
AN1078/0998 1/12

APPLICATION NOTE

ST7 TIMER PWM DUTY CYCLE SWITCH FOR TRUE 0% or
100% DUTY CYCLE

by Microcontroller Division Applications

INTRODUCTION

This application note presents a program that uses the 16-bit timer of the ST7 in PWM output
mode. The program can be used to perform a hot switch from one duty cycle to another and
obtain a true fixed period and true duty cycle percentage values between 0% and 100%.

The example program in this application note has been developed for the ST7GP family
(ST72251G1 and G2).

You have to choose your ST7 device at the beginning of the program using one of the several
“#define” statements provided. In this application, we chose to use a ST72251G2.

1 PWM DUTY CYCLE

1.1 DEFINITIONS

■ PWM means Pulse Width Modulation. PWM mode enables the generation of a signal with a
frequency and pulse length determined by the value of the timer A output compare 1 and
timer A output compare 2 registers (TAOC1R and TAOC2R) of the ST7 16 bit timer. The
PWM output pin is OCPM1_A (timer A output compare 1).

■ x% Duty cycle means that the pulse length represents x% of the period.

■ fcpu means cpu frequency (in this case 8 MHz)

■ A timer tick is a timer clock cycle (here 1 timer tick is 1 µs because fcpu/8=1 MHz).

■ Output level 1 (OLVL1) is a timer A control register 1 (TACR1) bit which is copied to the
OCMP1 pin whenever a successful comparison occurs with the TAOC1R register. Then the
TAOC1E (Timer A Output Compare 1 Enable) bit is set in the TACR2 register.

■ With the OLVL1 bit, we select the level to be applied to the OCMP1 pin after a successful
comparison with the TAOC1R register. With the OLVL2 bit in the TACR1 register the
comparison is with the TAOC2R register.

For more precise details on how the PWM runs, please refer to the PWM chapter in the 16-BIT
TIMER section of the datasheet.

1

2/12

ST7 TIMER PWM DUTY CYCLE SWITCH FOR TRUE 0% or 100% DUTY CYCLE

1.2 16 BIT TIMER OPERATION IN PWM MODE

The PWM mode uses the complete Timer A Output Compare 1 function plus the TAOC2R
register. An Output Compare 2 event causes the counter to be initialized to FFFCh which is
the counter reset value. So after each period, the counter is reset to FFFCh. As shown in
Figure 1 the pulse length and the period that you can see are 5 timer ticks longer than the
values you have loaded in the TAOC1R and in TAOC2R registers.
Figure 1. General frame without correction of the 5 time tick shift

The minimum value available for the pulse length is programmed when you load the counter
reset value in TAOC1R (FFFCh). Instead of having 0% duty cycle, the PWM mode feature
produces a 1 timer tick pulse as shown in Figure 2.
Figure 2. 0% duty cycle minimum value with OC1R=FFFCh=Counter Reset Value

When you set the pulse length equal to the period in order to have a 100% duty cycle, you
have a pulse of one CPU tick as shown in Figure 3. This could be useful for performing an ex-
ternal synchronization. However if you want a really 100% duty cycle you can use the TRUE
routine described below.

COUNTER 34DD FFFC FFFD FFFE FFFF 0000 0001 2100 2101

OLVL2OLVL1OCMP1_A

compare2 compare1

Note: TAOC1R=2100h, TAOC2R=34DDh, OLVL1=0, OLVL2= 1

OLVL1

pulse length =OC1R+5

COUNTER 34DD FFFC FFFD FFFE 2ED0 2ED1 2ED2 34DD FFFC

OLVL2
OLVL1

OCMP1_A

compare2 compare1 compare2

Note: TAOC1R=FFFCh, TAOC2R=34DDh, OLVL1=0, OLVL2= 1

compare1
OLVL2

OLVL1OLVL1OLVL1

3/12

ST7 TIMER PWM DUTY CYCLE SWITCH FOR TRUE 0% or 100% DUTY CYCLE

Figure 3. 100% duty cycle with TAOC1R=TAOC2R=Period

1.3 PROGRAM OBJECTIVES

The three following objectives are achieved by our TRUE routine. The routine is called in the
“ext0_rt” interrupt routine which changes the duty cycle value. The “init_prog“ routine loads the
desired period value minus five in the TAOC2R register to obtain the correct timer tick value
for the period.

1.3.1 Decrement the pulse length by 5 timer ticks

To obtain the correct timer tick value for the pulse length, we subtract 5 timer ticks before
loading them in the TAOC1R register.

1.3.2 Obtain a true 0% duty cycle

On the following program the “true” routine rectifies the 1 timer tick glitch by resetting the
OLVL2 bit (OLVL2=OLVL1=0) of the TACR1 register in order to have a true 0% duty cycle.
This is done by comparing the pulse length value with 0000h.

1.3.3 Obtain a true 100% duty cycle

On the following program the “true” routine produces a true 100% duty cycle by setting OLVL1
bit (OLVL1=OLVL2=1) of the TACR1 register in order to suppress the pulse of one CPU tick.
This is done by comparing the pulse length value with the period length (constant defined at
the beginning of the program).

Note : You can use the program to switch to different duty cycles by looping through the fol-
lowing series of constants using the “ext0_rt” interrupt routine: 100%, 75%, 50%, 25%, 0%,
25%...

The switch is caused by a falling edge on PA0. PA0 is configured as an input with pull up and
interrupt, a low level applied on this pin causes an external interrupt.

By default when you run the program you have a 100% duty cycle with the one timer tick pulse
as explained above.

COUNTER 34DC 34DD FFFC FFFD 2ED0 2ED1 2ED2 34DD FFFC

OLVL2
OCMP1_A

Note: TAOC1R=34DDh, TAOC2R=34DDh, OLVL1=0, OLVL2= 1

OLVL2

1 cpu tick 1 cpu tick
OLVL2OLVL2

OLVL1 OLVL1

4/12

ST7 TIMER PWM DUTY CYCLE SWITCH FOR TRUE 0% or 100% DUTY CYCLE

2 FLOWCHARTS

Figure 4. Main routine (for ST72251G2)

The falling edges on PA0 allow you to switch from one duty cycle value to another by exe-
cuting the “ext0_rt” interrupt routine.

TAOCR1=TAOCR2=desired period-5
(no correction so 1 cpu tick pulse)

Falling edge on PA0

state=1001 0000
so 100% period (true 100%)

state=1000 1000
75% period

state=1000 0100
50% period

Falling edge on PA0

state=1000 0010
25% period

state=1000 0001
0% period

Falling edge on PA0

state=0000 0010
25% period

Falling edge on PA0

state=0000 0100
50% period

Falling edge on PA0

state=0000 1000
75% period

Falling edge on PA0

Falling edge on PA0

Falling edge on PA0

5/12

ST7 TIMER PWM DUTY CYCLE SWITCH FOR TRUE 0% or 100% DUTY CYCLE

Figure 5. The “ext0_rt” interrupt routine (here for a ST72251G2)

To use the duty cycle values in increasing or decreasing order, we use the up/down bit of the
“state” 8-bit variable. The up/down bit is the seventh bit of “state”. The others are used to code
the duty cycle value. Look at the following code meaning with x =up/down:

■ 100% duty cycle -> x001 0000

■ 75% duty cycle -> x000 1000

■ 50% duty cycle -> x000 0100

■ 25% duty cycle -> x000 0010

■ 0% duty cycle -> x000 0001

up/down=1?

100% ?0% ?

IRET IRET

Clear ”state”

Y

Y

Y

N

N N

SLA state

BSET up/down

Falling edge on
PA0

Tests of ”state” value

Call the TRUE routine

Load next duty
cycle value (75%)

in ”state”

IRET

SRA state

6/12

ST7 TIMER PWM DUTY CYCLE SWITCH FOR TRUE 0% or 100% DUTY CYCLE

Figure 6. The “true” routine flowchart

This routine performs the 5 timer tick shift, and generates a true 0% or 100% duty cycle using
the OLVL1 and OLVL2 bits.

OLVL1=1

0% ?

LOAD of TAOC1R and
subtract 5 timer ticks

OLVL2=0

Y

YN

N
100% ?

RET RETRET

Call the TRUE routine

7/12

ST7 TIMER PWM DUTY CYCLE SWITCH FOR TRUE 0% or 100% DUTY CYCLE

3 SOFTWARE

The assembly code given below is guidance only. The complete software with all the files can
be found in the software library.
st7/ ; the first line is reserved

; for specifying the instruction set

; of the target processor

;*************** ***

; TITLE: PWM.ASM

; AUTHOR: PPG Microcontroller Application Team

; DESCRIPTION: Demonstration Program

; for the Timer peripheral used in PWM configuration.

; This program illustrates the timer’s behaviour when it is

; configured in PWM mode.

; A PWM signal will be generated on OCMP1_A pin. The length

; of the pulse is located in the OCR1 register while the

; signal’s period is in the OCR2 register.

; We begin by a normal 100% Duty Cycle which has a one cpu tick

; pulse by default.

; At each falling edge on PA0,(cf ST72 training board

; button) you change the Duty Cycle by looping through this

; sequence of values:true 100% 75% 50% 25% 0% 25% 50% 75%

; _______________________|

; The interrupt produced by the ICF1 bit at the end of each

; period is used to toggle PB7.

;*************** ***

TITLE ”PWM.ASM” ; this title will appear on each page of the listing file

MOTOROLA ; this directive forces the Motorola

; format for the assembly (default)

#INCLUDE ”st72251.inc”; include st72251 registers and memory

;*************** **

; Variables, constants defined and referenced locally

; You can define your own values for a local reference here

;*************** **

#define up/down 7 ;To use sequence in increasing or decrasing order

#define OLVL1 0 ; OLVL1 bit of TACR1 register

#define OLVL2 2 ; OLVL2 bit of TACR1 register

WORDS

period equ $34E2 ; For the period

duty0 equ 0000

duty25 equ {period/4}

duty50 equ {period/2}

duty75 equ {duty25+duty50}

8/12

ST7 TIMER PWM DUTY CYCLE SWITCH FOR TRUE 0% or 100% DUTY CYCLE

;*************** ***

; Program code

;*************** ***

segment ’ram0’

BYTES

.state DS.B 1 ; Conversion step flag

segment ’rom’

WORDS ; define subsequent addresses as words

; meaning that all instructions are located

; in the address field after 0FFh in the ST72251

; memory mapping

;--------------- ---

; ROUTINE NAME : true

; INPUT/OUTPUT : X for PWM pulse length MSB, A for PWM pulse length LSB

; / TAOC1R,TACR1 bit 2 (output level 2)

; DESCRIPTION : Generation of true 100%, true 0% Duty Cycle and 5 timer-tick shift

;--------------- ---

.true BRES TACR1,#OLVL1 ; Reload the default value of OLVL1

BSET TACR1,#OLVL2 ; Reload the default value of OLVL2

TNZ A ; Test if PWM pulse length LSB=0 ?

JRNE go1

.go TNZ X ; Test if PWM pulse length MSB=0 ?

JRNE go1

BRES TACR1,#OLVL2 ; To have a true 0% Duty Cycle

RET

.go1 CP A,#period.l ; Test if PWM pulse length LSB=Period LSB ?

JRNE cont1

CP X,#period.h ; Test if PWM pulse length MSB=Period MSB ?

JRNE cont1

BSET TACR1,#OLVL1 ; To obtain true 100% duty cycle

RET

.cont1 SUB A,#5 ; Subtraction of 5 timer ticks

JRNC cont ; to have the true pulse length

DEC X

.cont LD TAOC1HR,X

LD TAOC1LR,A

RET

;--------------- ---

9/12

ST7 TIMER PWM DUTY CYCLE SWITCH FOR TRUE 0% or 100% DUTY CYCLE

; ROUTINE NAME : init_PWM

; INPUT/OUTPUT : / TACR1, TACR2, PADDR, PAOR, MISCR

; DESCRIPTION : Timer configuration for PWM generation with overflow

; interrupt turned on, and no other interrupts allowed (input capture, output

;compare)

;--------------- ---

.init_PWMLD A,#$04 ; OLVL2 = 1, OLVL1 = 0

LD TACR1,A ; No other interrupt enabled.

LD A,#$98 ; output on OCMP1 pin enabled and PWM mode selected.

LD TACR2,A ; timer clock = fcpu/8 (1us if fcpu=8MHz)

; $94 for fcpu/2 and $90 for fcpu/4

BRES PADDR,#0 ; Configuration of PA0 in Floating input with

BSET PAOR,#0 ; interrupt

LD A,#$10 ; Miscellaneous Register Interrupt generation

LD MISCR,A ; on fall ing edge only

RET

;--------------- ---

; ROUTINE NAME : init_prog

; INPUT/OUTPUT : period/TAOC1R, TAOC2R, oldx, oldy

; DESCRIPTION : to begin the prog with the default 100% Duty cycle

; Period=Pulse length -> one timer tick pulse

; COMMENTS : The Timer reset value is FFFCh so to have the true values

; we subtract 5 timer ticks

;--------------- ---

.init_prog

; To get right at the first ext0_IT

CLR state

BSET state,#up/down; Duty cycle sequence in decreasing order at first

BSET state,#4 ; To obtain true 100% after the first IT

;To begin with the default 100% Duty Cycle (Period=Pulse-> 1 cpu pulse)

LD A,#period.l

LD Y,#period.h

SUB A,#5 ;because of the timer reset value which is FFFCh

JRNC sup

DEC Y

.sup LD TAOC2HR,Y ; load the MSB of the PWM period

LD TAOC2LR,A ; load the LSB of the PWM period

LD TAOC1HR,Y ; load the MSB of the PWM period

LD TAOC1LR,A ; load the LSB of the PWM period

RET

;*************** **

10/12

ST7 TIMER PWM DUTY CYCLE SWITCH FOR TRUE 0% or 100% DUTY CYCLE

;* *

;* MAIN-ROUTINE SECTION *

;* *

;*************** **

.main

call init_PWM

call init_prog

RIM ; enable interrupt (I=0 in CCR)

.loop JRA loop ; Wait for timer interrupt

; **

; * *

; * INTERRUPT SUB-ROUTINES LIBRARY SECTION*

; * *

; **

.dummy IRET

.sw_rt IRET

.ext0_rt BTJF state,#4,bit3 ; state x001 0000->100%

LD X,#period.h ; copy of the MSB of the period

LD A,#period.l ; copy of the MSB of the period

JRA start

.bit3 BTJF state,#3,bit2 ; state LSB 1000-> 75%

LD X,#duty75.h ; copy of duty cycle 75% MSB

LD A,#duty75.l ; copy of duty cycle 75% LSB

JRA start

.bit2 BTJF state,#2,bit1 ; state LSB 0100-> 50%

LD X,#duty50.h ; copy of duty cycle 50% MSB

LD A,#duty50.l ; copy of duty cycle 50% LSB

JRA start

.bit1 BTJF state,#1,bit0 ; state LSB 0010-> 25%

LD X,#duty25.h ; copy of duty cycle 25% MSB

LD A,#duty25.l ; copy of duty cycle 25% LSB

JRA start

.bit0 BTJF state,#0,else ; state LSB 0001-> 0%

LD X,#duty0.h

LD A,#duty0.l

JRA start

.else LD A,#%10010000 ; Reload state with its default value

LD state,A

IRET

.start CALL true

BTJF state,#up/down,down ; up/down=1 to increase up/down=0 to decrease

11/12

ST7 TIMER PWM DUTY CYCLE SWITCH FOR TRUE 0% or 100% DUTY CYCLE

BTJF state,#4,out

CLR state ; To decrease at the next IT

BSET state,#3 ; To have 75% at the next IT

IRET

.out SLA state ; To obtain the good value at the next IT

BSET state,#up/down ; To keep the up/down bit

IRET

.down BTJT state,#0,out

SRA state ; To obtain the good value at the next IT

IRET

.ext1_rt IRET

.spi_rt IRET

.tima_rt IRET

.timb_rt IRET

.i2c_rt IRET

segment ’vectit’

DC.W dummy ;FFE0-FFE1h location

DC.W dummy ;FFE2-FFE3h location

.i2c_it DC.W i2c_rt ;FFE4-FFE5h location

DC.W dummy ;FFE6-FFE7h location

DC.W dummy ;FFE8-FFE9h location

DC.W dummy ;FFEA-FFEBh location

DC.W dummy ;FFEC-FFEDh location

.timb_it DC.W timb_rt ;FFEE-FFEFh location

DC.W dummy ;FFF0-FFF1h location

.tima_it DC.W tima_rt ;FFF2-FFF3h location

.spi_it DC.W spi_rt ;FFF4-FFF5h location

DC.W dummy ;FFF6-FFF7h location

.ext1_it DC.W ext1_rt ;FFF8-FFF9h location

.ext0_it DC.W ext0_rt ;FFFA-FFFBh location

.softi t DC.W sw_rt ;FFFC-FFFDh location

.reset DC.W main ;FFFE-FFFFh location

; This last line refers to the first line.

; It used by the compiler/linker to determine code zone

END ; Be aware of the fact that the END directive should not

; be on the left of the page like the label names.

12/12

ST7 TIMER PWM DUTY CYCLE SWITCH FOR TRUE 0% or 100% DUTY CYCLE

THE PRESENT NOTE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS WITH INFORMATION
REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME. AS A RESULT, STMICROELECTRONICS
SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO
ANY CLAIMS ARISING FROM THE CONTENT OF SUCH A NOTE AND/OR THE USE MADE BY CUSTOMERS OF
THE INFORMATION CONTAINED HEREIN IN CONNEXION WITH THEIR PRODUCTS.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without the express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

 1998 STMicroelectronics - All Rights Reserved.

Purchase of I2C Components by STMicroelectronics conveys a license under the Philips I2C Patent. Rights to use these components in an
I2C system is granted provided that the system conforms to the I2C Standard Specification as defined by Philips.

STMicroelectronics Group of Companies
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands -

Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

http:/ /www.st.com

