is defined by
another module, use the .EXTERN directive (see Section 12.3.15 on page 77).
The following example shows how to import and export program section labels:

;module 1

PP_ON

.global label, cste

.section 1

...

label:

...

.block 64-$%64

cste:

;module 2

.PP_ON

.W_ON

a .def 0ffh

DRWR .def 0cah

.extern label, cste

.section 0

...

nop jp label

...

.byte ldi DRWR, cste.w

ld a,cste.d

6 - Importing and Exporting Labels ST6 Assembler-Linker User Manual

52/95

Note: Program Counter-relative jumps cannot be made to an external label.
LST6 checks that label is located in program page 1 (the static page), or in the same page
as that in which it is referenced. If not, it returns an error message.

The following example shows how to import and export Data ROM Window labels:

;module 1

.PP_ON

.W_ON

.global wc1, wc2

.window

wc1 .byte 11h

wc2 .ascii “ABCDEF”

...

.windowend

;module 2

.PP_ON

.W_ON

a .def 0ffh

x .def 80h

DRWR .def 0cah

.extern wc1, wc2

.section 3

ldi DRWR,wc1.W

ld a,wc1.D

ld x,wc2.d

...

Note: The <label>.D notation is used in module 2 because wc1 and wc2 are external and are thus
assumed as being program section symbols.

ST6 Assembler-Linker User Manual 7 - Developing Macros

53/95

7 DEVELOPING MACROS

Macros are sequences of assembler instructions and directives that can be
inserted into the assembled program in place of the macro name. Macros enable
you to simplify code and reduce code development time by reusing frequently-
used functions.

You define the beginning and end of a macro using the MACRO and ENDM
directives. For example, the following macro moves the contents of the cell pointed
to by X one the next address, so that X points to the same data but at another
address:

.MACRO Move1;Start of Move1 macro definition

ld A, (X)

inc X

ld (X), A

.ENDM ;End of macro definition

Once you have defined a macro, you call it by including the macro name as you
would any other mnemonic. Macros are expanded in each place where their
names are entered.

7.1 Nesting Macros

You can use two types of macro nesting: expansion nesting and definition nesting.
Expansion nesting means calling, and thus expanding one macro from another
macro. Definition nesting means defining and calling one macro from within the
body of another macro.

An example of expansion nesting would be:

.MACRO Move2

Move1 ;Calls the macro Move1

ld A, (X)

inc X

ld (X), A

.ENDM ;End of macro definition

In this case the body of macro Move1 is expanded within the body of macro
Move2.

An example of definition nesting would be:

.MACRO Move2

.MACRO Move1 ;Start of Move1 macro definition

ld A, (X)

7 - Developing Macros ST6 Assembler-Linker User Manual

54/95

inc X

ld (X), A

.ENDM ;End of Move1 definition

ld A, (X)

inc X

ld (X), A

.ENDM ;End of macro definition

7.2 Macro Parameters

Macro parameters let you fill in values when you call a macro. They let you develop
generic macros whose use can vary within the context of where they are
expanded.

The parameters to be included with a macro are listed after the macro name, in the
.MACRO directive. Multiple parameters must be separated by commas. For
example, the following line creates the macro Move1 with the parameters Par1 and
Par2:

.MACRO Move1 Par1,Par2

AST6 lets you use three types of macro parameter: normal parameters, numeric
parameters and label parameters.

Normal parameters are substituted by a string of characters when the macro is
expanded. For example, a normal parameter could hold a label to which the macro
makes a jump.

Numeric parameters enable you to use symbols to specify numeric values. The
parameter name must be a defined symbol. Numeric parameters are preceded by
a backslash (\).

Label parameters automatically define label names when macro is expanded. If
you specify a label directly within a macro, for example, for a loop within the macro
body, if the same macro is called successively, the second call will generate a
double-defined label error. Using a label parameter overcomes this problem. Label
parameters are preceded by a question mark (?).

The following example demonstrates the use of these three types of parameter:

.macro zero start, \number, ?label

ldi x, start

ldi v, number

clr a

label ld (x), a

inc x

ST6 Assembler-Linker User Manual 7 - Developing Macros

55/95

dec v

jrnz label

.endm

This macro sets the number of bytes specified by \number to 0, from the start
address specified by start . ?label is replaced by the label specified when the
macro is called. For example, the line:

zero flagx, 5, here

Sets the 5 bytes starting at address flagx to 0, and uses the label here .

You can omit the label name when you call a macro. In this case AST6 generates
its own names each time it expands the macro. The names generated are L01$,
L02$, L03$ and so on.

7.3 Concatenating Symbols During Macro Expansion

AST6 enables you to concatenate two symbols during macro expansion. To
concatenate two symbols, place the ’ operator between the two symbols you want
to concatenate. You would concatenate two symbols, for example to assign
different symbols to a label when calling the same macro twice:

The following example demonstrates the use of the concatenation operator:

.macro zero start, \number, ?lab

ldi x, start

ldi v, number

clr a

sta’labld (x), a

inc x

dec v

jrnz sta’lab

.endm

The line:

zero flagx, 5, here

results in the label stahere being generated.

7 - Developing Macros ST6 Assembler-Linker User Manual

56/95

ST6 Assembler-Linker User Manual 8 - Using Conditional Assembly

57/95

8 USING CONDITIONAL ASSEMBLY

AST6 lets you specify conditions, according to which the subsequent lines of code
are or are not assembled. Conditional assembly can be used to generate different
program versions or executable files for different ST6 microcontrollers from the
same source file. Three directives enable you to use conditional assembly: IFC,
ELSE and ENDC. They have the following format:

.IFC <condition> <argument>

... ;Code to assemble if condition is true

.ELSE

... ;Code to assemble if condition is true

.ENDC

where:

<condition> is one of the following conditions:

<argument> is a symbol or expression to be subjected to the condition.

.ENDC identifies the end of the conditional assembler block.

Example:

HTYPE .SET 0

.IFC EQ HTYPE

NOP ;assemble if HTYPE == 0

.ELSE

JP $

.ENDC

Condition Meaning

EQ If the following symbol = 0

NE If the following symbol != 0

GT If the following symbol >0

LT If the following symbol <0

LE If the following symbol <=0

GE If the following symbol >=0

DF If the following symbol is defined.

NDF If the following symbol is not defined

8 - Using Conditional Assembly ST6 Assembler-Linker User Manual

58/95

ST6 Assembler-Linker User Manual 9 - Application Development Summary

59/95

9 APPLICATION DEVELOPMENT SUMMARY
The chart below summarizes the directives you must use in relation to the size and
structure of your application, and lists the tasks you must carry out during the
application development process.

Use.VERS“ST62/63xx”

optionforROMmasking
and.ROMSIZE2/4/8/16

runAST6 withthe-D

Doesthe
target ST6 have

a paginatedRAM? Y

N

Use.DP_ONand.PAGE.D

Doyouwant
todevelopyour
programon>1

.asmfile?

N

Y

Doesyour
programneed

> 4Kbytes ROM? Y

N

Use.PP_ONand
.SECTION

Mapexceptionvectors
using.SECTION32

Doesyour
programuse

DataROMWindows? Y

N

Use.W_ON, .WINDOW
.WINDOWEND,LABEL.W
andLABEL.D

UseAST6and LST6.
RunAST6with-Ooption.

For WGDB6:

- Run LST6with
-I,-S, -M, -Ooptions.

RunLST6with-Poption
for sectionallocation.

Doesyour
programuse

DataROMWindows?

Use.W_ON, .BLOCK
LABEL.Wand LABEL.D

Either:
Use.ORGtolocatefile
and .ORG0FF0htomap
exceptionvectors.
Or:
Use.PP_ONand.SECTION
tolocatefile. Use.SECTION
32tomapexceptionvectors.

Definedataspace
characteristicsusing
the.DEFdirective.

UseAST6.
For WGDB6:
RunAST6-L, -S, -M
options.

N

Y

- Run AST6with-L, -O.

9 - Application Development Summary ST6 Assembler-Linker User Manual

60/95

ST6 Assembler-Linker User Manual 10 - Running AST6

61/95

10 RUNNING AST6

To run AST6, enter the following command on the DOS command line.

AST6 [-<option1>...-<optionn>] <file1>[<file2>...
<filen>]

Where:

option is any of the following options:

Option: Meaning:

C Only write generated code to the listing file if the conditional directives
are true. For example, the code:

ldi sav_a, 0FFh

.ifc eq sav_a

ldi sav_a, 55h

.else

clr sav_a

.endc

Generates the following lines in the listing if the -C option is used:

ldi sav_a, 0FFh

clr sav_a

If you omit this option, both generated and ignored lines of code are
written to the listing file.

L Creates a listing file named: <file>.lis (see Section 3.2.2 on
page 22).

X Creates a cross reference table in <file>.x (see Section 3.2.5 on
page 26).

M Appends mapping information at the end of the listing files.

S Creates a printable symbol table file in <file>.sym (see Section
3.2.6 on page 26).

O Use this option if your application includes more than one source file.
Creates an object file in <file>.obj . Note that in this case the
assembled files must be linked using LST6.

E Creates an error file in <file>.err (see Section 3.2.7 on page 27).

10 - Running AST6 ST6 Assembler-Linker User Manual

62/95

<file1>[<file2>... <filen>] is the name of the source (.asm) files to be
assembled.

10.1 Example

The command:

AST6 -L -S prog

assembles prog.asm , generating prog.hex and creating a listing in prog.lis , a
symbol table file in prog.sym and creating a file prog.dsd for the debugger.

To generate the files required by the WGDB6 debugger, use either of the following
options:

ast6 -L -O

and

lst6 -I -M -S -O

or

ast6 -L -S -M

D[<pattern>] Creates the ROM mask (see Section 4.5 on page 34). If the D option is
used without specifying the <pattern>, by default, the unused and
reserved ROM areas are filled with FFh. If a <pattern> is specified,
these ROM areas will be filled with the <pattern>.

For example:

AST6 -D04 example.asm

will cause all unused and reserved ROM areas to be filled with 04h.

This option can be used without the directive .PP_ON. If you use option
O, this option is turned off.

F Include the full path name to the source file in error messages dis-
played on screen or stored in the .ERR file.

For example, the message:

“ warning example.asm 53: (91) r/w access
not... ”

with -F option becomes:

“warning c:\st62\kit624x\example.asm 53: (91)
r/w access “

W<level> Changes the warning level that is traced. Enter the level you want to
trace in <level>, according to the table in Section 10.2 on page 63.

ST6 Assembler-Linker User Manual 10 - Running AST6

63/95

10.2 Warning Levels

The following table lists and describes the levels of warning that AST6 can return:

10.3 AST6 Errors and Warnings

The following table lists the errors and warnings that can be returned by AST6, and
their associated levels:

This level: Means this:

0 No errors encountered.

1
Warning(s) were encountered. These are either printed on
screen or written to a .ERR file if the -E option was chosen.
These are listed below.

2
Error(s) were encountered. These are either printed on
screen or written to a .ERR file if the -E option was chosen.
These are listed below.

3 There was an error on the command line.

4
System error(s) were encountered. These are related to the
computer you are using, and not the assembly process.

Level Description

0 Minimum length assumed.

1 Symbol already imported.

1 Symbol already exported.

1 Symbol declared external but unused.

1 Both symbols have the same definition.

2 R/W access control not performed on data space operand.

10 - Running AST6 ST6 Assembler-Linker User Manual

64/95

ST6 Assembler-Linker User Manual 11 - Running LST6

65/95

11 RUNNING LST6

Note: When you run LST6, it creates up to 8 temporary files. On DOS systems, you may have to
increase the default number of open files (refer to the configuration command descriptions in
your MS-DOS documentation for further information).

To run LST6, enter the following command from the operating system command
line.

LST6 [-<option1>...-<optionn>] <file1>[<file2>...
<filen>]

Where:

option is any of the following options:

Option Meaning

F<Pattern> Creates the ROM mask (see Section 4.5 on page 34). By default,
unused and reserved ROM areas are filled with FFh. To use
another value, enter a value in <pattern>. Note that this option
only works on programs that use the .WINDOW and .WINDO-
WEND directives. For other programs, use the -D option.

P<n>:<start>-<end> Maps the contents of program section <n> to the virtual
addresses in the range <start>--<end>. See Section 4.4 on
page 31 for further details.

E<name> Assigns the entry point of the executable file to the global symbol
specified in <name>. If this option is omitted, the entry point of
the executable file is assigned to the start address of the pro-
gram section. The entry point value is specified in the last record
of the .HEX output file.

J Includes each input module name before its local symbols in the
symbol (.SYM) file. A pseudo-symbol is created:

<module name> EQU <order>

where module name is the input file name, and order is the order
in which the module was linked.

S Creates a printable symbol table file in <file>.sym (see Section
3.2.6 on page 26).

O <name> Generates output files with the name specified in <name>. If this
option is omitted the default name “ST6” is given.

M Generates a linker memory map. See Section 3.2.4 on page 25
for further details.

11 - Running LST6 ST6 Assembler-Linker User Manual

66/95

<file1>[<file2>... <filen>] is the name of the source (.obj) files to be
linked.

11.1 Using Parameter Files

Instead of re-entering file names and options each time you run LST6, you can
enter them in ASCII text files, that are referenced using the @ character. You can
also use text files to prevent the LST6 command exceeding the command line limit
of 128 characters in DOS.

For example, to execute the command:

LST6 -S -0 myprog m1 m2 m3

You could enter:

LST6 @ params.txt

Where params.txt contains:

-S -0 myprog m1 m2 m3

11.2 Examples

The command:

LST6 -S -0 myprog m1 m2 m3

Links the modules m1.obj , m2.obj and m3.obj , generating the files: myprog.HEX ,
myprog.DSD and myprog.SYM .

To generate the files required by the WGDB6 debugger, use the following options:

ast6 -L -O

followed by:

T[<list>] Traces references to, and definitions of, the symbols listed in
<list>. If <list> is omitted, all the global symbols are traced.

V Displays link progress information messages, such as which
object modules are loaded, and their sizes.

D<pattern> Creates the ROM mask (see Section 4.5 on page 34). By default,
unused and reserved ROM areas are filled with FFh. To fill
masked areas with another value, enter a value in <pattern>.
Note that if your program uses the .WINDOW and .WINDO-
WEND directives, you should use the -F option.

If D is entered and the O option is omitted, the section numbers
as defined by the .ROMSIZE and .VERS directives are used.

I Updates the AST6 assembler listing files with the information that
was modified during the link edit process.

ST6 Assembler-Linker User Manual 11 - Running LST6

67/95

lst6 -I -M -S -O

11.3 Errors and Warnings

All LST6 messages are output to the file stderr under Windows or stdout under
DOS.

The following table lists the status codes that are returned by LST6:

11.4 Command Line Errors

The following table lists the error messages that can be returned by LST6:

This status: Means this:

0 No errors were encountered.

1 Warning(s) were encountered. These are listed below.

2 Error(s) were encountered. These are listed below.

3 There was an error on the command line. These are listed
below.

4 System error(s) were encountered. These are related to the
computer you are using, and not the assembly process.

Error message Meaning

bad option <x> <X> is not a valid command line option.

bad argument <xx>
Incorrect argument <xx> following a valid op-
tion.

no input file
No input file was specified on the command
line.

can’t open <file>
The file specified by <file> does not exist or
read permission is denied.

conflicting start/end definitions <n>
and <p>

The P option was used, and the sections <n>
and <p> have overlapping start-end defini-
tions. See Section 4.4 on page 31 for further
details.

start/end definitions for section <n>
not bounded on 2 k

A program section exceeds a 2-Kbyte page.

entry point <symbol> not in program
space

An entry point was assigned to a symbol that
does not exist in the program space.

11 - Running LST6 ST6 Assembler-Linker User Manual

68/95

11.5 LST6 Error Messages

The following table lists the error messages that are written to the file stdout .

Error message: Meaning:

undefined symbol <symbol>
The symbol <symbol> is referenced as being
external by a module, but is not defined. See
Chapter 6 on page 51.

multidefined symbol <symbol>
An imported or exported symbol name was re-
peated. See Chapter 6 on page 51.

section <n> overflow

Each program page is limited to 2048 bytes.
While merging the contents of input files the
maximum size was exceeded for section
number <n>.

not enough space in any used page
to map window <n>

There was not enough space left in the program
page for the specified window number.

relocation overflow inside program
section <n>, offset 0xHHH, <file>

The value of the external symbol, referenced at
the specified offset, was too large to fit onto one
byte or 3 hexadecimal digits.

type conflict relocating program sec-
tion [window] <n>

An external reference was made to a symbol
definition that is not in the same type of section
(program or window) in the referencing and ref-
erenced modules.

illegal jump inside section <n>
A jump was made to a label that was neither in
the current dynamic page nor in the static page.

invalid type of relocation in program
section [window]

The versions of LST6 and AST6 that were used
are incompatible. Check the version numbers.

reserved symbol <symbol> already
defined

You tried to redefine the listed symbol, which is
reserved.

bad magic number <file> The listed file is not compatible with LST6.

memory allocation error <address>
Insufficient memory available for linking a large
module. You must divide it into smaller modules.

<file> bad object file format Unexpected construct found in the listed file.

<file> premature end of file The listed file cannot be read by LST6.

internal error (<comment>)
Either an invalid input file was used or an LST6
bug was encountered.

ST6 Assembler-Linker User Manual 12 - DIRECTIVES

69/95

12 DIRECTIVES

This section describes the AST6/LST6 directives.

12.1 Editorial Conventions

In the directive descriptions, the following conventions are used:

12.2 Directive Summary

The following table summarizes the AST6 and LST6 directives.

These characters: Represent:

Square brackets ([]) Optional operands.

Angle brackets (<>)
Variable values to be replaced by
real values.

Text in the courier font. Text that is entered in source files.

Group Action Directive

Program Space
Definition

Reserve a Block of
Memory

[<label>] .BLOCK <expression>

Generate Words of Object
Code

[<label>] .WORD <expression>[,<expression>]

Generate Bytes of Object Code [<label>] .BYTE <expression>[,<expression>]

Write Character String [<label>] .ASCII “<string>”

[<label>] .ASCIZ “<string>”

Begin ROM Code Section. .SECTION <number>

Set Program Origin .ORG <expression>

Data Space Data
Definition

Define Data Space Location
Characteristics

[<label>] .DEF <address> ,[<R-
mask>],[<Wmask>],[<M|m>]

Data ROM
Window directives

Enable Data ROM Windows .W_ON

Define Beginning of Data Block
in Program Space

.WINDOW

12 - DIRECTIVES ST6 Assembler-Linker User Manual

70/95

Data ROM
Window directives

Define End of Data Block in
Program Space

.WINDOWEND

Initialize Data ROM Window
Register

<label>.W

Address Data ROM Window
Data

<label>.D

Symbol Definition Assign a value to the label <label> .EQU <expression>

Assign a value to the label (that
can be changed)

<label> .SET <expression>

Linker Directives Define Symbols as Global .GLOBAL <symbol1>[,<sym2>]...[,<sym>]

Transmit Data Space Symbols
to the Linker

.TRANSMIT

Don’t Transmit Data Space
Symbols to the Linker

.NOTRANSMIT

Define Symbols as External .EXTERN <symbol1>[,<symbol2>]...[,<symboln>]

Initialize PRPR or DRBR <label>.P

Hardware-related
directives

Enable Program Space paging .PP_ON

Enable Data Space paging .DP_ON

Specify Page Number for .DEF .PAGE_D <number>

Specify target ST6. .VERS “<ST6>”

Define ROM Size for ROM
Masking.

.ROMSIZE <size>

Miscellaneous
directives

Display a String .DISPLAY “string”

Define End of Source File .END

Read Source Statements from
File

.INPUT “filename”

Generate Error Message .ERROR “string”

Generate Warning Message . WARNING “string”

ST6 Assembler-Linker User Manual 12 - DIRECTIVES

71/95

12.3 Directive Descriptions

The following paragraphs describe the AST6 and LST6 directives in alphabetic
order.

12.3.1 ASCII, ASCIZ - Write Character String

Syntax

[<label>] .ASCII ”<string>”

[<label>] .ASCIZ ”<string>”

Description

Writes a character string to the program space. .ASCIZ is the same as .ASCII,
except that it adds a NULL character to the end of the string.

Example

KDMESS .ASCIZ ”1-Key Display”

Listing directives Insert Listing Page Eject .EJECT

Start/Stop Listing .LIST 0 or 1

Change Listing Lines Per Page .PL <expression>

Change Listing Characters Per
Line

.LINESIZE <expression>

Set Listing Page Header Title .TITLE “string”

Insert Comment .COMMENT <nn>

Conditional
assembly direc-
tives

Begin Conditionally Assembled
Code

.IFC <cond> <argument>

Begin Alternative Assembled
Code

.ELSE

End Conditionally Assembled
Code

.ENDC

Macro directives Begin Macro Definition [<label>] .MACRO macro_name
[<par1>,...,<parN>]

End a Macro Definition [label] .ENDM

End Macro Expansion [label].MEXIT

12 - DIRECTIVES ST6 Assembler-Linker User Manual

72/95

12.3.2 BLOCK - Reserve a Block of Memory

Syntax

[<label>] .BLOCK <expression>

Description

Reserves a block of memory in the program space. <expression> indicates the
number of bytes to be reserved. If label is included, the first address of the first
memory location is assigned to it. All symbols used in the expression must have
been previously defined.

This directive is used to prevent reserved areas in the program space from being
overwritten with program code. Refer to Section 4.1 on page 29 for further details.

Example

To reserve a block of ROM memory to be accessed via the Data ROM Window,
that starts at the beginning of a 64 Kbyte block and does not exceed 64 bytes:

.block 64-$%64

See Also

.W_ON, .WINDOW, .WINDOWEND

12.3.3 BYTE - Generate Bytes of Object Code

Syntax

[<label>] .BYTE <expression>[,<expression>]

Description

Generates successive bytes of object code in the program space, that contain the
<expression> value in binary. The value of each expression is truncated to the
first 8 bits.

Example

To generate a byte holding the value 0ceh (11001110).

.byte 0ceh

See Also

.WORD

ST6 Assembler-Linker User Manual 12 - DIRECTIVES

73/95

12.3.4 COMMENT - Set Comment Tabs

Syntax

.COMMENT <nn>

Description

Sets tabs in the comments that are printed in the listing. The tabs are set at the
column number specified by the argument NN.

NN must be a positive decimal integer that is less than either 256, or the value
specified in .LINESIZE directive it this directive is used.

Example

To set a tab in column 50.

.comment 50

12.3.5 DEF - Define Data Space Location Characteristics

Syntax

[<label>] .DEF <address>,[<R-mask>],[<W-
mask>],[<value>][,<M|m>]

Description

Defines the characteristics of the specified location in the data space. This
directive provides you with a useful tool for structuring the ST6 data space. If
<label> is included, its value can be used in any place in the source file where a
data symbol name can be used. You must define the characteristics of each byte
that you want to use in the data space using this directive, even the standard
registers. All the parameter values can be entered in any number base. Identifiers
used in expressions and data addresses must be predefined.

<R-mask> specifies which bits can be read. If it is omitted, all the bits can be read.
Each bit in <R-mask> that is set to 1 enables read access for the corresponding bit
in the data space. For example, an <R-mask> value of 0FFh (11111111b)
enables read access to all the bits at the specified address. 00Fh (00001111b)
enables read access to bits 0-3.

<W-mask> specifies which bits can be written. If it is omitted, all the bits can be
written. Each bit in <W-mask> that is set to 1 enables write access for the
corresponding bit in the data space.

<M|m> places a marker in the .DSD file for this symbol, so that it can be viewed on
screen during program simulation or emulation.

12 - DIRECTIVES ST6 Assembler-Linker User Manual

74/95

If a hardware register contains a mixed type of bits (Read/Write and Read-only/
Write-only), R-mask and W-mask are defined according to the following
convention:

• If a non-zero bit exists in the mask, the corresponding location is assumed to
be accessible for read or write by a Load (LD) instruction.

• Rights are checked at bit level on bit test/set instructions.

• An immediate load (LDI) to a location will be checked against a “1” to a bit
declared as non-accessible for write.

Example

To define a byte called val1 at address 000h that is write-only:

val1 .DEF 000h,0ffh,0

See Also

.SET, .EQU

12.3.6 DISPLAY - Display a String

Syntax

.DISPLAY ”string”

Description

Displays the specified string on screen during the assembly process.

12.3.7 DP_ON - Enable Data Space paging

Syntax

.DP_ON

Description

Enables data space paging (in the data space address range 0-3Fh). See Section
5.2 on page 40.

This directive enables you to use the .PAGE_D directive and the notation label.P
(when referencing data space labels).

See Also

.PAGE_D, .LABEL.P

ST6 Assembler-Linker User Manual 12 - DIRECTIVES

75/95

12.3.8 EJECT - Insert Listing Page Eject

Syntax

.EJECT

Description

Inserts a new page eject into the listing file. The form feed character (^L) is sent to
the printer and a new header is printed.

12.3.9 ELSE - Begin Alternative Assembled Code

Syntax

.ELSE

Description

Provides an alternative block of code to assemble if the .IFC condition is not true.

See Chapter 8 on page 57 for full details about conditional assembly.

Example

HTYPE .SET 0

.IFC EQ HTYPE

NOP ;assemble if HTYPE == 0

.ELSE

JP $

.ENDC

See Also

.IFC, .ENDC

12.3.10 END - Define End of Source File

Syntax

.END

Description

Defines the end of the source file. All lines after this directive are ignored by the
assembler. This directive is optional.

12 - DIRECTIVES ST6 Assembler-Linker User Manual

76/95

12.3.11 ENDC - End Conditionally Assembled Code

Syntax

.ENDC

Description

Defines the end of a block of conditionally assembled code.

See Chapter 8 on page 57 for full details about conditional assembly.

Example

HTYPE .SET 0

.IFC EQ HTYPE

NOP ;assemble if HTYPE == 0

.ELSE

JP $

.ENDC

See Also

• .IFC, .ELSE

12.3.12 ENDM - End a Macro Definition

[label].ENDM

Definition

Indicates the end of a macro definition. For full details about macros, see
Chapter 7 on page 53.

Example

.MACRO Move

ld A, (X)

inc X

ld (X), A

.ENDM; Defines end of macro definition

See Also

.MACRO, .MEXIT

12.3.13 EQU - Assign a Value to the Label

Syntax

[<label>] .EQU <expression>

ST6 Assembler-Linker User Manual 12 - DIRECTIVES

77/95

Description

Assigns the value of the expression to the label. You cannot assign a value to the
same label more than once using the .EQU directive, for this use .SET. The
symbols in the expression must be predefined. Note that you cannot define global
symbols using this directive.

Example

To define the symbol Charge to a constant value (800):

Charge .EQU 800

See Also

.SET, .DEF

12.3.14 ERROR - Generate Error Message

Syntax

.ERROR ”string”

Description

Generates the message “string” in the error file or the standard error output.
See Chapter 3 on page 27 for further details.

12.3.15 EXTERN - Define Symbols as External

Syntax

.EXTERN <symbol1>[,<symbol2>]...[,<symboln>]

Description

Only use this directive for programs that include more than one source file.

Defines the listed symbols as external. External symbols are not defined in the
current module, but they are defined in another. See Chapter 6 on page 51 for
further details.

You can only use this feature for symbols that are defined in the program space.
Labels that are defined in the data space using the .SET, .DEF or .EQU directives
should be defined in a separate file, that is included at the beginning of each
source module using the .INPUT directive (see Chapter 4 on page 29 for further
details on how to do this).

Symbol names cannot exceed 8 characters. This directive must be executed
before the symbol is referenced.

12 - DIRECTIVES ST6 Assembler-Linker User Manual

78/95

Example

To use the symbol Charge, that was defined in another module, in the current
module:

.EXTERN Charge

See Also

.GLOBAL

12.3.16 GLOBAL - Define Symbols as Global

Syntax

.GLOBAL <symbol1>[,<symbol2>],...,[,<symboln>]

Description

To use this directive you must use the -O option on the command line when
running AST6.

Defines a symbol as global, thus it can be used by other modules. Symbol names
must not exceed 8 characters. This directive must be executed before the symbol
is defined.

You can only use this feature for symbols that are defined in the program space.
Labels that are defined in the data space using the .SET, .DEF or .EQU directives
should be defined in a separate file, that is included at the beginning of each
source module using the .INPUT directive (see Chapter 4 on page 29 for further
details on how to do this).

Example

To enable the symbol Charge to be used in another module:

.GLOBAL Charge

See Also

.EXTERN

ST6 Assembler-Linker User Manual 12 - DIRECTIVES

79/95

12.3.17 IFC - Begin Conditionally Assembled Code

Syntax

.IFC <condition> <argument>

where:

<condition> is one of the following conditions:

<argument> is a symbol or expression to be subjected to the condition.

See Chapter 8 on page 57 for full details about conditional assembly.

Example

HTYPE .SET 0

.IFC EQ HTYPE

NOP ;assemble if HTYPE == 0

.ELSE

JP $

.ENDC

See Also

.ELSE, .ENDC

12.3.18 INPUT - Read Source Statements from File

Syntax

.INPUT ”filename”

Condition Meaning

EQ If the following symbol = 0

NE If the following symbol != 0

GT If the following symbol >0

LT If the following symbol <0

LE If the following symbol <=0

GE If the following symbol >=0

DF If the following symbol is defined.

NDF If the following symbol is not defined

12 - DIRECTIVES ST6 Assembler-Linker User Manual

80/95

Description

Reads the source statement(s) from the specified file. When the assembler
reaches the end of the file, it returns to the calling source file. .INPUT directives
can be nested. See Chapter 5 on page 37 for a full example of how to use this
command.

Example

To include a file named defs.h in the beginning of a source module:

;module 1

.INPUT ”defs.h”

See Also

.TRANSMIT, .NOTRANSMIT

12.3.19 LABEL.D - Access Data in Data ROM Window

Syntax

<label>.D

Description

You can only use this notation after the .W_ONdirective.

To simplify the task of referencing data in the ROM via a Data ROM Window, AST6
includes two specific notations: <label>.D and <label>.W.

<label>.W enables you to set the DRWR to the block of data in ROM holding the
specified label.

<label>.D enables you to set the offset to the specified label from the beginning of
the block of data in ROM pointed to by the DRWR. This is then used in the
instruction address.

Example

.PP_ON

.W_ON ;Enable the use of windows

a .def 0ffh

x .def 80h

DRWR .def 0cah ;Define Data ROM Window register

.section2

; ...

.block 64-$%64 ;Define 64-byte boundary

ST6 Assembler-Linker User Manual 12 - DIRECTIVES

81/95

cst1 .byte 0ceh

string1 .ascii ”abcdef”

; ...

.section 0

ldi DRWR,cst1.W ;select window holding cst1 and
string 1

ld a,cst1.D ;read cst1

ldi x,string.D ;point to address of string

The arithmetic operations listed in Section 3.1.3.4 on page 19 apply to <label>.D.

See Also

.W_ON, .BLOCK, .WINDOW, .WINDOWEND, .LABEL.W

12.3.20 LABEL.P - Initialize PRPR or DRBR

Syntax

<label>.P

Description

If used in a source file that includes .PP_ON, to reference a program space label,
the <label>.P notation enables you to load the location of the specified label to the
Program ROM Page Register (PRPR). The PRPR selects the program space page
to be accessed. Thus, when jumping from one dynamic page to another, a jump is
first made to page 1 (the static page), where the <label>.P notation is used to load
the target page. The jump is then made to the target. For further details see
Section 4.4.1 on page 34.

If used in a source file that includes .DP_ON, to reference a data space label, the
<label>.P notation that sets Data RAM/EEPROM Register (DRBR) to the data
space page holding the specified label. The DRBR register selects the data page
to be accessed.

Note: When referencing a program space label, if the specified label is in another module, the
directive .EXTERN must be included before the use of label.P.

Example

To jump from section 4 to section 5 (that are mapped to different pages during link
editing) via page 1:

.pp_on

PRPR .def 0cah; define PRPR

.section 4

12 - DIRECTIVES ST6 Assembler-Linker User Manual

82/95

; ...

jp prs1 ;Jump to PRPR setter in page 1

.section 1

...

prs11 ldi PRPR,target.p;set the page holding
the label ”target” in PRPR

jp target ;jump to the label ”target”

;

.section 5

; ...

target nop ;Start the process

See Also

.DP_ON, .D_PAGE, .PP_ON, .SECTION

12.3.21 LABEL.W - Initialize Data ROM Window Register

Syntax

<label>.W

Description

You can only use this notation in files that include the .W_ONdirective.

The <label>.W notation sets the Data ROM Window Register (DRWR) to the block
of data in the program space holding the specified label. <label>.W works on labels
that are in the program space and in .WINDOW/.WINDOWEND blocks.

You can then reference data in the Data ROM window using its label, or <label>.D.
See Section 5.3 on page 42 for further details on the Data ROM Window.

Example

.WINDOW

cst2 .byte 22h

string2 .ascii ”ABCDEF”

; ...

.WINDOWEND

.section 2

ldi DRWR,cst2.W ; select block holding cst2 and
string 2

ld a,cst2 ; read cst2

ST6 Assembler-Linker User Manual 12 - DIRECTIVES

83/95

ldi x,string2.D ; point to the address of
string2

See Also

.W_ON, .BLOCK, .WINDOW, .WINDOWEND, LABEL.D

12.3.22 LINESIZE - Change Listing Characters Per Line

Syntax

.LINESIZE <expression>

Description

Changes the number of characters per line of the output listing to the value of
expression . The default value is 131, the minimum value is 79.

Example

To set the output listing to 90 characters:

.LINESIZE 90

12.3.23 LIST - Start/Stop Listing

Syntax

.LIST 0 or 1

Description

Lines of code following .LIST 1 are written to the listing file.

Lines of code following .LIST 0 are not written to the listing file.

This directive can be useful for preventing the contents of files that are included
using the .INPUT directive from being written to the listing file.

Example

.LIST 1

...; these lines are written to the output listing

.LIST0

...; these lines are not written to the output listing

.LIST1

...; these lines are written to the output listing

See Also

.TRANSMIT, .NOTRANSMIT, .INPUT

12 - DIRECTIVES ST6 Assembler-Linker User Manual

84/95

12.3.24 MACRO - Begin Macro Definition

Syntax

[<label>] .MACRO macro_name [<par1>,...,<parN>]

Definition

Macros are sequences of assembler instructions and directives that can be
inserted into the source program in place of the macro name.

macro_name is the name of the macro. Once a macro is defined, it is expanded in
each place where its name is entered.

par1 ... parN are macro parameters, which let you fill in values when you call
the macro. They let you develop generic macros whose use can vary within the
context of where it is expanded.

The MACRO directive defines the beginning of a macro definition. For full details
about macros, see Chapter 7 on page 53.

Example

The following macro moves the contents of the cell pointed to by X one space
further, so that X points to the same data but at another address:

.MACRO Move1 ;Start of Move1 macro definition

ld A, (X)

inc X

ld (X), A

.ENDM ;End of macro definition

See Also

.ENDM, .MEXIT

12.3.25 MEXIT - End Macro Expansion

Syntax

[label].MEXIT

Definition

Ends macro expansion before the end of its definition is reached. This directive is
normally used in a conditional assembly block (see Chapter 8 on page 57).

Example

type .set 0 ;Set type to 0

ST6 Assembler-Linker User Manual 12 - DIRECTIVES

85/95

.MACRO Move1 type; Defines start of macro Move1

... ;(macro lines that are always
;expanded)

.IFC EQ type

.MEXIT ;End expansion if type == 0

.ENDC

... ;(macro lines that are expanded
;if type <>0)

.ENDM ; End of macro definition

See Also

.MACRO, .MEXIT, .IFC, .ENDC, .ELSE

12.3.26 NOTRANSMIT - Don’t Transmit Data Space Symbols to LST6

Syntax

.NOTRANSMIT

Description

This directive is only required for programs that have multiple source files.

TRANSMIT transmits data space symbols to LST6, so that they are common to all
modules. NOTRANSMIT turns off data space symbol transmission to LST6. These
directives aim to prevent the same symbol from being defined twice in the .DSD file
that is produced by LST6. Define all the common data space symbols in one
module without using the TRANSMIT and NOTRANSMIT directives, and use these
directives when you define data space symbols in the other modules of the same
program.

Example

Module 1.asm

.input ”ST6STD.ASM”;Common data space symbol
;definition file

Module 2.asm

.notransmit

.input ”ST6STD.ASM” ;

.transmit

See Also

.DEF, .INPUT, .TRANSMIT

12 - DIRECTIVES ST6 Assembler-Linker User Manual

86/95

12.3.27 ORG - Set Program Origin

Syntax

.ORG <expression>

Description

Sets the program origin for subsequent code to the address defined in
<expression> . All symbols which appear in <expression> must have been
previously defined. This directive can only be used when AST6 is executed to
produce an absolute object (without the -O option).

.ORG only applies to program space sections.

Example

To locate the subsequent code in the memory area starting at address 200h.

.ORG 200h

12.3.28 PAGE_D - Specify Page Number for .DEF

Syntax

.PAGE_D <number>

Description

This directive can only be used after .DP_ON.

Specifies the data memory page number to which subsequent data space data
definitions using the .DEF directive apply (in the data space address range 0-3F).
The page number must be in the range 0 - 255.

Example

To place v1 and v2 in data page 0:

.DP_ON

PAGE_D 0

v1 .def 0

v2 .def 1

See Also

.DP_ON, .DEF, LABEL.P

12.3.29 PL - Change Listing Lines Per Page

Syntax

.PL <expression>

ST6 Assembler-Linker User Manual 12 - DIRECTIVES

87/95

Description

Changes the number of lines per page on the output listing to the value of
expression . The default value is 63 and the minimum value is 10. The first six
and last six lines of a listing are empty.

Example

To set the number of lines in a listing page to 70:

.PL 70

12.3.30 PP_ON - Enable Program Space paging

Syntax

.PP_ON

Description

Enables program space paging, the .SECTION directive and the use of the
notation <label>.P on program space symbols.

If you do not use this directive, you can only use the first 4 bytes in the program
space.

See Also

.LABEL.P, .SECTION

12.3.31 ROMSIZE - Set ROM Size for ROM Masking

Syntax

.ROMSIZE n

Description

You must run AST6 with the -D option to be able to use this directive.

This directive sets the size of the ROM for ROM masking.

n defines the size of the microcontroller ROM, which must be one of the values 2,
4, 8 or 16.

This directive must be used in conjunction with the .VERS directive.

Example

.ROMSIZE 2

See Also

.VERS

12 - DIRECTIVES ST6 Assembler-Linker User Manual

88/95

12.3.32 SECTION - Begin Program Code Section

Syntax

.SECTION <number>

Description

Specifies the section number in which the subsequent code is placed. <number>

specifies the section number, in the range 0-32.

You can only use this directive after the .PP_ONdirective. Since the paged memory
area (0 to 7FFh) is structured into overlaid pages, each page has a virtual address
to distinguish it from the others. Virtual address are allocated in relation to the page
number, as shown in the following table:

The use of pages 2 to 31 is optional: use as many as are required to store your
program.

Each section starts at address 0 in the current module.

During the link edit phase, sections are allocated to pages according to their
numbers, thus section 0 is allocated to page 0, section 1 is allocated to page 1, and
so on. You can allocate any number of sections, from any source module, to a
page in the program memory, provided their total size does not exceed that of the
page.

For further details about the use of sections and paged program space, see
Section 4.3 on page 30.

If you are not using LST6, you can still optionally use three default sections:
sections 0, 1 and 32. In this case, you must include PP_ON, and you cannot use
.ORG.

Page No. Virtual Address Real Address

0 0000 to 07FF 0000 to 07FF

1 0800 to 0FEF 0800 to 0FEF

2 1000 to 17FF 0000 to 07FF

3 1800 to 1FFF 0000 to 07FF

n = 4 to 31 [n*800]-[(9n*80)+7FF] 0000 to 07FF

32 0FF0 to 0FFF 0FF0 to 0FFF

ST6 Assembler-Linker User Manual 12 - DIRECTIVES

89/95

Example

Module 1

.PP_ON

.SECTION 1

lab1 ldi a,3

.SECTION 2

WAIT

.SECTION 1

NOP

Module 2

.SECTION 1

STOP

See Also

.LABEL.P, .PP_ON

12.3.33 SET - Assign a Value to the Label

Syntax

[<label>] .SET <expression>

Description

Assigns the value of the expression to the label. As opposed to the .EQU directive,
you can reassign values to label values that are assigned using .SET. The symbols
in the expression must be predefined.

Example

To define the symbol Charge to the value 800:

Charge .SET 800

See Also

.DEF, .EQU

12.3.34 TITLE - Set Listing Page Header Title

Syntax

.TITLE ”string”

Description

Sets the title that is printed on output listing page headers.

12 - DIRECTIVES ST6 Assembler-Linker User Manual

90/95

12.3.35 TRANSMIT - Transmit Data Space Symbols to LST6

Syntax

.TRANSMIT

Description

This directive is only required for programs that have multiple source files.

TRANSMIT transmits data space symbols to LST6, so that they are common to all
modules. NOTRANSMIT turns off data space symbol transmission to LST6. These
directives aim to prevent the same symbol from being defined twice in the .DSD file
that is produced by LST6. Define all the common data space symbols in one
module without using the TRANSMIT and NOTRANSMIT directives, and use these
directives when you define data space symbols in other modules of the same
program.

Example

Module 1.asm

.input ”ST6STD.ASM”; common data space symbol
definition

Module 2.asm

.notransmit

.input ”ST6STD.ASM” ;

.transmit

See Also

.NOTRANSMIT, .INPUT

12.3.36 VERS - Define Target ST6

Syntax

.VERS ”<string>”

Description

Defines the ST6 type that the executable file will be loaded into. You must use this
directive at the beginning of all source files. Specify the microcontroller name in
<string> . If the microcontroller name includes a letter, omit the letter from the
name, for example for an ST62E25 enter ST6225.

Example

.VERS ”ST6210”

ST6 Assembler-Linker User Manual 12 - DIRECTIVES

91/95

See Also

.ROMSIZE

12.3.37 W_ON - Enable Data ROM Window

Syntax

.W_ON

Description

You must use this directive at the beginning of the source file if you want to use the
Data ROM window (see Section 5.3 on page 42 for further details on the Data
ROM Window).

This directive enables the use of LABEL.D, LABEL.W, and WINDOW and
WINDOWEND if LST6 is used.

See Also

.BLOCK, LABEL.D, LABEL.W, .WINDOW, .WINDOWEND

12.3.38 WARNING - Generate Warning Message

Syntax

. WARNING ”string”

Description

Generates the message “string” in the error report file or the standard error
output.

12.3.39 WINDOW, WINDOWEND - Define Data Block in Program Space

Syntax

.WINDOW

;...window data

.WINDOWEND

Description

.WINDOW defines the beginning of a block of data, stored in the program space,
that can be accessed via the Data ROM window. .WINDOWEND defines the end
of the block of data.

You can only use these directives in source modules for relocatable objects (thus,
use the -O option on the command line when running AST6).

12 - DIRECTIVES ST6 Assembler-Linker User Manual

92/95

If you are developing a source file to create an absolute object, you cannot use
.WINDOW and .WINDOWEND to delimit blocks of ROM data. Instead, you must
define the boundary of the block of data using the .BLOCK directive.

These directives can only be used after the .W_ON directive (see Section 12.3.37
on page 91). The directives you can use in with the Data ROM Window are: .BYTE,
.WORD, .ASCII, .ASCIZ and .BLOCK.

For full details about Data ROM windows see Section 5.3 on page 42. An example
application that uses the .WINDOW and .WINDOWEND directives is provided in
Section 5.1 on page 39.

Example

.PP_ON ; Enables LST6

.W_ON ; Enables Data ROM Windows

a .def 0ffh

x .def 80h

DRW .def 0cah ; Define DRWR

.WINDOW ; Start block of ROM data

cst2 .byte 22h

string2 .ascii ”ABCDEF”

; ...

.WINDOWEND ; End blobk of ROM data

See Also

.BLOCK, LABEL.D, LABEL.W, .W_ON

12.3.40 WORD - Generate Words of Object Code

Syntax

[<label>] .WORD <expression>[,<expression>]

Description

Generates successive 2-byte words of object code in the program space, that
contain the <expression> value in binary. Words are stored in reverse order,
thus the LSB has the lower address.

Example

val1 .WORD 0A0FFh

See Also

.BYTE

ST6 Assembler-Linker User Manual Product Support

93/95

PRODUCT SUPPORT

Software Updates

You can get software updates from the ST Internet web site:

http://mcu.st.com

For information on firmware and hardware revisions, call your distributor or ST
using the contact list given above.

If you experience any problems with a software tool, contact the distributor or ST
sales office nearest you.

Contact List

Note: For American and Canadian customers seeking technical support the US/Canada is split
in 3 territories. According to your area, contact the following sales office and ask to be
transferred to an 8-bit microcontroller Field Applications Engineer (FAE).

Canada and East Coast

STMicroelectronics
Lexington Corporate Center
10 Maguire Road, Building 1, 3rd floor
Lexington, MA 02421
Phone: 781-402-2650

Mid West

STMicroelectronics
1300 East Woodfield Road, Suite 410
Schaumburg, IL 60173
Phone: 847-517-1890

West coast

STMicroelectronics, Inc.
30101 Agoura Court
Suite 118
Agoura Hills, CA 91301
Phone: 818-865-6850

Europe

France (33-1) 47407575
Germany (49-89) 460060
U.K. (44-1628) 890800

Product Support ST6 Assembler-Linker User Manual

94/95

Asia/Pacific Region

Japan (81-3) 3280-4120
Hong-Kong (852) 2861 5700
Sydney (61-2) 9580 3811
Taipei (886-2) 2378-8088

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use.
No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this
publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.
STMicroelectronics products are not authorized for use as critical components in life support devices or systems without the express written
approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics.

Intel is a U.S. registered trademark of Intel Corporation.

Microsoft , Windows and Windows NT are U.S. registered trademarks of Microsoft Corporation.

 2000 STMicroelectronics - All Rights Reserved.

Purchase of I2C Components by STMicroelectronics conveys a license under the Philips I2C Patent. Rights to use these components in an
I2C system is granted provided that the system conforms to the I2C Standard Specification as defined by Philips.

STMicroelectronics Group of Companies
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain

Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

9
5

