
October 2000 1/138

Rev. 1.4

ST9+

USER GUIDE

1 ABOUT THIS GUIDE

Welcome to the ST9+ User Guide. The aim of this book is to help you to get a working knowl-
edge of the ST9+ microcontroller family. Using this foundation, you will be in a good position
to understand and implement any of the ST9+ microcontrollers. To make it easier, we have se-
lected the major technical concepts of the ST9+ family and will introduce them gradually over
several chapters, always supporting theory with practical examples.

1.1 PREREQUISITES

This book addresses application developers. To fully benefit from the book content, you
should be familiar with microcontrollers and their associated development tools.

For basic information on microcontrollers and development tools, you should refer to one of
the many introductory books available on the subject.

1.2 RESULTS

The book will provide you with:

■ A basic understanding of the ST9+ microcontroller family

■ Knowledge and ready-to-use examples on using ST9+ peripherals

■ Useful tips and warnings

1

2/138

Table of Contents

138

1

1 ABOUT THIS GUIDE . 1

1.1 PREREQUISITES . 1

1.2 RESULTS . 1

1.3 HOW TO USE THIS GUIDE . 5

1.4 COMPANION SOFTWARE . 5

1.5 ABOUT THE AUTHORS . 5

1.6 RELATED DOCUMENTS . 6

2 INTRODUCING THE ST9+ BASICS . 6

2.1 PROCESSOR CORE . 6

2.2 PERIPHERALS . 7
2.2.1 ST90158 . 8
2.2.2 ST90135 . 8
2.2.3 ST92F120 . 9

3 PROCESSOR CORE: MAIN CONCEPTS . 10

3.1 ADDRESS SPACES . 10
3.1.1 Register-Oriented Programming Model . 10
3.1.2 Register File . 11
3.1.3 Direct access to the Register File . 11
3.1.4 Working Registers . 12
3.1.5 Peripheral Register Pages . 12
3.1.6 Working Registers and Register Pointers . 12
3.1.7 Memory Management Unit . 18

3.2 STACK MODES . 26

3.3 INSTRUCTION SET . 28
3.3.1 Overview . 28
3.3.2 Advantages when Using C Language . 35

3.4 INTERRUPTS . 37
3.4.1 Interrupt Vectors . 37
3.4.2 Interrupt Priorities . 41
3.4.3 External Interrupt Unit . 46

3.5 DMA CONTROLLER . 50
3.5.1 Overview . 50
3.5.2 How the DMA Works . 51

3.6 RESET AND CLOCK CONTROL UNIT (RCCU) . 53
3.6.1 Clock Control Unit . 53
3.6.2 Reset and Stop Manager . 57

3/138

Table of Contents

1

4 USING THE ON-CHIP PERIPHERALS . 57

4.1 PROGRAMMING THE CORE AND PERIPHERALS . 57

4.2 PARALLEL I/O . 59

4.3 STANDARD AND WATCHDOG TIMERS . 60
4.3.1 Description . 60
4.3.2 Timer Application for Periodic Interrupts . 64
4.3.3 Watchdog Application 1: Generating a PWM . 65
4.3.4 Watchdog Application 2: Using the Watchdog . 66

4.4 MULTIFUNCTION TIMER . 67
4.4.1 Generating Two Pulse Width Modulated Waves with One MFT 71
4.4.2 Generating a Pulse Width Modulated Wave with a Cleaner Spectrum . . 74
4.4.3 Incremental Encoder Counter . 76
4.4.4 MFT Application 1: Generating 2 PWMs using Interrupts 78
4.4.5 MFT Application 2: Generating a PWM using DMA 78
4.4.6 MFT Application 3: Generating a PWM using the DMA Swap Mode . . . 79

4.5 SERIAL PERIPHERAL INTERFACE . 79
4.5.1 Description . 79
4.5.2 Static Liquid-Crystal Display Interface Example 80
4.5.3 EEPROM Serial Interface Example using I C . 82

4.6 SERIAL COMMUNICATIONS INTERFACE . 84
4.6.1 Description . 84
4.6.2 SCI Application 1: Sending Bytes using Interrupts 89
4.6.3 SCI Application 2: Sending Bytes using DMA . 89
4.6.4 SCI Application 3: Sending and Receiving Bytes using DMA 89
4.6.5 SCI Application 4: Matching Input Bytes . 89

4.7 ANALOG TO DIGITAL CONVERTER . 90
4.7.1 Description . 90
4.7.2 Analog Watchdog . 92
4.7.3 Interrupt Vectoring . 92
4.7.4 ADC Application: A/D Conversions and Analog Watchdog using Interrupts 93

4.8 PERIPHERAL INITIALIZATION . 93
4.8.1 initialization Header File . 93
4.8.2 Peripheral Function File . 94

5 USING THE DEVELOPMENT TOOLS . 104

5.1 DEVELOPING IN C LANGUAGE . 104

5.2 AVAILABLE TOOLS . 104

5.3 INTRODUCING THE DEVELOPMENT TOOLS . 105

4/138

Table of Contents

138

1

5.4 PROGRAM CONFIGURATION AND INITIALISATION 106
5.4.1 Writing the Makefile . 106
5.4.2 Writing the Linker Command File using a Script File 111
5.4.3 Writing the Start-Up File . 113

5.5 GLOBAL INITIALISATION: CORE AND PERIPHERALS 121
5.5.1 Core Initialisation . 121
5.5.2 Peripheral Initialisation . 121
5.5.3 Port Initialisation . 122
5.5.4 Final Initialisation . 122

5.6 INTERRUPT CONSIDERATIONS . 122

6 DETAILED BLOCK DIAGRAMS . 122

6.1 EXTERNAL INTERRUPT CONTROLLER . 123

6.2 TOP-LEVEL INTERRUPT INPUT . 124

6.3 WATCHDOG TIMER . 125

6.4 MULTIFUNCTION TIMER . 126

7 GLOSSARY . 129

8 INDEX . 134

5/138

ST9+ USER GUIDE

1.3 HOW TO USE THIS GUIDE

As a first approach, we recommend that you study each chapter in sequence and carry out the
exercises at each step.

1.4 COMPANION SOFTWARE

A downloadable file entitled ST9+ User Guide Companion Software is available. This file pro-
vides all the source text files, listings, object files and any other files mentioned in the docu-
ment.

You can download the ST9+ User Guide Companion Software from the http://www.st.com
website product support page. Unless otherwise specified, all the examples can be compiled
either for the ST90158 or ST92F120 by modifying the makefile and the ”device.h” file, if in-
cluded in the application directory.

1.5 ABOUT THE AUTHORS

This User Guide has been initially written by Jean-Luc Grégoriadès and Jean-Marc Delaplace
and revised for the ST9+ by Jean-Luc Crébouw.

Jean-Luc Crébouw
A signal processing engineer, he has developed a voice synthesizer with an ST9+ and con-
ducts ST9 training programs. He acts as a field application engineer consultant for all STMi-
croelectronics microcontrollers.

Jean-Marc Delaplace
A former electronics design engineer, he has worked throughout his career for various U.S.
companies involved in lab automation equipment. He has used microprocessors since they
first appeared on the market and programmed microcontrollers of various brands in industrial
applications using both assembler and high-level languages.

Jean-Luc Grégoriadès
Teaches automated systems and industrial computer science at the Electrical Engineering de-
partment of the University of Cergy-Pontoise. He introduced the STMicroelectronics ST6 as a
teaching base for his microcontroller course. On this occasion, he wrote with his friend J.M
Delaplace, the book ”Le ST6: Etude progressive d’un microcontrôleur” published at ”Editions
DUNOD”.

1

6/138

ST9+ USER GUIDE

1.6 RELATED DOCUMENTS

The following reference documents should be available for additional information:

– ST9 Datasheet

– ST9+ Programming Manual

– ST9 Family GNU Software tools

– ST9 GNU C Toolchain Release note

– ST9 Family GNU C Compiler

– GNU Make Utility

You can get a current list of documentation at http://www.st.com.

2 INTRODUCING THE ST9+ BASICS

The ST9+ microcontroller family has a common processor core surrounded by a range of pow-
erful peripherals for interfacing with many different devices. The peripherals have sufficient
built-in intelligence to be able to perform even complex jobs on their own, freeing the core al-
most entirely from I/O handling. The core can thus be fully utilized for classical micropro-
cessing tasks.

The ST9+ architecture is an original STMicroelectronics design, with the objective of providing
an innovative and efficient microcontroller architecture dedicated to real-time control.

2.1 PROCESSOR CORE

When you compare different microcontrollers, you can estimate the relative computing power
of the core, and also of the peripherals (if they include some intelligence). In some architec-
tures, the peripherals make heavy use of the core and thus take up a part of its computing
power. Many microcontrollers available on the market have a relatively powerful core, sur-
rounded by very simple peripherals. This approach has the advantage of making the periph-
erals easy to use and configure, but at the expense of the overall computing power.

The ST9+ is an example of a radically different compromise. Its core is among the best 8-bit
microprocessors on the market in terms of computing performance and system management
capabilities. It is assisted (rather than just surrounded) by peripheral blocks of which most can
perform complex tasks without the intervention of the core. The net result is a powerful ma-
chine that can even perform impressive tasks just using its peripherals. The three applications
described in this book give meaningful examples of processes handled solely by the periph-
erals.

The ST9+ is the latest generation of the powerful ST9 microprocessor family. The ST9+ core
executes software more than three times faster than the ST9 core using optimized instructions
and up to double the CPU frequency. The core as well as many peripherals have been en-

7/138

ST9+ USER GUIDE

hanced, like for example, the Memory Management Unit (MMU), which is now more flexible,
with a single 4-Mbyte memory space that is directly accessible without using bank switching.
Another example is the Reset and Clock Control Unit (RRCU) which has added features for
reducing power-consumption.

The ST9+ is a register-oriented machine. This means that a large number of registers is avail-
able in the core; but above all, this implies that the instruction set is tailored to make efficient
use of its registers through optimized addressing modes. It is also well suited to the use of C
language.

2.2 PERIPHERALS

The ST9+ family includes a large number of peripherals. The main ones are:

These peripherals are available with the standard variants. More peripherals are available on
custom devices on request, e.g. a videotext decoding logic.

The ST9+ family includes so many variants it would go beyond the scope of this book to de-
scribe them all. They are all made up of the same ST9+ core surrounded by a set of periph-

Acronym Name Function

MFT Multi-Function Timer

All counting and timing functions. Includes auto-reload on con-
dition, interrupt generation, DMA transfer, two inputs for fre-
quency measurement or pulse counting, two outputs that can
change on condition, PWM signal generation.

Conditions include: overflow/underflow, comparison with one
or two compare registers.

Capture registers used to record transitions on inputs with their
time of occurrence.

SCI
Serial Communication In-
terface

Asynchronous transfer with either internal bit-rate generation or
an external clock. Parity generation/detection. Address recog-
nition feature that can request an interrupt on match of an input
character. DMA transfer.

SPI Serial Peripheral Interface
Serial input or output register, with internal or external clock. In-
tended for I/O expansion, or synchronous serial external device
such as serial EEPROM (I C and SPI protocol).

WDT Watchdog timer
Can be used either as a watchdog or as a timer with input and
output capable of pulse counting or waveform generation.

I/O port Parallel input/output port

Parallel input/output ports. Each bit individually configurable as
input, output, bi-directional, or alternate function. Inputs can be
high impedance or with pull-up, CMOS or TTL-level. Outputs
can have open drain or push-pull configuration.

ADC Analog to digital converter.

Eight-bit analog to digital converter. One to eight channels can
be converted in series. On each of two of the eight channels,
an Analog Watchdog function is used to define two thresholds.
When exceeded, an interrupt is generated.

8/138

ST9+ USER GUIDE

erals, ROM and/or RAM and/or EEPROM and/or FLASH being optional. This book has
chosen to show the three most generic variants and provide a basis for understanding all the
others.

2.2.1 ST90158

Figure 1 . ST90158 Block Diagram

2.2.2 ST90135

Figure 2 . ST90135 Block Diagram

1.5/2K RAM
+

Register File
256 Bytes

48/64K
ROM/OTP
EPROM

Programmable RCCU

ST9+ CPU SPI 2 X SCI
3 X Multifunction

TIMERs

9 X 8-Bit Programmable I/O Ports
with Alternate Functions Capabilities

16-Bit
Standard Timer

16-Bit Timer
with

Watchdog Capabili ties

A/D Converter
with

Analog Watchdog

MEMORY BUS (Address & Data)

REGISTER BUS (Address & Data)

512/768/1K RAM
+

Register File
256 Bytes

16/24/32K
ROM/OTP

EPROM

Programmable RCCU

ST9+ CPU SPI SCI
2 X Multifunction

TIMERs

9 X 8-Bit Programmable I/O Ports
with Alternate Functions Capabilities

16-Bit
Standard Timer

16-Bit Timer
with

Watchdog Capabilities

A/D Converter
with

Analog Watchdog

MEMORY BUS (Address & Data)

REGISTER BUS (Address & Data)

9/138

ST9+ USER GUIDE

2.2.3 ST92F120

Figure 3 . ST92F120 Block Diagram

2/4K RAM
+

Register File
256 Bytes

Programmable RCCU

ST9+ CPU SPI 1/2 SCI

77 Programmable I/O Ports
with Alternate Functions Capabilities

16-Bit
Standard Timer

16-Bit Timer
with

Watchdog Capabili ties

A/D Converter
with

Analog Watchdog

MEMORY BUS (Address & Data)

REGISTER BUS (Address & Data)

60/128K FLASH

512/1024
EEPROM bytes I C

2 Multifun ction Timers
0/2 Extended Function

Timers

J1850
Interface

10/138

ST9+ USER GUIDE

3 PROCESSOR CORE: MAIN CONCEPTS

The term ST9+ designates a family of components. Each component shares the same core,
surrounded by a particular configuration of memory and peripherals that make up the specific
variant. The ST9+ core has a unique and powerful structure. This chapter explains the main
building blocks that you need to get familiar with to be able to make full use of its capabilities.

The main features of the core architecture are:

– Register-Oriented Programming Model

– Single-Space memory addressing

– System and User Stacks

– Interrupt system with fully integrated controller

– Built-in DMA mechanism

– Reset and Clock Control Unit (RCCU) with PLL

3.1 ADDRESS SPACES

The ST9+ provides two different address spaces: Register Space and Memory Space. The
Register Space draws its power from its size: 256 registers of which 224 are uncommitted,
and from the fact that it can hold data or pointers to data that reside in any of the two spaces.
The Memory spaces can address up to 4 Mbytes. This address space is arranged as 64 seg-
ments of 64 Kbytes to address Programs and as 256 segments of 16 Kbytes to address Data
when the DMA is not used.

3.1.1 Register-Oriented Programming Model

The usual microprocessor core structure is based on an accumulator. The accumulator is the
one register that holds the data to work on and the results of the arithmetic or logical opera-
tions applied to it. This structure has become a classic - for its simplicity - the internal data
paths of the microprocessor all converge to the accumulator. The instruction set is simple,
since you need to specify only one memory address in a data move instruction, the other
being implicit: the accumulator itself.

This simplicity has its own drawbacks: the accumulator is the computation bottleneck, since to
move data from one place in memory to another place, you have to do it through the accumu-
lator. The simplest transfer involves at least two instructions: one to get the data, the other one
to store it.

Register-Oriented models, in contrast, allow you to move data directly from one place to an-
other in a single instruction. Data can come from a register or from a memory address and can
go to either to a register or a memory address. You can code the addresses in the instruction,
or store them in registers referenced by the instruction. This allows you to optimize your code

11/138

ST9+ USER GUIDE

by choosing to store frequently used data in registers, leaving less frequently used data in
memory.

3.1.2 Register File

The ST9+ has a special addressing space for registers, providing 256 different register ad-
dresses. This large amount of registers gives you considerable flexibility in allocating vari-
ables. Register addresses are coded using one byte. You can use any of these registers to
hold data or as a pointer either to other registers or to bytes in memory(1). Contrast this with
processors that feature a certain number of registers, but in which some of these registers are
meant to be only pointers or indexes, and some others not. These processors only allow trans-
fers between memory and registers. The register organization of the ST9+ gives you a real ad-
vantage you can make use of.

3.1.3 Direct access to the Register File

The entire Register File can be accessed directly by its address prefixed by an ”R” except for
register group D (13) that can only be addressed through the Working Register mechanism.

For example to address the register at the address 73, address it as R73, R49h or R1001001b
in decimal, hexadecimal or binary. For a double register (16 bits) you can use the ”RR” prefix
to address any data with an even address.

Any register can be given a user-defined name.

In C language:

#pragma register_file data1

char data1;

#pragma register_file data2 60

int data2;

and accessed with:

data1=13;

data2=0x1234;

data1 is automatically allocated in the register file by the linker as no register number is pro-
vided. data2 is manually allocated in register RR60. This pragma should be repeated in each
file where the variable is made visible through an external declaration.

However using these registers needs an additional byte with the instruction mnemonic. Using
Working Registers is more efficient, because it avoids using this address byte.

(1) Except for group E (14) reserved for the system registers and group F (15) reserved for
the peripherals.

12/138

ST9+ USER GUIDE

3.1.4 Working Registers

To further improve coding efficiency, a special mechanism has been created: the concept of
working registers. This reduces to just 16 bytes the register space accessible by the instruc-
tions in the so-called working register addressing mode. Only four bits are required to address
this space, allowing both the source and the destination of a data move to be coded in a single
byte, thus saving both code size and execution time.

256 registers, when split into groups of 16, give 16 groups. The group used is indicated in a
special register, called the Working Register Pointer . The register address is made up of the
group number and the register address within the group, as follows:

Figure 4 . Register Group Addressing Scheme

3.1.5 Peripheral Register Pages

All internal peripherals are mapped into the register space. Most of them have a multitude of
features and can be configured in different ways. This implies that they have a large number
of registers. Since only the last group of 16 registers is allocated for peripherals, a special
scheme must be used to overcome this problem. It is called paging. The last group of registers
actually addresses one pack of sixteen registers that belongs to the peripheral itself. Which
pack of which peripheral depends on the value of a register called the Page Pointer Register .
There can be as many as 64 different pages, providing plenty of space for accessing periph-
erals.

Here are more details on these two mechanisms.

3.1.6 Working Registers and Register Pointers

The working registers offer a workspace of 16 bytes. This is sufficient for most applications,
and much more convenient than a single accumulator. However, in some applications, this is
still not enough. In this case you can easily allocate more than one register group to a partic-
ular program module. Since any register can be accessed directly, it is up to you to decide
whether you want to switch working register groups or not to access the other groups of reg-
isters.

Since changing the current group involves only one instruction, the concept of working regis-
ters can greatly reduce context switching time, for example in the case of an interrupt service

7 6 5 4 3 2 1 0Register Address

Group Number
(16 Register Groups)

Register Number
within Group Number

13/138

ST9+ USER GUIDE

routine. Doing this preserves the contents of the whole group, and the reverse operation re-
stores them, as in the example:

; The main program uses the working register group 0

InterruptRoutine:

pushw RPP ; Keep track of current group

srp #2 ; Switch to group 1 (see text below for details)

...

... ; Body of the interrupt service routine

...

popw RPP ; Restore whatever group was active

iret ; Return from interrupt

Supposing we could not switch working registers, we would have to push 16 bytes to the stack
to ensure that the contents of the working area have been preserved, and pop them back be-
fore returning. Obviously the example above is more efficient, both in code and data memory
size, and also in execution time.

You use register pointers to allocate the working registers in a particular group. When writing
in C or assembly language, you must position the working registers before you use them(2).

Switching groups involves the RPP register pair, made of the two registers RP0 and RP1.
These registers are directly accessible, but since their bits are laid out in a non-trivial manner,
it is recommended that you set them using only one of the srp , srp0 or srp1 instructions.

The registers are considered as sixteen groups of sixteen registers each. This is the way they
are represented in the register number summary table (See Table 1.). Use the numbers in this
table to refer to a register directly, e.g. when writing R35, this designates the fourth register of
group 2.

3.1.6.1 Switching the 16 Groups of Working Registers

This is done using the srp instruction. In spite of what we have explained up until now, and
how it is usually represented, the core does not actually divide the registers in 16 groups of 16
registers, but 32 blocks of 8 registers. This is why the srp instructions require arguments
ranging from 0 to 31 instead of 0 to 15. Here is how the Register Pointers select the desired
register group among 16 such groups.

(2) Device Datasheet; Address spaces of the register file § 2.2.1 and following, system regis-
ters § 2.3.

14/138

ST9+ USER GUIDE

Figure 5. Selecting a 16-Register Working Group

Using srp defines one group of sixteen working registers named r0 to r15, and occupying 16
contiguous registers in the register file. The lower case r for the register number indicates that
it is a working register number, in contrast to upper case R registers that indicate an absolute
register number. For example, accessing r3 is the same as accessing R19 if the current group
is group 1:

srp #2 ; Switch to group 1

inc r3 ; increment 4th register of the group

Group F
Paged Registers

Group E
System Registers

R255

R240
R239

R224
R223

R00

R15
R16

R31
R32

Group 0

Groups 2 to D

Register Pointer 0 (RP0R)R232

r15

r0

Group 1
as Working

Register Group

RP0R loaded
using instruction code srp #2

General Purpose
Registers

15/138

ST9+ USER GUIDE

inc R19 ; increment the same register again

The following table summarizes the use of the srp instruction and its effect in terms of group
selection.

Table 1. Register Page Number Summary

Notes : Though it is possible, it normally makes no sense to set the working register group either to
group E (14) or F (15), since the registers in these groups have pre-defined meanings. You can-
not use them to store intermediate values of calculations without greatly affecting the behavior
of the microcontroller in an unpredictable way. However, bit-level instructions are only available
using working register addressing, so when you need to do bit manipulations in these groups,
setting the register pointer to either 28 or 30 is an efficient way of programming when accessing
these two groups.

The srp instruction is the only one you have to use to switch register groups, and is the way
working registers are used in most programs. However, the working register scheme includes
a subtlety that is seldom used, but that could give you even more flexibility in some cases. This
is what is described in the next paragraph.

The same register group number can be selected by an odd or even number. In fact, the for-
mula is:

srp 2*n+1 ; for group n

or

srp 2*n ; for group n

Hexadecimal
register
number

Decimal
register
number

Function
Register group

decimal
(hexadecimal)

srp #n
instruction to select a

group to provide r0-r15
F0-FF 240-255 Paged registers 15 (F) srp #30
E0-EF 224-239 System registers 14 (E) srp #28
D0-DF 208-223

General
purpose

registers

13 (D) srp #26
C0-CF 192-207 12 (C) srp #24
B0-BF 176-191 11 (B) srp #22
A0-AF 160-175 10 (A) srp #20
90-9F 144-159 9 srp #18
80-8F 128-143 8 srp #16
70-7F 112-127 7 srp #14
60-6F 96-111 6 srp #12
50-5F 80-95 5 srp #10
40-4F 64-79 4 srp #8
30-3F 48-63 3 srp #6
20-2F 32-47 2 srp #4
10-1F 16-31 1 srp #2
00-0F 00-15 0 srp #0

16/138

ST9+ USER GUIDE

3.1.6.2 Defining Two Separate Groups of Eight Working Registers

In this mode, the srp instruction is not used. Instead, we use the pair of instructions srp0 and
srp1 . When using a working register, r0 to r7 address the first to the eighth register of the
whole group selected by half the value in RP0 i.e. all the registers of the half group selected by
RP0. Registers r8 to r15 relate to the first to the eighth register of the group pointed to by RP1.
Here is how the two blocks are selected:

Figure 6 . Register Numbers

Group F
paged registers

Group E
system registers

R255

R240
R239

R224
R223

R00

R15
R16

R31
R32

Groups 2 to C

Register pointer 0 (RP0R)R232

r7

r0

Lower part of Group 1
as working

register group

RP0R loaded
using the

instruction code
srp0 #2

General Purpose
Registers

Register pointer 1 (RP1R)R233

R23
R24

RP1R loaded
using the

instruction code
srp1 #27Upper part of Group D

as working
register group

Group 0

R216 r8

r15

Upper part of
group 1

Lower part of
group D

R208

R215

R207

17/138

ST9+ USER GUIDE

As an example, if RP0 is set to half group 2 (lower part of whole group 1) and RP1 to half
group 27 (upper part of whole group 13), r0 will designate R16 (2 x 8 + 0) while r15 designates
R223 (27 x 8 + 7).

Using either method depends on the organization of the data in the register file. You may find
it convenient to use two 8-register blocks if you need to make quick calculations on pairs of
data that are far apart in the register file.

The page numbering and switching instructions are summarized below:

Table 2. Register Page Number Summary

When you use an 8- or 16-register group, you may very likely have a subroutine or an interrupt
routine that uses a different set of working registers. You must save (push) the pair of register
pointers RPP that include RP0 and RP1 at the beginning of the routine and restore them on
exit.

3.1.6.3 Peripheral Register Paging

Group F of the 16-register groups is paged so that as many as 64 different groups can be
mapped to this address range. This large space is used to accommodate the registers related
to the peripherals. The paging technique allows you to add any number of peripherals and still
be able to handle them without using up more addresses in the register space.

When you access a register in group 15, first set the Page Pointer Register to the number of
the page that contains the register you want. Here is how a page is selected:

Hexa-
decimal
register
number

Decimal
register
number

Function
Eight-Register
block decimal
(hexadecimal)

srp0 #n (or srp1) #n
instructions to select a block to

provide r0-r7
and r8-r15 respectively

F8-FF 248-255 Paged registers 31 (1F) srp0 or srp1 #31
F0-F7 240-247 Paged registers 30 (1E) srp0 or srp1 #30
E8-EF 232-239 System registers 29 (1D) srp0 or srp1 #29
E0-E7 224-231 System registers 28 (1C) srp0 or srp1 #28
D8-DF 216-223

General

purpose

registers

27 (1B) srp0 or srp1 #27
D0-D7 208-215 26 (1A) srp0 or srp1 #26
C8-CF 200-207 25 (19) srp0 or srp1 #25

...
78-7F 120-127 15 (0F) srp0 or srp1 #15

...
20-27 32-39 4 srp0 or srp1 #4
18-1F 24-31 3 srp0 or srp1 #3
10-17 16-23 2 srp0 or srp1 #2
08-0F 08-15 1 srp0 or srp1 #1
00-07 00-07 0 srp0 or srp1 #0

18/138

ST9+ USER GUIDE

Figure 7 . Selecting Page Registers

As with the working registers, if a subroutine or an interrupt routine needs to access a periph-
eral that uses paged registers (which is very likely), you must save (or push) the register
pointer PPR at the beginning of the routine and restore it on exit.

Notes: In both assembly and C languages, include files are supplied with symbolic names pre-defined
for all the peripherals. These names are unique for each peripheral; however several different
names relate to the same register, but in a different page. You must bear in mind that writing for
example (in C language):

S_ISR = 0; /* clear serial peripheral error register */

does not automatically select the proper page; this statement must be preceded by another one
that selects the SCI page. Since no predefined C statement exists for this, a convenient way is
to define an assembler statement under the form of a macro that will read nicely in the C source.

An example of the correct way to access the SCI register is:

#define SelectPage(Page) asm (”spp %0”:: ”i” (Page)) ; /* pseudo function
to select a page */

SelectPage(SCI1_PG); /* Select the serial peripheral page */

S_ISR = 0 ; /* Clear serial peripheral error register */

3.1.7 Memory Management Unit

Like most microcontrollers, the ST9+ has a bus for interfacing internal and external memories.
This allows you to store both programs and data. A special feature of the ST9+ is that it can
address a 4 Mbyte single space to address ROM, RAM, EPROM, EEPROM, FLASH.

Group F
Paged Registers

Group E System Registers

R255

R240
R239

R224

R00

Groups 0 to D

Page Pointer Register (PPR)R234

Page 3 PPR loaded using
instruction code spp #3.

19/138

ST9+ USER GUIDE

To address the 4 Mbytes of memory, the address bus is 22 bits wide. To manage the 22-bit
address with 16-bit direct or indirect addressing, the memory mechanism adds extra bits to the
16-bit address and then works with segments (see Figure 8) or pages (see Figure 11). The
memories are arranged in 64 segments of 64 Kbytes for the program and in 256 segments of
16 Kbytes for data.

A set of special registers is used to extend the 16-bit address. Programs use the CSR, DMA
uses the DMASR or ISR and interrupts use the ISR or CSR register to provide the 6 Most Sig-
nificant Bits to make a 22-bit address. Data uses a set of four registers (DPR0-3) to provide
the 8 Most Significant Bits to make a 14-bit address.

Data can be addressed in the Program segment by using special move instructions: lddp ,
ldpp , ldpd , lddd .

It is easier from a hardware point of view to use only one address space for Program and
Data.

Figure 8 . Addressing via CSR, ISR and DMASR

3.1.7.1 Program Segment

We can consider this memory as linear since we can jump anywhere in memory space using
the special JPS, CALLS and RETS instructions.

CSR DMASR ISR

1 2 3

16-bit Virtual Address

22-bit Physical Address

6 bits

1

2

3

Fetching program
instruction

Data Memory
accessed in DMA

Fetching interrupt
instruction or DMA
access to Program
Memory

MMU Registers

20/138

ST9+ USER GUIDE

The 6-bit CSR register is used to extend the 16-bit address to a 22-bit address by concatena-
tion (see Figure 8). To make a fast branch in the same segment, use the common JP, CALL
and RET instructions.

To branch to another segment using a far call, the use of CALLS saves the current PC value
and the CSR value (Code Segment Register) in the stack, before loading the PC and the CSR
registers with the new values. Every time the segment changes you have to use the far branch
even if you branch from address (n)FFFFh to (n+1)0000h. This is because the program
doesn’t manage the 6 high-order bits of the 22-bit program addresses if you don’t use a far
branch to change the CSR register value. The script file (described in the Development Tools
chapter) allows you to place all your program modules anywhere in a single segment.

The far branch instruction adds only 2 to 4 additional cycles compared to a near branch in-
struction.

Note: In C language, using the small code model (this means only one 64 Kbyte segment is used), all
calls use local branches. If more than one segment is used, the large code model is required
and all calls use far branches even when branching locally. To avoid far calls in the same seg-
ment, the segment to be called has to be declared as static if it is not called from another seg-
ment.

3.1.7.1.1 Segment and Offset in Assembler Mode or C Language

The Offset represents the address in the segment with 16 bits. If the Segment and the Offset
are known, the following syntax is used for the far branches:

jps segment,offset ; 6 bits + 16 bits

jps symbol ; 22 bits

calls segment,offset ; 6 bits + 16 bits

calls symbol ; 22 bits

calls (R),(rr) ; 6 bits + 16 bits

calls (r),(rr) ; 6 bits + 16 bits

rets ; 22 bits

The assembly tools accept a set of directives which retrieves the elements of a function ad-
dress or of a label.

The operator SEG (stands for SEGment) allows you to extract the segment number of a label;
similarly, the operator SOF (stands for Segment OFfset) allows you to extract the offset of a
label within its segment.

These operators are especially useful when applied to a function or instruction label, although
the macro-assembler and assembler do not verify the type of the label.

Example:

ld r0,#SEG Function ; extract the 6-bit segment

21/138

ST9+ USER GUIDE

ldw rr2,#SOF Function ; extract the 16-bit offset

calls (r0),(rr2)

The same functions exist in C language: SEG(Function); SOF(Function).

3.1.7.2 Interrupt Service Routine Segment

One program segment is reserved for storing the Interrupt Service Routines. All the interrupt
routines start in this segment.

To obtain a 22-bit address, the 16-bit address is concatenated with 6 bits from the ISR register
(the 6 bits from the ISR register are the high-order bits of the address).

To offer compatibility with the previous ST9 versions and to have a new powerful address
mechanism, you can select ”ST9old” or ”ST9+” mode using the EMR2 bit in the ENCSR reg-
ister.

Both modes use the concatenation of the ISR register value and the 16-bit address as shown
in Figure 8 to address the interrupt vector.

Then, in ”ST9old” mode, only the ISR register value is used during the interrupt routine. So it’s
not possible to jump to another segment from the Interrupt Service Routine because the CSR
register value is not saved with the FLAGR value and the current PC value when the interrupt
occurs. The advantage of ”ST9old” mode is to reduce stack memory usage and CPU cycles
by not saving the CSR value (see Figure 9). This figure shows you the different mechanisms
that are used when an interrupt occurs, when a branch or a call is executed during the inter-
rupt routine and when the return from interrupt instruction (RETI) is executed.

22/138

ST9+ USER GUIDE

Figure 9 . Interrupt Processing in ”ST9old” Mode

In ”ST9+” mode, saving the CSR value allows you to change its value to branch to another
segment. When the interrupt occurs and when the current PC, CSR and FLAGR values are
saved, the ISR register value is stored in the CSR register (see Figure 10).

FLAG

PC MSB

PC LSB

STACK

22-bit

6-bit

16-bit

16-bit Address of
any branch

Addresses of local branches

FLAG

PC MSB

PC LSB STACK

22-bit

6-bit

16-bit

FLAGR register

Return from interrupt.
The current PC value saved in the
stack and the CSR value are
concatenated to make the 22-bit
return address.

ISR CSR

FLAG

PC MSB

PC LSB

STACK

PC MSB

PC LSB

Only the
PC value
is saved
for a
CALL
instruction

When an interrupt occurs, the 8-bit
IVR address is extended to 22-bits
to obtain the address of the

(within the same segment as
the Interrupt Service Routine,

extended to 22-bits as shown
Interrupt Service Routine
as shown above.

using the CALL instruction) are

16-bit

ISR

Interrupt
22-bit

6-bit

8 bits

Interrupt
Service
Routine
Address

ISR

IVR

at ’0’

6-bit

22-bit

Vector

8-bit

above.

23/138

ST9+ USER GUIDE

Figure 10 . Interrupt Processing in ”ST9+” Mode

3.1.7.3 DMA Segment

To address the total 4 Mbytes of memory in a DMA transaction, the DMASR points to a
64-Kbyte segment. Since there is no need to have more than one segment at the same time
for the transaction, the DMA uses a single 64-Kbyte segment instead of 4 pages like a Data
Segment (see below). To use the DMASR register, the DP bit in the DMA Address Register
(DAPR) must be set. If DP is reset, the DMA uses the ISR register instead of the DMASR reg-
ister.

3.1.7.4 Data Segment

Data uses the page mechanism to address the 4 Mbytes of memory.

CSR

PC MSB

PC LSB

STACK

16-bit

22-bit

6-bit

16-bit

16-bit Address
of any branch

Addresses of local and far
branches (to any segment) are
extended to 22-bits as shown

CSR

PC MSB

PC LSB STACK

22-bit

16-bit

FLAGR register

Return from interrupt.
The current PC value and the
CSR value saved in the stack are
concatenated to make the 22-bit

FLAG

CSR

ISR

Before loading the CSR register with
the ISR value, the CSR value is saved
in the stack.

CSR

is saved with the current PC value
in the stack and the CSR
register is loaded with the new

6-bit

CSR

FLAG

return address.

CSR+PC

represent
the 22-bit

current address

saved.

CSR

PC MSB

PC LSB

STACK
FLAG

segment to jump to.

CSR

PC MSB

PC LSB

Next segment for
a far branch

Interrupt

When an interrupt occurs, the 16-bit
Interrupt Vector is extended to 22-bits
as shown above.

22-bit

6-bit

8 bits
Interrupt
Service
Routine
Address

For a far CALL, the CSR value

ISR

IVR

at ’0’

6-bit

22-bit

Vector

above.

8-bit

24/138

ST9+ USER GUIDE

To authorize data coming from different 64-Kbyte segments, a set of 4 Data Page Registers
(DPR0 to DPR3) allows you to address 16 Kbytes per register (see Figure 11). The DPR is se-
lected with the 2 high-order bits of the 16-bit data address:

DPR0: from 0000h to 3FFFh (b15-b14=00)

DPR1: from 4000h to 7FFFh (b15-b14=01)

DPR2: from 8000h to BFFFh (b15-b14=10)

DPR3: from C000h to FFFFh (b15-b14=11)

After you select the DPR, the 8-bit value of the selected DPR register is used to extend the 14
remaining bits of the address to 22 bits.

For example, if DPR0 equals 20h and DPR1 equals 2h, each memory access in the range of
0000h to 3FFFh uses the DPR0 page and addresses data from 080000h to 083FFFh, and
each memory access in the range of 4000h to 7FFFh uses the DPR1 page and addresses
data from 008000h to 00BFFFh (see Figure 11). For example:

16-bit address = 0010 0101 1010 0101 = 25A5h 0000h < 25A5h < 3FFFh

DPR0 is selected, so the 6 high-order bits are equal to 20h

22-bit address = 0010 0000 10 0101 1010 0101

DPR0 value, 14 LSB of the 16-bit address

= 00 1000 0010 0101 1010 0101 = 0825A5h

With this mechanism, if the 16-bit addresses are different only on the 2 highest bits and if all
the DPR registers selected with these two bits have the same value, the resulting 22-bit ad-
dress will be the same.

Four pages of 16Kbyte of data memory are enough for many applications and allow you to use
data from different segments without costing additional CPU cycles. With four DPRs, you can
access up to 64K (4 x 16K) of data without changing the DPR values. Data can be variables
stored in RAM or constants stored in program ROM.

The four DPR registers are located in the MMU register page (page 21 of register group F). If
you use them frequently, you can relocate them to register group E, by programming bit 5 of
the EMR2 register (R246 in page 21). This prevents you from having to switch to the MMU
register page from another peripheral register page in order to change a DPR register value.

25/138

ST9+ USER GUIDE

Figure 11 . Addressing via DPR0-3

3.1.7.4.1 Accessing the Page and the Offset in Assembler or C Language

The assembly tools implement a set of operands which allows you to extract the components
of a data address.

The PAG operator (stands for PAGe) extracts the page number of an address; similarly, the
POF operator (stands for Page OFfset) extracts the offset of the address within the page.

Syntax:

PAG label

POF label

Be careful that directly using the data label and using the POF operator on a data label are not
equivalent: the data label gives the 16 bits of the logical label address; the POF operand gives
the 14 lowest bits of the label’s physical or logical address.

Example:

Assuming data is mapped at address 0x129876:

ldw rr2,#POF data ; rr2 = 0x1876

ldw rr4,#data ; rr4 = 0xD876 (with DPR3=0x4A)

Remember that you must take care of which data pointer has to be set before accessing a
variable.

DPR0 DPR1 DPR2 DPR3

00 01 10 11

14 LSB8 bits

22-bit Physical Address

2 M
SB

16-bit Virtual AddressMMU Registers

26/138

ST9+ USER GUIDE

Example:

Assuming that data has been mapped in a page aligned on address 0xC000, this means that
DPR3 will be used, therefore the following code is correct:

ld DPR3,#PAG data

ldw rr2,data

ld r4,(rr2)

In assembly language, it is possible to access data through another DPR:

Example:

Still using data at an address aligned with 0xC000, following code is correct:

ld DPR2,#PAG data ; if data address=0x01C765, DPR2=7

ldw rr2, #(POF data)+0x8000; rr2=0x8765

; #(POF data) to reset bit 15 and 14

; and 0x8000 to use DPR2

ld r4,(rr2) ; indirect addressing mode

...

ld r4, (POF data)+0x8000 ; direct addressing mode

It is important to look at the explicit usage of the immediate addressing mode (#) to get the
page number and the offset; it is consistent with the ST9 assembly syntax shown in the fol-
lowing example:

ldw rr2,#Var

ld r4,(rr2)

...

ld r4, Var

The same functions exist in C language: PAG(data); POF(data);

3.2 STACK MODES

The ST9+ allows you to have two separate stacks: a system stack and a user stack. The core
uses the system stack in interrupt routines and subroutines to save return addresses, the flag
register and the CSR depending on option (EMR2 register bit Enable Code Segment Reg-
ister). You can also use it under program control to save data, using the push and pop instruc-
tions.

The user stack works exactly the same way, using the pushu and popu instructions but only
under program control, which means that the user stack is not changed by the system. You
may choose to use a separate space for your data, or to store them in the same stack as the
return addresses.

27/138

ST9+ USER GUIDE

Both stacks can independently be located either in RAM or in the register file. You select this
using the SSP and USP bits in the MODER register (R235) for the system stack and the user
stack, respectively. A low bit value selects a RAM stack, and a high bit value selects a Reg-
ister File stack.

Since the stacks grow towards low addresses, the stack pointers must be initialized to the
highest location plus one(3) of the space reserved to it. This location becomes the ”bottom” of
the stack. When the stack is located in the register file, take care that it does not overwrite
other data, in particular the registers located in groups 14 (0EH) and 15 (0FH). For this reason
it is advisable to set the system stack pointer to the end of group 13 (0DH).

The last register of this group being R223, the instruction that sets the stack pointer will be:

ld sspr, #224 ; set stack pointer to one above end of group 13

Note 1: Using two separate stacks in the same kind of storage (memory or register) area is likely to con-
sume more space than if a single stack is used. So most of the time, only one stack will hold
both return addresses and arguments for functions. You can then use pushu and popu instruc-
tions to manipulate data with the convenience of auto incrementing or decrementing the pointer
after each access.

As an example, refer to the C language start-up files which initialize both the user and system
stacks.

The following diagram illustrates the two options for locating the stack: in the register file or in
memory.

(3) The push instruction decrements the stack pointer before writing the data, so this location
would never be used if set to the top location.

28/138

ST9+ USER GUIDE

Figure 12 . Stack Location Options

3.3 INSTRUCTION SET

The ST9+ is said to be an 8/16-bit microcontroller. This means that although the size of the in-
ternal registers and the width of the data bus are 8 bits, the instruction set includes instructions
that handle a pair of registers or a pair of bytes in memory at once. These instructions repre-
sent roughly one half of the total instructions, which means that the ST9+ can be programmed
with the same ease as if it were advertised as a full 16-bit device.

This is why it is well suited for C programming, as illustrated in this book.

3.3.1 Overview

For a complete description of the instruction set, you should refer to the ST9+ Programming
Manual. The aim here is to give you an introduction to the ST9+ instruction set and highlight
some of its best features in terms of power and ease of programming.

Data Memory
(RAM)

Bottom
of Stack

Group E
System Registers

Group F
Paged Registers

R255

R240
R239

R00

Stack Pointer Low
Stack Pointer High

R255

R240
R239

R00

Bottom
of Stack

Group E
System Registers

Group F
Paged Registers

Stack Pointer Low
Stack Pointer High

Stack

Stack

System or User Stack
in Data Memory Space

System or User Stack
in Register Space

High byte of pointer irrelevant

29/138

ST9+ USER GUIDE

Most instructions of the ST9+ exist in both byte and word forms. That is, they can operate on
either 8 (byte) or 16-bits (word). The mnemonics of the word-instructions all end with a ”w”, as
in the following examples:

The new powerful instructions added to the ST9old are the CALLS, RETS, JPS instructions for
far branching to change the program segment and the instructions used for C language appli-
cations, LINK, LINKU, UNLINK and UNLINKU. Moreover, all instructions have been optimized
compared to ST9old.

3.3.1.1 Load Instructions

Beside the classical load instructions found on most microprocessors, there are four special
load instructions for moving data between two locations in memory.

One instruction to move data from data segment to data segment; lddd . This instruction al-
lows you to post-increment the destination and the source index register at the same time. The
ld instruction needs two instructions to do this. An example for moving a block of data would
be:

ld rr0,#Source

ld rr2,#Destination ; initialisation of the pointers

ld r5,#Num_loop ; number of elements to move

loop:

ld r4,(rr0)+ ; transfer of one byte

ld (rr2)+,r4

djnz r5,loop

The two ld instructions are coded using 6 bytes and executed in 24 cycles.

The same program with the lddd instruction:

ld rr0,#Source

ld rr2,#Destination ; initialisation of the pointers

ld r5,#Num_loop ; number of elements to move

loop:

lddd (rr2)+, (rr0)+ ; transfer of one byte

djnz r5,loop

Load Add Subtract
Logical

and
Logical or Compare Push Pop

ld add sub and or cp push pop
ldw addw subw andw orw cpw pushw popw

30/138

ST9+ USER GUIDE

The lddd instruction is coded using 2 bytes and executed in 14 cycles.

Here are the four possible data transfers:

These four instructions improve the performance of data block moves (frequently used in C
programs).

As you can see in the table above, the data move can be between data and program seg-
ments. Here’s an example of a data move from a Data segment using the DPR register to a
Program segment using the CSR register:

ld rr0,#Source

ld rr2,#Destination ; initialisation of the pointers

ld r5,#Num_loop ; number of elements to move

loop:

ldpd (rr2)+, (rr0)+ ; transfer of one byte

djnz r5,loop

The data load with rr0 comes from the data segment selected by one of the four DPR register
values depending on the rr0 value and then are stored in the program segment selected by the
CSR register value.

(Please refer to the MMU Section 3.1.7 for an explanation of data and program segments).

3.3.1.2 Test Under Mask

These instructions, tm and tmw, perform a logical (bitwise) AND between the two operands,
but do not store the result. They only set the Z and S bits of the flag register for a later condi-
tional jump on zero or sign. The mask is a value in which the bits that are set to 1 select the
corresponding bits of the value to be tested for non-zero. As an example, in the following in-
struction:

tm value, mask

If the mask is a byte whose binary value is 11000000, only the left-most two bits of the un-
known value will be tested, and a later branch if zero will be taken or not according only to
these bits. As shown below, the same mask is used for two values that differ only by one bit:

Instruction Moves data from... ...to
lddd data segment (uses the DPR0-DPR3 registers) data segment
ldpp program segment (uses the CSR register) program segment
lddp program segment data segment
ldpd data segment program segment

0 0 0 1 1 0 1 0 1 Byte to be tested 1 0 1 1 0 1 0 1

1 1 0 0 0 0 0 0 0 Mask used for testing 1 1 0 0 0 0 0 0

31/138

ST9+ USER GUIDE

Two more instructions, tcm and tcmw, work essentially the same way, but they take the com-
plement of the value to be tested before ANDing it with the mask, as follows:

tcm value, mask

The same two cases will provide the following results:

The jump would be taken if the byte to be tested had two 1’s in its most significant two bits, for
example 11110101.

3.3.1.3 Push and Pop

Since there are two stacks, there are two kinds of push and pop instructions. The mnemonics
push, pushw, pop and popw act on the system stack, which can be either in the register space
or in the memory space. The mnemonics pushu, pushuw, popu and popuw act on the user
stack, that can also be either in the register space or the memory space. The stack pointer
used in each case is the SSPR or the USPR register pair respectively. The stack pointers are
always decremented before writing on pushing, and they are incremented after reading on
popping. Thus the stack pointer always points to the last byte written. This is worth knowing if
you need to manipulate the stack contents.

The operands to be pushed can be a register, a pair of registers or an immediate value:

push r6

push (R120)

push #80

pushw RR100

pushw #1500

Pushing an immediate value is especially useful when you are programming in C.

0 0 0 0 0 0 0 0 0 Result of the logical AND operation 1 0 0 0 0 0 0 0

jump taken Result of the ”jump if zero” jump not taken

0 0 0 1 1 0 1 0 1 Byte to be tested 1 0 1 1 0 1 0 1

1 1 1 0 0 1 0 1 0 Complement of the byte to be tested 0 1 0 0 1 0 1 0

1 1 0 0 0 0 0 0 0 Mask used for testing 1 1 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 Result of the logical AND operation 0 1 0 0 0 0 0 0

jump not taken Result of the ”jump if zero” jump not taken

32/138

ST9+ USER GUIDE

A special push instruction is Push Effective Address. This instruction does not push the data
itself, but the memory address of the data. For example:

pea 5(rr2)

This takes the contents of rr2, adds 5 and pushes the result onto the stack. This is widely used
in C programming.

3.3.1.4 Multiply and Divide

The multiply instruction takes two byte operands and provides a word result. All numbers are
treated as unsigned numbers (operands 0 to 255, result 0 to 65535). Though both operands
are bytes, the first one must address a word to receive the result. The first operand should
then reside in the low byte of the word, and the high byte, not used in the operation, will be
overwritten. The flag register is affected but the state of the flags after the operation is mean-
ingless.

To multiply a signed number (operands -128 to 127) by an unsigned number (operands 0 to
255) with a result in the range of -32768 to 32767, refer to the example given below:

ld r1,#signed_data

ld r4,#unsigned_data

btjt r1.7,neg

mul rr0,r4 ; rr0 = r1*r4, with r1 value a positive signed

; number

jp end

neg:

mul rr0,r4 ; rr0 = r1*r4, with r1 value a negative signed

; number

sub r0,r4 ; rr0=rr0-100h*r4

end

With the signed operand equal to 226=0E2h (means -30 for signed data) and the second un-
signed operand equal to 0Fh (+15) the result will be -450 (0FE3Eh).

This ”eight bits signed by eight bits unsigned” multiplication with a ”sixteen bits signed” result
takes a maximum of 36 cycles.

There are two divide instructions.

The div instruction divides a word by a byte, and returns the quotient and the remainder as the
low and the high bytes of the destination respectively. For example:

ldw rr0,#31184 ; rr0=#31184

ld r2,#201 ; r2=#201

33/138

ST9+ USER GUIDE

div rr0,r2 ; rr0=1D9Bh, 1Dh=#29 and 9Bh=#155

This puts the value 155 in r1 (the quotient) and the value 29 (the remainder) in r0, and r2 still
contains 201.

If the divider is greater than the dividend, nothing is done. If the divisor is zero, a trap is trig-
gered that acts like an interrupt request, and uses the vector at locations 2 and 3 in program
memory. It is up to you to write the appropriate code to handle this trap. Finally, the numbers
to be divided should be such that the quotient be less than 256, that is, can be stored in a
single byte. Otherwise, the results are undefined.

The usable result is only the data stored in r1 which is 155 (for the previous example), the re-
mainder must be divided by the divisor (201) to give more precision (16-bits precision).

ldw rr0,#31184 ; rr0=#31184

ld r2,#201 ; r2=#201

div rr0,r2 ; rr0=1D9Bh, 1Dh=#29 the remainder and

; 9Bh=#155 the quotient

ld r4,r1 ; r4=9Bh=#155

clr r1 ; rr0=1D00h

div rr0,r2 ; rr0=0BC24h, 0BCh=#188 the remainder and

; 24h=#36 the quotient

ld r0,r4 ; rr0=09B24h, 09B24h means in fix-point

; with the point in the 16-bits middle

; 09B24h=155.140625 instead of

; #31184/#201=155.1442786

In the best case, the number of cycles required to divide a word by a byte with 16-bits preci-
sion is 80 cycles. This program has to manage overflow and divide by zero functions in order
to be able to be used.

The divws instruction performs one of the sixteen partial divides required to divide a double
word by a word, so you need to write a subroutine to perform the division completely. An ex-
ample subroutine is given in the ST9+ Programming Manual.

3.3.1.5 Bit Operations

Microcontrollers are often used for controlling inputs and outputs on a single-bit basis, in order
to read the state of a contact, switch a relay on or off, etc. Because of this and because the
data is stored in bytes, instructions for bitwise manipulation of data are welcome.

The ST9+ provides instructions to load, and, or, exor, set, clear, complement and test single
bits. These are bld, band, bor, bxor, bset, bres, bcpl, btset.

34/138

ST9+ USER GUIDE

To designate a single bit in a byte, the notation .n is used. For example, r0.3 means bit 3 of r0.
Here are examples of bit manipulation instructions:

bld r0.2, r6.4 ; bit 4 of r6 copied to bit 2 of r0

bld r0.3, !r6.0 ; complement of bit 0 of r6 copied to bit 3 of r0

band r0.2, r0.3 ; r0.2 contains now (r6.4) and not (r6.0)

bor r0.2, r2.7

bset r0.0 ; bit 0 or r0 set to 1

bcpl r0.1; bit 1 of r0 is complemented

All the above instructions act on single working registers. If the source operand is preceded by
‘!’, the complement of the source bit is used.

To test a bit, to condition a later jump, we have already described the tm and tcm instructions.
There is another instruction, btset, that can act on either a single or a double working register,
and that sets the Z bit of the FLAGR register if the designated bit is zero. After which, the bit
is set to one. You can use this instruction in an interrupt service routine to test for a request
and acknowledge it in a single instruction.

Warning. Don’t use the bit manipulation instructions directly on bidirectional ports. To avoid
unwanted modifications to the port output register contents, use a copy of the port register,
then transfer the result with a load instruction to the I/O port. (Refer to the Input/Output Bit
Configuration section in the Device Datasheet for more details.)

3.3.1.6 Test and Jump

The btjf and btjt instructions test if a bit is set or cleared respectively and branch to another
program location if true. For example:

btjt r1.5,Lampon

bset r1.5 ; switch lamp on

Lampon:

... ; continuation of the program

Two instructions are well-suited for implementing lookup tables. These are cpjfi and cpjti. They
compare a byte in a register with a byte pointed to by a register pair, and increment the pointer
if the condition is not met. If the condition is met, the pointer is not incremented and the branch
is taken. Example:

; Find the position of a letter in a text.

Message:.ascii ”This is a trial”

ld rr0,#Message ; where to search

ld r2,#’t’ ; the character to search for

35/138

ST9+ USER GUIDE

Search:

cpjfi r2,(rr0),Search ; this is the search loop

... ; here rr0 points to the 11th character of message

... ; continuation

3.3.1.7 Far Branch

As explained in Section 3.1.7, the 4-Mbyte memory is a segmented memory. It is not possible
to reach another segment with the common CALL, RET and JP instructions because they do
not manage the CSR (Code Segment Register) register. This is managed by the three new
CALLS, RETS and JPS instructions. Only 2 to 4 cycles are added to the common instructions.

3.3.1.8 Optimized C Instructions

In C functions when a function is called, the compiler needs to push the variables in the user/
system stacks and to keep the return address location of the function inside the stack.

Therefore, a frame pointer is used, and 2 pieces of code named prologue and epilogue need
to be added by the C Compiler at the beginning and at the end of the function respectively.
The LINK and UNLINK instructions (LINKU, UNLINKU to use the user stack) are used to re-
duce the code overhead generated by the compiler inside the function. These instructions are
automatically added by the C Compiler instead of prologue and epilogue (if option -mlink is
specified).

The number of cycles gained by using these instructions is about 34 to 42 cycles and 8 bytes
per called function.

3.3.2 Advantages when Using C Language

The ST9+ has been designed with high-level languages in mind. In particular, the instructions
described above are of special interest to C programmers.

First, as a structured language, C typically uses the stack to pass arguments to functions, re-
turn values from functions, and store the local variables of the functions. An instruction such
as:

pushw #1500

pushes a constant integer value as the constant argument of a function. This is used in the fol-
lowing example:

/* define a function that has a single argument of int type */

void MyFunction (int Param) ;

{

36/138

ST9+ USER GUIDE

/* body of the function */

}

void main (void) ;

{

/* some code ... */

MyFunction (1500) ;/* invoke this function with a constant argument */

/* more code ... */

}

Since C makes heavy use of pointers, the instruction:

pea 4(rr2)

pushes the address of the 5th byte of a structure.

For example:

/* define a structured type */

struct sMyStruct {

int N1 ;

int N2 ;

char C1 ;

} ;

struct sMyStruct MyStruct ;/* create a variable of the above defined type
*/

/* define a function that has a single argument of type pointer to character
*/

void MyFunc (char * Arg) ;

{

/* body of the function */

}

void main (void) ;

{

/* some code */

/* invoke the function with the address of the character element of the
structure */

37/138

ST9+ USER GUIDE

MyFunc (&MyStruct.C1) ;/* &MyStruct.C1 = 4(rr2) if rr2 contains the
address of MyStruct */

/* more code */

}

The lddd, ldpp, lddp, ldpd instructions are used for block copies such as assignments of struc-
tures, etc.

Powerful addressing modes such as indirect, indirect with increment or decrement and in-
dexed shorten the code needed to access data even in structures or arrays. They also facili-
tate access to local variables created on the stack on entering functions. Working registers
that benefit from the most powerful instructions and addressing modes are heavily used by the
compiler. In fact, the GNU9 compiler does not always translate the source code as suggested
above. There are optimization schemes that save execution time and/or memory by judi-
ciously allocating the working registers, so that in many cases arguments are not pushed to
the stack, but merely to an available working register.

3.4 INTERRUPTS

The interrupt system of the ST9+ is very powerful, and, in consequence, requires some thor-
ough study to get the most out of it. However, it is worth learning since it allows you to build
very efficient programs with excellent interrupt response times.

The ST9+ interrupt system works the same as that of any microcontroller, except for two
points that call for special attention: the vector mechanism and the priority mechanism(4).

3.4.1 Interrupt Vectors

Unlike most microcontrollers, the ST9+ uses a two-level indirect interrupt vector system. This
means that each peripheral able to generate interrupt requests has a vector register that
points to a location in program memory (the vector array). This location contains the address
of the start of the interrupt service routine. This allows each peripheral to generate several dif-
ferent interrupt requests: the peripheral vector register points to an array of pointers to rou-
tines, each routine responding to a different interrupt cause. All pointers to interrupt pro-
cessing routines, except the Reset, must be located in the first 256 bytes of the Interrupt Ser-
vice Routine (ISR) segment (one of the 64 code segments). The trap for divide by zero with
the associated far call to the Interrupt Service Routine has to be repeated in all memory seg-
ments containing programs that perform division. Code may also reside in this 256-byte
space, provided that it does not overlap with the interrupt vectors.

Figure 13 shows the complete mechanism of the 22-bit address construction from the interrupt
which provides the Interrupt Vector Register value to the return from interrupt.

(4) Device Datasheet; Interrupts § 4.

38/138

ST9+ USER GUIDE

For each peripheral, the layout of the vector array is specified in the section related to its own
Interrupt Vector Register.

Figure 13 . Interrupt Vectors

As an example, let’s take the ST90158 Multifunction Timer 0. The registers that define the
MFT0 functions are all contained in pages 9 and 10 of register group 15 (0FH). Register 242,
called the Interrupt Vector Register (IVR), holds the address of the beginning of the vector
array in program memory. The IVR has the following bit layout:

00 0000

00 FFFF
01 0000

XX FFFF
ISR 0000

R240

R255

Paged Registers

Interrupt Vector

Interrupt Service
Routine Address

8-bit

Memory Space

Interrupt Program

6-bit

Register (IVR)

8-bit

00

22-bit

16-bit

ISR
Segment

Segment
0

22-bit

Bit D0 of IVR is always 0
since the addresses of the

interrupt service routine
start at even addresses

Divide by Zero Trap
ISR Address of

Divide by Zero Trap
ISR Address of

RESET
ISR Address of

repeated at each
segment

Only for the first
segment

00 0002

ISR 0002

At the end of the Interrupt Service
Routine, the IRET instruction returns
to the program in the segment
selected by CSR (CSR_5 to CSR_0)

PC from stack

22-bit

Divide by zero trap

(1) If the ENCSR bit of EMR2 is set (Enable Code Segment Register), the CSR is saved in the stack and then

CSR from stack

ISR

CSR

(2)

loaded by the ISR. If it’s reset, the CSR is not saved and only the ISR is used.

(2) If the ENCSR is set, the CSR is reloaded with the value saved in the stack when the interrupt occurs.
If it’s reset, CSR is used instead of ISR when the RETI instruction occurs (Return from interrupt).

ISR or CSR(1)

39/138

ST9+ USER GUIDE

T0_IVR (R242 page 9)

Where V4-V0 (fixed by software) are the high bits of the low byte address memory where the
vector for the first interrupt cause is located. Since there are three different interrupt causes,
and the address of each interrupt service routine occupies two bytes, the IVR must be loaded
with an address between 8 and 250 that is a multiple of 8 (i.e. the lower three bits are zero).
The layout above shows two bits W1 and W0 (fixed by hardware), and a third bit that is per-
manently set to zero. The two W1-W0 bits code four different possible interrupt causes, as in
the following table:

When an interrupt occurs, the resulting value is an address that is the value written in IVR
(here 40H), plus the value coded by the cause (if the cause is a capture event, W1-W0 are 10,
thus the value is 4).

This gives an even number, since the least significant bit is zero, as follows:

So IVR points to address XX 0044H (with XX the ISR segment number), which must contain
a word that is equal to the address in the ISR segment of the Interrupt Service Routine for that
cause.

An example of the code for setting the IVR is:

void ConfigTimer0 (void)

{

/* setting other registers... */

SelectPage (T0C_PG) ;

T0_IVR = (unsigned char)INTRELOADVECT ;/* Array of pointers to service
routines in ROM */

/* setting other registers, continued... */

}

V4 V3 V2 V1 V0 W1 W0 ’0’

W1 W0 Interrupt Source
0 0 Overflow/ Underflow event interrupts
0 1 Not available
1 0 Capture event interrupts
1 1 Compare event interrupts

V4 V3 V2 V1 V0 W1 W0 0
0 1 0 0 0 1 0 0

40/138

ST9+ USER GUIDE

Figure 14 . Interrupt Vectors: Example with Multifunction Timer 0

The corresponding source code could be:

; This program uses the 3 interrupt possibilities of MFT0

; Constants

IT_MFT0_VECT = 40h

; Vector table

.section.text

.org 00h ; (default address)

.word Reset ; reset vector

- ; if needed divide by zero, NMI vectors

-

R240

R255

65535

45h

ISR addre ss on
OVF/ UNF

47h

page09

R242

ISR on
compare event

ISR on
capture event

ISR on
OVF/ UNFevent

46h

Not available

44h
43h
42h

41h
40h

00h

Memory
(16-bit address space)

Interrupt
Vector Table

The value 40h as the base
address of the interrupt
vector table is chosen

arbitrarily by the programmer

Interrupt vector register (IVR)
contents = 40h

ISR address on
compare event

ISR address on
capture event

Group F
Paged Registers

(8-bit address space)

41/138

ST9+ USER GUIDE

-

.org IT_MFT0_VECT

.word isr_ovf_unf; ISR address on OVF /UNF

.fill 1,2,0xffff ; does not exist in MFT0 interrupt ; skip one vector

.word isr_capt ; ISR address on capture event

.word isr_comp ; ISR on compare event

-

-

-

; somewhere in the initialisation code...

;MFT0 initialisation

mft0_init:

spp #T0C_PG ; select MFT0 control register page

-

- ; setting of some other registers...

-

ld T0_IVR, #IT_MFT0_VECT; pointer for the vector table

-

-

- ; continuation of the program...

A similar scheme applies for all other peripherals, though the number of interrupt causes may
vary, and thus the size of the pointer table.

Note: To summarize, the table of vectors to an interrupt service routine in ROM for a given peripheral
is itself pointed to by the Interrupt Vector Register of this peripheral that must be set to the prop-
er value. This gives you an unusual degree of flexibility: a peripheral may have different interrupt
service routines at different times, without the need to add tests at the beginning of the interrupt
service routine. Let’s consider for example that we want to transfer a string of data from a pe-
ripheral. When the first byte of data comes in, we must initialise some variables to handle the
string. Then, all subsequent transfers merely copy the data from the peripheral to memory and
increment the pointer. Switching between these two modes is very easy. Initially, the IVR of the
peripheral is set to the block of vectors that point to the interrupt service routine that serves the
first time. This interrupt service routine changes the value of the IVR to another block of vectors
and returns. The next interrupt will be automatically re-routed to the other, lighter, interrupt ser-
vice routine. This reduces the execution time of this routine, since we do not need to test wheth-
er this is the first time that the interrupt service routine is called or not.

3.4.2 Interrupt Priorities

In any microprocessor-based system, there is a trade-off between the computational power of
the main program and the interrupt latency time. Expressed simply, the less the main program

42/138

ST9+ USER GUIDE

is disturbed, the sooner it finishes its job. On the other hand, we often need to serve interrupt
requests generated by the peripherals as quickly as possible. Since this is a trade-off, we
need to find a compromise that gives both enough power to the main program while still
keeping it as responsive as possible to interrupts. It is likely that we will need to modify this
compromise according to the current status of the program.

If we define that some interrupt requests are more urgent than others, we can define a priority
or a hierarchy of interrupt requests. The main program itself, if given a priority level, should be
considered as having the lowest priority (except sometimes when interrupts are undesirable).

In most cases, when the main program is running, it can be interrupted by any interrupt re-
quest. But once a request is being served, it most likely needs to continue undisturbed, unless
a request from a higher priority level occurs. Then, the higher priority request is served until
completion. The service routine then returns to the lower priority interrupt service routine, that
terminates and eventually returns to the main program. In the ST9+, this behavior is called
Nested Mode.

Other types of behavior may be required depending of the kind of processing. For this, the
ST9+ interrupt system has two Boolean parameters to select the way interrupts are handled,
which allow four basic choices.

The priority mechanism is driven by the Current Priority Level parameter. At a given time, the
part of the program being executed runs under a certain level. You can change this CPL by
writing a different value in the core’s Central Interrupt Control Register (CICR). You can assign
Priority Level (PL) to each interrupt source. At initialisation time, this value is written in one of
the control registers specific to the corresponding peripheral.

Note: The PL is a three-bit word that ranges from 0 to 7. Note that 0 stands for a high priority and 7
for a low priority. These bits belong to one of the configuration registers of each peripheral.

When a peripheral requests an interrupt, the built-in interrupt controller compares the priority
level of the interrupt request to the Current Priority Level. The interrupt is only acknowledged
if its priority level value is strictly less than (higher priority) than the Current Priority Level
value. This allows you to filter out interrupt requests according to their degree of importance or
of urgency according to the current activity of the program. The Non-Maskable Interrupt input
(NMI) is hard wired with a higher priority than any level, and thus is acknowledged immediately
in all circumstances.

The ST9+ offers two modes for managing interrupt priorities:

– Concurrent Mode

– Nested Mode

The difference between them is explained below.

43/138

ST9+ USER GUIDE

3.4.2.1 Global Interrupt Enable Flag

In both modes, when an interrupt request is acknowledged, the Interrupt ENable (IEN) bit is
cleared, preventing the interrupt service routine from being interrupted again until it is finished.
If required, you may prefer to keep it cleared for the duration of the routine or to set IEN at
some place in the routine using the ei instruction. In the first case, if an interrupt request of a
sufficient priority level is received, it will only be serviced as soon as the service routine cur-
rently running returns. In the second case, the same interrupt request is serviced as soon as
both it occurs and the IEN bit is set. In short, interrupt service routines may be re-interrupted
or not, at will.

3.4.2.2 Concurrent Mode versus Nested Mode

Selecting either Concurrent Mode (automatically chosen on reset) or Nested Mode changes
the way the Current Priority Level is managed.

In Nested Mode, the CPL is automatically set to the priority of the current interrupt service rou-
tine, and is reset to the previous value on return. This allows you handle the interrupt request
according to priority at all times, since during the execution of the service routine for a given in-
terrupt, only those interrupts whose priority is strictly higher than that of the one currently being
served will be taken into consideration. Then if, as must normally be done, the IEN bit is set
during the current service routine, it will be interrupted at once if an interrupt request of higher
priority occurs. If the IEN remains cleared for the whole duration of the service routine, those
interrupt requests will be served first after the current routine has returned.

44/138

ST9+ USER GUIDE

Figure 15 . Example with Nested Interrupts Enabled

Figure 16 . Example with Nested Interrupts Disabled

6

5

4

3

2

1

0

7

Priority

Main program

Interrupt #2

Main program
CPL is

CPL = 5

CPL = 2

CPL = 5

CPL = 7

ei

Interrupt #2 has priority level 2
Interrupt #5 has priority level 3
Interrupt #6 has priority level 6
Main program has priority level 7

Interrupt #5

Interrupt #6

Interrupt #5

CPL = 6

Interrupt #6 is requested
but not served because
its priority is lower than
the current CPL

Interrupt #5
is requested

Interrupt #2
is requested
and served

(automatically)
set to 7

di

ei

ei

ei

Nested mode: IAM bit =”1”
IEN is set to “1” by the programmer

(Interrupt #5 can be served)

Level

6

5

4

3

2

1

0

7

Priority

Main program

Interrupt #2

Main program
CPL is

CPL = 5

CPL = 2

CPL = 7

ei

Interrupt #2 has priority level 2
Interrupt #5 has priority level 3
Interrupt #6 has priority level 6
Main program has priority level 7

Interrupt #6

Interrupt #5

CPL = 6

Interrupt #6

Interrupt #5
is requested

Interrupt #2
is requested

(automatically)
set to 7di

Nested mode: IAM bit =”1”
IEN is not set to “1” by the programmer

(Interrupt #5
can be served)

is requested

Level

45/138

ST9+ USER GUIDE

In Concurrent Mode, the CPL is set exclusively by the programmer. You can change it if you
need to shift the compromise mentioned above either towards main program efficiency, or to-
wards short interrupt latency times. So you can have a high-priority service routine that is re-
interrupted by a low-priority interrupt request, if the CPL has been set to a low priority and the
IEN bit is set. This mode gives you maximum flexibility, but it is the most difficult to use since
you must keep track of every combination of interrupt requests to achieve the efficiency you
expect from your program.

Figure 17 . Example with Concurrent Interrupts Enabled

Concurrent mode does not look like a reasonable way to handle interrupts if you enable inter-
rupts in your interrupt service routine. It should be thought of as a way to fully control priorities
through programming, if nesting priorities cannot meet your processing requirements. For ex-
ample, let us consider the case when a timer produces a periodic interrupt that outputs some
data on an external digital to analog converter. The requirement is that the new data be output
at the very time of the interrupt, so as to reduce the jitter (or parasitic frequency modulation)
that would compromise the spectral purity. Then, once the data is output, the interrupt service
routine does some processing to make or get the data for the next interrupt. The latter part of
the processing is much less critical in terms of execution time, provided it is finished before the
next timer interrupt. Using Concurrent mode, you can assign that interrupt the highest priority
so that it will be served immediately, then re-enable the interrupts and, if needed, give it a pri-

7

6

5

4

3

2

1

0

Main program Main

Interrupt #5

Interrupt #2

Interrupt #6

Interrupt #2

Interrupt #5Interrupt #5
is requested

Interrupt #2 and #6
are requested.
The Interrupt #2 is
served first because
it ’s priority is higher
than the interrupt #6

CPL is set to 7

CPL=7

CPL=7

CPL=7

CPL=7

CPL=7

CPL=7

ei

ei

Interrupt #4
CPL=7

ei

Interrupt #4

CPL=7

Interrupt #4
is requested

Interrupt #4 is
served first because
it’s priority is higher
than the interrupt #6

Interrupt #2 has priority level 2
Interrupt #4 has priority level 4
Interrupt #5 has priority level 5
Interrupt #6 has priority level 6
Main prog has priority level 7

46/138

ST9+ USER GUIDE

ority level as appropriate. The service routine will then allow other interrupts to gain control, at
the expense of delaying its own completion.

Note 1: In practice, Concurrent mode does not differ much from nested mode if the interrupts are not re-
enabled during an interrupt service routine. Concurrent Interrupts Disabled looks like Nested In-
terrupt Disabled with the difference that the CPL is changed only by software when necessary.
The interrupt requests pending while the interrupt service routine is executing, will only be ser-
viced after the current service routine returns.

Note 2: An interrupt with priority level 7 will never be served.

3.4.3 External Interrupt Unit

This is a functional block that can receive interrupt requests from up to eight external pins, and
also from some internal devices such as the Watchdog Timer, the Serial Peripheral Interface,
etc. It is used to select the active edge for pin or device, and define the priority for each of the
four pairs. In addition, an NMI pin can be programmed as being maskable or non-maskable. It
is maskable on reset, and once set to non-maskable, it cannot again be set to maskable until
the next reset. This works as explained below.

3.4.3.1 Maskable External Interrupt Pins

These are eight external inputs you can set individually to rising-edge or falling-edge sensitive,
and masked. You assign priorities by pairs, making four groups with different priorities. Within
each group, the two interrupt requests have two successive priorities. For example, if you set
group C to priority 2, the INT4 input will have priority 2 and INT5 will have priority 3 (which is
lower).

47/138

ST9+ USER GUIDE

The simplified block diagram is the following:

Figure 18 . External Interrupts Simplified Block Diagram

3.4.3.2 Top-Level Interrupt

The Top Level Interrupt can have two sources: either the NMI pin, or the watchdog end-of-
count(5). This interrupt level has a special feature that allows you to mask it like any other in-
terrupt, or to make it a real non-maskable interrupt. For this, the TLNM bit (see Figure 19) can
remove the effect of the mask. Once set, it cannot be reset, thus preventing this interrupt from

(5) See Section 4.3 on the Watchdog Timer.

3 3

External Interrupt pin
(INT0 to INT7)

Edge trigger event
selection: one bit of EITR

Internal/External
source selection

One bit of
EIPR

Pending Bit

One bit of
EIMR

External interrupt
priority level

Current priority
level (CPL)

Interrupt to
the core

Bit IEN of CICR
Interrupt enable

Only for:
A0: INT0 or WDT interrupt
B0 INT2 or SPI interrupt

Internal interrupt

Priority
Comparator

(Device dependent)

A detailed block diagram
is provided in Section 7

Mask Bit

48/138

ST9+ USER GUIDE

being accidentally masked even in the case of a program failure. In any case, the Top Level
Interrupt uses the third fixed vector at addresses 4 and 5 in program memory. As the name im-
plies, it has a fixed priority that is higher than any other interrupt request. Though it does not
clear the IEN bit when acknowledged, unlike all other interrupt requests, its service routine
cannot be interrupted by any cause, including the Top Level Interrupt itself.

The simplified block diagram is the following:

Figure 19 . Top-Level Interrupt Simplified Block Diagram

NMI pin

Edge trigger event
selection: one bit of EIVR

Watchdog/NMI
source selection:

One bit of
CICR

Pending Bit

One bit of
NICR

Top Level Interrupt to
the core

Watchdog timer
End of Count

one bit of EIVR

Top Level not
maskable

Interrupt bit
Interrupt enable:

Two bits of
CICR

A detailed block diagram
is provided in Section 7

49/138

ST9+ USER GUIDE

3.4.3.3 External Interrupt Vectors

There are eight external interrupt causes. They are each connected to an external input that is
the alternate function of an I/O port. Some of these are shared with other causes in an exclu-
sive manner, i.e., the INT0 pin is multiplexed with the Watchdog/Timer interrupt request, and
the INT2 pin is multiplexed with the Serial Peripheral Interface interrupt request (on the
ST90158). Each cause is associated with a separate vector in Program Memory. All vectors
are contiguous, generating an array of 8 vectors starting with the INT0 vector, and ending with
the INT7 vector. This array may be freely located in program memory between addresses 8 to
240 (0F0h) in program memory.

These interrupt causes are grouped by pairs, and are given new names inside the interrupt
controller, as shown in the following table:

You can independently assign a priority to each pair (A, B, C, D), with levels that are multiple
of two, i.e. you can set them to priority levels 0, 2, 4, or 6. In each pair, the cause bearing the
figure zero assumes this priority, and the cause bearing the figure 1 assumes the next level
above. For example, if you assign level 4 to pair C, this means that INTC0 will have level 4 and
INTC1 level 5. You set this in register EIPLR (R245 page 0), where each group of two bits
gives the level of the corresponding interrupt cause.

The interrupt vectoring is summarized in the table below:

Interrupt Source Interrupt Cause
INT 0 INT A0
INT 1 INT A1
INT 2 INT B0
INT 3 INT B1
INT 4 INT C0
INT 5 INT C1
INT 6 INT D0
INT 7 INT D1

50/138

ST9+ USER GUIDE

Figure 20 . External Interrupt Vectors

3.5 DMA CONTROLLER

3.5.1 Overview

One of the most important advantages of the ST9+ is its ability to handle input/output data
flows without using core instruction cycles. This is made possible by the built-in DMA con-
troller. Once properly initialized, it allows peripherals to exchange data either with memory or
the register file, with no more use of the core resources than the stolen memory cycles strictly
needed to transfer the data.

To see how much faster DMA is than the simplest interrupt service routine, let us compare the
execution times.

Let us assume that the data comes from the serial port. The simplest interrupt routine is the
following:

GetOneByte:; interrupt latency: 22 cycles

push PPR ; save current page 8

pushw rr0 ; save rr0 10

spp #SCI_PG ; change register page 4

07

LSB of the Vector Table address
for the 8 external interrupts

(Hardware fixed)

MSB of the

for the

(Software fixed)

EIVR (R246, Page 0)
External Interrupt Vector Register

ISR address for INTD1

ISR address for INTB0

ISR address for INTA1

ISR address for INTA0

Vector Table:
(Addresses less than FFh)

8 external interrupts

Vector Table address

V7 V6 V5 V4 TLTEV TLIS IAOS EWEN

V7 V6 V5 V4

1111b

1110b

0111b

0110b

0011b
0010b

0001b

0000b
Lo
Hi

Lo
Hi

Lo
Hi

Lo
Hi

51/138

ST9+ USER GUIDE

ldw rr0, POINTER ; get pointer 12

ld (rr0)+, S_RXBR ; move data 12

ldw POINTER, rr0 ; store pointer 14

popw rr0 ; restore rr0 10

pop PPR ; restore current page 8

iret ; return 16

; ---

; Total: 116

With an internal clock of 25 MHz, this corresponds to an execution time of 4.64 µs. In contrast,
the DMA cycle time for the transfer of one byte from a register to a register file takes only 8 cy-
cles (16 cycles to the memory), that is 0.32 µs. The DMA feature saves you from using valu-
able core processing power for simple tasks like storing an input byte to memory. For ex-
ample, if a continuous flow of data is input at 19200 bits per second, the interrupt service rou-
tine would consume 1.11% of the total cycles of the core, as compared to the 0.0767% with
the DMA solution. Since the DMA is built-in and works with most of the peripherals, it is a good
idea to use it even for slow transfers.

The DMA uses the Segment mechanism to address 64 Kbytes along the linear 4 MBytes. See
Section 3.1.7 for more details.

3.5.2 How the DMA Works

The DMA consists of a transfer between a memory or register file and a peripheral, in either di-
rection. Assuming the peripheral is configured to handle externally supplied data or to provide
data to external circuits, two steps are needed for a transfer to occur.

The transfer must be requested by some event or condition.

A mechanism must handle reading the data from one part and writing to the other part.

The term DMA transfer represents the transfer of a single byte of data. Usually, more than one
byte is transferred and the transfer occurs in bursts. Thus, a third step is involved:

A mechanism that counts the transfers and stops them when the count is finished.

To the programmer, these mechanisms appear as registers to be properly initialized. The
three steps are handled as follows (see Figure 21).

3.5.2.1 Transfer Requests

The DMA transfer is requested in exactly the same way as an interrupt is requested. Ac-
cording to its type, the peripheral concerned sends a request based on an external event such
as a character received or transmitted by the Serial Channel Interface. You configure this in
the registers belonging to the peripheral involved. Special bits in the registers indicate that the
peripheral ready status, instead of requesting an interrupt, requests a DMA transfer.

52/138

ST9+ USER GUIDE

3.5.2.2 Transfer Execution

A DMA transfer can involve a memory location or a register in the register file. In any case, the
transfer requires an address and a counter. This address and counter are stored in registers
which you can define anywhere in the register file. The address register value is automatically
incremented after each transfer and the counter register value is decremented so that the next
transfer will involve the next address and this mechanism will continue until the counter is
equal to 0. Depending on whether the transfer addresses memory or the register file, there are
two cases.

If the transfer addresses the register file, the address register and the counter register are
single registers (a byte is enough to address 256 registers). The address of this address reg-
ister is stored in one of the peripheral’s registers, named DCPR. The low bit (RM) of this reg-
ister is set to zero indicating that the register file is involved in the transfer. The address reg-
ister must have an even address to address the DMA address, the next register storing the
DMA transaction counter.

If the transfer addresses the memory, the registers that hold the address and the counter must
be two double registers. In this case, the DMA address is pointed by the DAPR pointer register
and the DMA transaction counter is pointed by the DCPR pointer register. The low bit of the
DAPR indicates whether the memory segment is pointed by DMASR or ISR (see Section
3.1.7). The DMA address and the DMA transaction counter are not necessarily consecutive.

3.5.2.3 Transfer Termination

A burst terminates when the count of transfers reaches a predefined value. To set this up, you
set a counter register in the register file that holds the count of transfers to execute at the start
of a burst. Each transfer decrements it, and the DMA mechanism is stopped when the counter
reaches zero.

The way DMA controller terminates the transfer differs from one peripheral to another, but typ-
ically it consists of resetting the bit in the configuration register that tells the peripheral to issue
DMA requests instead of interrupt requests. Then, on the last transfer, when the transfer
counter reaches zero, it toggles the DMA/Interrupt request bit so that the peripheral issues an
interrupt request again. If this request is unmasked, you should vector it to an interrupt service
routine that handles the DMA termination.

To summarise:

For register transfers, the DCPR of the peripheral points to a user-defined pair of registers that
holds the address and the count. Register DAPR is unused. For memory transfers, the DAPR
points to the user-defined register pair that holds the address. The DCPR register points to the
user-defined register pair that holds the count.

53/138

ST9+ USER GUIDE

Some peripherals, such as the Multifunction Timer, even have a double pair of DAPR/DCPR
registers. Only one pair is used at a time. In so-called Swap Mode, this allows the timer to use
one data buffer for output and another buffer for input. The pair of registers used is automati-
cally changed when one transfer burst terminates, allowing a continuous data flow between
the program and the peripheral, with minimum data handling overhead.

In addition, the MFT has 16-bit registers. Transfers imply two byte transfers for each register.
This is ensured by a mechanism that gives the DMA the highest priority as soon as the first
byte is transferring. This guarantees that the second byte will also be transferred in the
shortest delay, even if other DMA requests become pending while the transfer is in progress.

Figure 21 . DMA Data Transfer

3.6 RESET AND CLOCK CONTROL UNIT (RCCU)

The RCCU is composed of the Clock Control Unit (CCU) and the Reset and Stop Manager.

3.6.1 CLOCK CONTROL UNIT

The CCU generates the peripheral clock INTCLK and the CPU clock CPUCLK . It is a useful
clock generator with low power function and low external frequency oscillator to reduce elec-
tromagnetic emissions.

The diagram can be reduced as in Figure 22.

PERIPHERAL

DATA peripheral

REGISTER FILE

REGISTER FILE

ADDRESS

COUNTER

0

DF

Start ADDRESS

Current
COUNTER value
Decrease after
each transfer

Current ADDRESS

REGISTER FILE
OR

MEMORY

54/138

ST9+ USER GUIDE

Figure 22 . CCU Simplified Block Diagram

The CCU is composed of 5 main blocks:

3.6.1.1 Clock Multiplier

The Clock Multiplier is a part of the Figure 24.

The advantage of the Clock Multiplier is that it can produce a variable clock frequency de-
pending on the needs of the CPU.

Since the input clock to the PLL circuit requires a 50% duty cycle for correct operation, the di-
vide by two should be enabled (DIV2 bit of MODER register set) if the PLL is enabled. It is nec-
essary when a crystal oscillator is used, or when the external clock generator does not provide
a 50% duty cycle. In practice, the divide-by-two is virtually always used in order to ensure a
50% duty cycle signal to the PLL multiplier circuit.

The Clock Multiplier output is one of the CLOCK2, CLOCK2/16 or CLOCK2*PLLMUL/(DX+1)
(PLLMUL is the PLL multiplier coefficient) frequencies.

BLOCK COMMENTS

1
Quartz oscillator gives the main frequency generator. The frequency is in the range of 3 to 5
MHz.

2 External clock for very low power consumption with a very low frequency.

3
The Clock Multiplier can reduce or increase the input frequency by using prescaler and
PLL.The increase is for the normal use and the decrease for low power consumption.

4
The selector aims the clock coming from the Clock Multiplier for normal or low power use or
aims the clock CK_AF for a very low power consumption.

5
The prescaler is used also for low power consumption. The INTCLK is not change giving a high
frequency to the internal peripheral. This allows the user to slow down program execution
during non processor intensive routines.

Quartz
Oscillator

CK_AF
Source

Clock Multiplier

[1/32 to 14]

Prescaler CPUCLK

INTCLK

1

2

3 4

5

55/138

ST9+ USER GUIDE

The two frequencies CLOCK2 and CLOCK2/16 are for low power consumption or reduce
power consumption, depending on the Wait For Interrupt instruction (refer to the flow chart
Figure 23).

The PLL has four clock multiplier factors (6,8,10 and 14) controlled by the two bits MX0 and
MX1 in the PLLCONF register. The clock divider is controlled by three bits DX0:2 in the
PLLCONF register for seven rates which are 1/(DX+1). Setting DX2:0=7 turns OFF the PLL to
reduce consumption.

When you switch on the PLL, you have to allow a delay for the PLL to lock.

Figure 23 . INTCLK and CPUCLK Flow Chart

WFI

LPOWFI==0

YesNo

NoYes

Previous

WFI_CKSEL==0

YesNo

CK_AF
YesNo

Present

CLOCK2/16CLOCK2/16 CK_AF

Instruction

XT_DIV16==0

YesNo

CLOCK2/16
(PLL OFF)

CSU_CKSEL=0

PLL-CLOCK CLOCK2
(PLL OFF)

LOW POWER Reduced power consumption Slow mode
Reduced power consumption

Fast mode

CPUCLK Stopped CPUCLK=INTCLK/N

INTCLK=

PLL is OFF

CKAF_SEL=0
CKAF_ST=0

CKAF_SEL=1
CKAF_ST=1 CSU_CKSEL=0CSU_CKSEL=0

CLOCK

CSU_CKSEL==0

YesNo

CLOCK2
(PLL ON)

DX2:0==7

NoYes

DX2:0==7

YesNo

CKAF_SEL==0

YesNo

CK_AF
NoYes

Present

CK_AF

56/138

ST9+ USER GUIDE

Figure 24 . Clock Control Unit Programming

3.6.1.2 CK_AF Source

When you execute a Wait For Interrupt (WFI) instruction using the Clock Multiplier with output
clock CLOCK2/16, the power is put in Low Power mode. To reduce this power further you
have the possibility of slowing down the INTCLK frequency by using an external clock source
CK_AF. The CK_AF clock will be selected if the WFI_CKSEL bit in the CLKCTL register is set
and if CK_AF is present.

The CK_AF source can also be used in Run mode (no WFI) to reduce power consumption if
CKAF_SEL is set and CK_AF is present.

3.6.1.3 Low Power with Frequency Slow Down

When the PLL has been frozen by a WFI instruction you need a delay after the interrupt to wait
for the PLL to lock. To avoid this delay but not to lose the Low Power consumption, you have
two choices which are:

– To use a WFI instruction with LPOWFI reset and initialize INTCLK to CLOCK2 with
XT_DIV16 bit set (CSU_CKSEL register). When the WFI occurs, CPUCLK is stopped and
INTCLK doesn’t change.

Quartz

PLL

CK_AF

1/16

x
1/2

DIV2 CKAF_SEL

1/N
oscillator

MX(1:0)

0

1

0

1

0

1

source

CKAF_ST

CSU_CKSEL

6/8/10/14
1

0

XT_DIV16DX(2:0)

CLOCK2

CLOCK1

(MODER) (CLK_FLAG) (CLKCTL)

(PLLCONF) (CLK_FLAG)

CK_AF

INTCLK

to
Peripherals

and
CPU Clock Prescaler

XTSTOP
(CLK_FLAG)

Wait for Interrupt and Low Power Modes:

LPOWFI (CLKCTL) selects Low Power operation automatically on entering WFI mode.
WFI_CKSEL (CLKCTL) selects the CK_AF clock automatically, if present, on entering WFI mode.
XTSTOP (CLK_FLAG) automatically stops the Xtal oscillator when the CK_AF clock is present and selected.

CLOCK MULTIPLIER

57/138

ST9+ USER GUIDE

– To not use the WFI instruction. Set XT_DIV16 bit of CSU_CKSEL register. Initialize DX2:0
of PLLCONF to 6 to divide the PLL output clock by 7 which is the maximum. Initialize the
CPUCLK clock prescaler to 7 to divide INTCLK by 8.

3.6.2 Reset and Stop Manager

RESET normally means restarting from the beginning with everything initialized. However
sometimes it’s necessary to know the context of the ST9+ before the RESET and if it was an
external or internal RESET. Two bits, SOFTRES and WDGRES in the CLK_FLAG register in-
dicate the previous context. Table 3. shows the three cases to manage.

Table 3. Three Types of RESET

These bits are read-only and change with each Reset.

4 USING THE ON-CHIP PERIPHERALS

This chapter introduces the main peripherals of the ST9+ family. Each variant includes none,
one or several peripherals of each type. This allows you to select the variant that best fits your
requirements. For high-volume markets, you can order custom versions with exactly the type
and number of peripherals required, including the relatively exotic ones not described here but
available on request, such as videotext decoders etc.

4.1 PROGRAMMING THE CORE AND PERIPHERALS

In addition to describing how each peripheral works, we give examples of the code needed to
use them in several configurations. This code is available on the Companion software. You
can experiment with the original code or modify it to do the functions you require.

Configuring and using the core and the peripherals involves a considerable amount of bit ma-
nipulation in the registers. Many variables that drive microcontroller states are Boolean
values. To reduce the use of addressable space in registers, bits have been logically grouped
in bytes, so the majority of the control registers have their eight bits fully used.

To properly program these registers, you need to track the exact position of each bit in each
register. You can do this by referring systematically to the appropriate Data Sheet, and com-
menting the source text so that it can be easily read and understood later. See the following
example:

RESET Type SOFTRES bit WDGRES bit Meaning
External RESET 0 0 High to low level on RESET pin.

Watchdog RESET 0 1
The Watchdog Timer is activated and the Timer
has reached 0.

Software RESET 1 0
The HALT instruction is executed, waiting for an
external Reset to restart (if the SRESEN bit in the
CLKCTL register is set).

58/138

ST9+ USER GUIDE

ld R235,#11100000B ; R235 is register MODER

; |||||||+-- HIMP : no foreign access to bus

; ||||||+--- BRQEN : no foreign access to bus

; |||+++---- PRS2,1,0 : processor at full speed

; ||+------- DIV2 : crystal frequency divided by 2

; |+-------- USP : user stack pointer in registers

; +--------- SSP : system stack pointer in registers

spp #0 ; SPI page

ld R254,#10000001B

; |||||||+-- SPR0 : SPR1, SPR0 = 01: clock divided by 16

; ||||||+--- SPR1 :

; |||||+---- CPHA : Input sampled on rising edge

; ||||+----- CPOL : Rest level of serial clock = 0

; |||+------ BUSY : Set to ready

; ||+------- ARB : No I C arbitration

; |+-------- BMS : SPI used as a shift register (not I C)

; +--------- SPEN : SPI enabled

This style has the advantage of clarity. However, there is still a problem that it does not ad-
dress: the variety of the different products of the ST9+ family.

The different products available in the ST9+ family are very diverse and as a result it is not al-
ways the case for all products that a given function is performed by the same bit of the same
register. The location of a register in one peripheral may be different in another. To avoid this
problem, the GNU9 programming tool chain provides a set of include files that define the phys-
ical location of every bit and register, by their symbolic name. These files correspond to the
appropriate variant of the ST9+. Using them guarantees that switching to another member of
the family will not need more than changing the Include statement at the beginning of the
source text. The same example as above, using the predefined symbols reads as follows:

.include ”system.inc” ; System register

ld MODER,#MOm_sspm+MOm_uspm+MOm_div2m; Both stacks in

;registers, clock divided by 2

spp #SPI_PG ;SPI page

ld SPICR,#SPm_spen+SPm_SP_16 ; Enable SPI,1st clock

; configuration, Clock/16

59/138

ST9+ USER GUIDE

This notation is more compact, and is independent of changes either between variants in the
same family, or by changes made globally to the family in the future. This writing style is rec-
ommended for this reason.

4.2 PARALLEL I/O

The parallel input-outputs have a basically very straightforward functionality. Once initialized,
they appear as a register that can be written or read. However in many cases, direct byte-wide
input-output is not sufficient. Bit-oriented I/O is often what is used in microcontroller systems.
A powerful feature of the ST9+ is that you can address the eight bits of each port individually.
The ST9+, like most microcontrollers also provides the external pins of the other peripherals
(timers, UARTs, etc.) by diverting some bits from the parallel I/O ports.

The ST9+ parallel I/O has an additional very flexible feature. You can independently configure
each bit as:

– An input with two variants (TTL or CMOS levels)

– An output with also two variants (open-drain or push-pull)

– A bi-directional port with either a weak pull-up or an open-drain output side

– An alternate function output (that is, the output pin of an internal peripheral), with also either
open-drain or push-pull output driver.

– Analog Input (see note)

Note : On the port that accommodates the inputs of the Analog to Digital Converter, there is a special
feature. In all other peripherals that require an input, you only need to configure the correspond-
ing pin as an input. However, when using the ADC you can put the input pins to any voltage level
from ground to Vcc. This is normally badly handled by standard logic gates that dissipate con-
siderable power when the voltage reaches the limit range. To avoid this, the port that provides
the input pins of the ADC has a special Alternate Function mode. Unlike the other ports it is used
for input. This mode disconnects the input buffer from the pin and shorts the buffer input to the
ground. The output buffer is put in high-impedance mode. The pin is permanently connected to
the input of the ADC, thus allowing its voltage to be read at any time.

To handle all these capabilities, each port requires three configuration registers, PxC1, PxC2
and PxC3, where x is the port number. Once configured, a port exchanges data with the core
through the PxDR data register.
The configuration registers are placed in various pages of the register group 15, as well as the
data registers, except for the first six ports. These six belong to the system register group
(group 14) for easy access.

Some ports also include DMA capability, configurable to work with the Multi-Function Timer.

60/138

ST9+ USER GUIDE

4.3 STANDARD AND WATCHDOG TIMERS

You can use this timer both as a regular timer and as a watchdog timer.

4.3.1 Description

The block diagram of the Watchdog Timer is the following:

Figure 25 . Watchdog Timer Simplified Block Diagram

In Counter/Timer mode, the WDT can count pulses coming either from an input pin (WDIN; in
the ST90158, alternate function of P7.0) or from the internal clock divided by 4. When the in-
ternal clock is used, the external pin, if enabled, can either gate the clock, start the counter, or

WDIN Pin

Input Modes and
Clock Control Logic

Prescaler (8-bit)

16-bit Downcounter

Output Control
Logic

Reset and Interrupt
Control Logic

Reset and
interrupt
request
to the core

INTCLK/4

3 bits of
WDTCR

2 bits of
WDTCR

3 bits of
WDTCR

1 bit of
WCR

WDOUT Pin

INT0 Pin

NMI Pin

2 bits of
EIVR

A detailed block diagram
is provided in Section 7

61/138

ST9+ USER GUIDE

reload it with its initial value. You select these modes using three bits in the WDT Control Reg-
ister, as follows:

4.3.1.1 Event Counter Mode

The counter value is decremented at each falling edge on the WDTIN pin if ST_SP is high (bit
7 of WDTCR).

Figure 26 . Timer in Event Counter Mode

4.3.1.2 Gated Input Mode

The counter value is decremented by WDTCLK (INTCLK / 4) if the WDTIN pin and ST_SP are
high.

Figure 27 . Timer in Gated Input Mode

INEN INMD1 INMD2 Mode
1 0 0 Event counter mode
1 0 1 Gated mode
1 1 1 Retriggerable input mode
1 1 0 Triggerable input mode
0 X X Input section disabled. Internal clock selected.

WDTIN Pin

ST_SP

Counter
Value

WDTIN Pin

ST_SP

Counter

Value

62/138

ST9+ USER GUIDE

4.3.1.3 Retriggerable Input Mode

The counter value is decremented by WDTCLK (INTCLK / 4) if ST_SP is high.

The initial value is reloaded either at the rising edge of ST_SP or at each falling edge of the
WDTIN pin if ST_SP is high.

Figure 28 . Timer in Retriggerable Input Mode

4.3.1.4 Triggerable Input Mode

The counter value is decremented by WDTCLK (INTCLK / 4) if ST_SP is high and falling edge
of WDTIN occurs.

The initial value is reloaded at the first falling edge of the WDTIN pin if ST_SP is high.

Figure 29 . Timer in Triggerable Input Mode

4.3.1.5 Single/Continuous Mode

On counter underflow (End Of Count), the counter is always reloaded with the value of the
latch that is actually accessed when writing to the WDTHR and WDTLR register pair.

Initial Value

WDTIN Pin

ST_SP

Counter
Value

Counter
Value

Initial Value

ST_SP

WDTIN Pin

63/138

ST9+ USER GUIDE

The counter has two modes: Single-shot or Continuous, selected by the S_C bit of WDTCR.
In Single-shot mode, the End Of Count also resets the ST_SP bit of the WDTCR, which stops
the counter after one cycle. In Continuous mode on reaching the End Of Count condition, the
counter reloads the constant and restarts. When the ST_SP bit is set, the contents of the latch
are written again to the counter, allowing the initial count value to be changed before starting
the counter.

You restart the down counter by setting the ST_SP bit. The constant value can be either the
initial value or a new one as shown on the following diagram:

Figure 30 . Timer in Single Mode

4.3.1.6 Output Pin

Another pin, WDOUT (alternate function of P8.4 for ST90158), when enabled by the OUTEN
bit, can change its state in two ways on the end of count of the main counter. Basically, each
time the counter overflows, it updates the output value. This can produce two different effects,
selected by the OUTMD bit: either the state of the WROUT bit is copied to the output at that
time, or the output is complemented.

ST_SP

Counter
Value

Initial Value

End of Count

A new value may be written in the counter latches at any time. It will be transferred
into the counter on end of count or on various conditions on WDTIN and ST_SP.

64/138

ST9+ USER GUIDE

Figure 31 . Output Pin Block Diagram

4.3.2 Timer Application for Periodic Interrupts

In this application, the clock is internal and the input and output pins are unused. The counter
is set to Continuous mode, and the value of the reload registers chosen so that the overflow
occurs exactly every 128 microseconds.

4.3.2.1 Initialisation of the WDT for a Periodic Interrupt

Very few registers are involved when you use the WDT for this purpose, since there is no input
apart from the internal clock and no output. However, the WDT interrupt handling is a little dif-
ferent from most other peripherals in that it borrows the interrupt circuit named INTA0 that is
normally assigned to external interrupt pin INT0. So you configure the WDT in two steps: ini-
tializing the WDT itself, and also the external interrupt INTA0.

In this example application, the internal frequency is 24 MHz and the interrupt rate must be
8192 Hz. The timer starts with the preset count on the low-to-high transition of the ST_SP bit
of the WDT Control Register.

The initialisation routine for the WDT is then:

D

07

1

0

WDTCR (R251 page 0)
Timer/Watchdog Control Register

Logical level user definable
while counter is running

WDTOUT
Pin

EOC

ST_SP S_C INMD1 INMD2 OUTMD WROUTINEN OUTEN

65/138

ST9+ USER GUIDE

/* *********** Configure Watchdog for Periodic Interrupt *************/

void ConfigWDT (void)

{

SelectPage(WDT_PG) ;/* select Watchdog page */

WDTPR = 0 ;/* 122 us = 366 ticks */

WDTR = 365 ;/* preset is nb ticks-1 (WDTR is the pair WDTLR and WDTHR) */

WDTCR = (WDTm_stsp) ;/* WDT is set to continuous mode, no inputs, no
outputs */

/* Interrupt must be connected to intA0 in the EIVR register */

}

The initialisation routine for INTA0 follows. In this example application, interrupt A0 is the only
”external” interrupt enabled, and it is assigned priority level 2:

/* ***********Initialise Interrupt A0 and Current Level **************/

void ConfigInterrupts (void)

{

SelectPage(EXINT_PG) ;

EIVR = (EIm_tlism+(unsigned char)INTA0VECT) ;/* int. A0 is generated
on WDT overflow */

EIPLR = 1 ;/* intr A0 (and that of same group) with high priority */

EIMR = EIm_ia0m ;/* intr A0 alone enabled */

CICR = (Im_gcenm+Im_iamm+Im_ienm)+7 ;

/* current processing level: minimum ; int. enabled, nested mode */

/* This starts also the MFT */

}

4.3.3 Watchdog Application 1: Generating a PWM

This application provides a PWM with a programmable duty cycle. You can use it as an appli-
cation exercise for learning to use the programming and debugging tools since it is very
simple. The only hardware required to watch the effect of the program is a LED in series with
a resistor connected between P4.4 and Vcc (anode towards Vcc). You will find the application
in the Companion software in the WDT/appli1 directory.

The WDT can only provide a delay after which the output may change its state, and an inter-
rupt is triggered. The principle of using the WDT as a rectangular signal generator is to set it
to Continuous mode, to load it with a time value, and let it count down until zero. The control
register is set so that an interrupt is then generated, and the output pin is updated at the same
time. The interrupt service routine will reload with the other value, and preset the WROUT bit
to the complement of the current value, so that the opposite state will be transferred to the

66/138

ST9+ USER GUIDE

output pin at the next end of count. By alternating between two time values, a duty cycle other
than 50% can be obtained (PWM). When the interrupt occurs, the output has already changed
its state, so that the waveform can be very precise since it depends only on the timer hardware
and not on the software. All that the interrupt service routine has to do is to load the timer latch
with the value to be used when the end of count is reached. Thus, the constraint is that the re-
load interrupt must be guaranteed a latency time less that the shortest time between two
output transitions. This may or may not be difficult to realize according to the intended timing
and the presence of portions of the program where the interrupts are disabled. It is thus rec-
ommended to properly manage the interrupts and thoroughly use the priorities to achieve this
requirement.

The WDT does not have an interrupt cause and a vector of its own. It must borrow them either
from the Top Level Interrupt or the INTA0 input. We have chosen to use INTA0 here, and to
give it a priority of 6 which is high, but not the highest (which is 0).

4.3.4 Watchdog Application 2: Using the Watchdog

A watchdog timer is a safety measure to prevent a program going adrift. It relies on a hardware
timer that must be periodically reset by the program. Failing to do this will reset the whole pro-
gram (at the End Of Count). You will find it in the Companion software in the WDT/appli2 di-
rectory.

The efficiency of this approach varies with the type of program and depends on the following
conditions:

The hardware action to perform in order to reset the timer must be so complex that if the pro-
cessor goes adrift, it cannot accidentally reset the watchdog. In the ST9+, you need to write
0AAh and 055h successively to the WDTLR.

The chosen time-out value must be greater than the interval at which the program resets the
watchdog. It must also be as close as possible to that interval for maximum safety. Since the
watchdog time-out value is set once at the beginning of the program, this condition is best ful-
filled if the resetting action is performed at constant intervals.

A special software arrangement must be designed to reduce the chance that the part of the
program that resets the watchdog can continue undisturbed when other parts of the program
are faulty. This may include an interlock mechanism that requires that several program
branches be executed to enable the resetting of the Watchdog count.

As you can see, achieving a very secure program malfunction detection by the sole means of
a watchdog is a very difficult thing to realize. However, the watchdog can still play a key role
in the safety of some systems, an example of which is an induction motor controller.

67/138

ST9+ USER GUIDE

4.4 MULTIFUNCTION TIMER

This device is the most powerful of the ST9+ on-chip peripherals. This description only covers
its main features. You can study the more intricate details with the help of an ST9+ Datasheet.

The Multifunction Timer can handle many different operating modes; so many in fact, that vir-
tually the only limit is your imagination. Let’s first have a look at the general organization.

The first diagram in Figure 32 represents the inputs and outputs, the prescaler register and the
clock selection blocks, with their associated configuration registers.

68/138

ST9+ USER GUIDE

Figure 32 . MFT Input/Output Modes

The two outputs are actually the Q outputs of a flip-flop which set and reset. Flip-flop inputs
can be individually configured to receive pulses from either of the following events: compare
with CM0, compare with CM1, and overflow/underflow. This is used to generate single-shot or
periodic wave forms simply by using the timer.

Input pin
configuration

Input pin function

CLK logic U/D logic Clear logic

8 bit prescaler

16 bit counter of the MFT

Action on outputs
after a successful event on

<Cmp0> <Comp1> <OVF>

Output pin configuration

Internal clk/3

TxINA pin TxINB pin

TxOUTA pin TxOUTB pin

3 bits of
TCR

2 bits of
TCR

4 bits of
ICR

4 bits of
ICR

Clock U/D Clear

5 bits of
FLAGR 8 bits of

OACR

8 bits of
OBCR2 bits of

TMR
(output enable)

69/138

ST9+ USER GUIDE

In addition to providing output signals, the timers can generate so-called ”internal events” that
can be used to synchronize other internal peripherals such as the DMA and the Analog to Dig-
ital Converter. Not all peripherals to be synchronized can be connected to just any MFT. For
each ST9+ variant, the connection between each MFT and the other peripheral is unique.
Refer to the corresponding datasheet for more information.

The second block diagram represents the counter, the capture and compare registers, the re-
load logic and the associated configuration and status registers. The interrupt and DMA blocks
are not represented.

Figure 33 . MFT Simplified Block Diagram

In the above diagrams, the interrupt and DMA logic are not represented. They obey the gen-
eral interrupt and DMA rules described earlier, and are controlled by three registers.

The Interrupt Vector Register controls the location of the interrupt vectors in program memory.
They must be located at addresses that are multiples of 8.

VR02111J

2 bits of
FLAGR

(result:)

(result:)

6 bits of
TMR

1 bit of TCR

1 bit of CICR

Compare 1 RegisterCompare 0 Register

Compare Logic

16-bit Counter
with Comparator

Capture/Load Register 0 Capture/Load Register 1

Load/Capture/Monitor
Logic

Counter
Enable

1 bit of TCR
(OVF/UNF)

(result:)

2 bits of
FLAGR

Clock

U/D

Clear

70/138

ST9+ USER GUIDE

Figure 34 . MFT Interrupt Vector Register

The Interrupt and DMA Mask Register individually enable and disable the various interrupt
and DMA sources.

Figure 35 . MFT Interrupt and DMA Mask Register

The upper five bits of the Interrupt and DMA Control Register indicate the status of the inter-
rupts and the DMA blocks. The lower three bits set the Interrupt and DMA priority level.

07

0 0
0 1
1 0
1 1

IVR (R242 page 9 MFT0) (R246 page 9 MFT1)

Interrupt Vector Register

Not used

MSB of the vector

by software inside the
interrupt vector table

address table, fixed
LSB of the vector address table, fixed by hardware

Overflow/underflow event interrupts
Not Available
Capture event interrupts
Compare event interrupts

Interrupt Source

V4 V3 V2 V1 V0 W1 W0 D0

07

IDMR (R255)
Interrupt / DMA Mask Register

OVF Interrupt Mask

Compare 1 Interrupt Mask
Compare 0 Interrupt Mask

Compare 0 DMA Mask
Capture 1 Interrupt Mask

Capture 0 Interrupt Mask

Capture 0 DMA Mask
Global Timer Interrupt Enable

GTIEN CP0D CP0I CP1I CM0D CM0I CM1I 0UI

71/138

ST9+ USER GUIDE

Figure 36 . MFT Interrupt and DMA Control Register

The Input and Output Control Register has only two active bits. They are used to internally
connect the Output A of each MFT to its own Input A. One bit does this connection for all even-
numbered MFTs, and the other for all odd-numbered MFTs.

Figure 37 . MFT I/O Control Register

4.4.1 Generating Two Pulse Width Modulated Waves with One MFT

4.4.1.1 Description Example

The Multifunction Timer is used here as a double pulse-width modulator. It is also possible to
have a single PWM output if needed. Let’s look at a simplified block diagram of the MFT
showing only the functional blocks that are actually used. See Figure 38.

This is possible using the two comparators that simultaneously compare each capture register
with the free-running counter. When the counter overflows, it is reloaded with the contents of
the Load Register 0. At that time, both outputs are reset.

When the value of the counter becomes equal to one of the compare registers, a pulse is sent
to the output flip-flop of the corresponding side, thus setting the output. So the low time is the
time between the counter overflow and the comparison. The high time is the remainder of the
period.

07

IDCR (R243, Page 9, MFT 0) (R247, Page 9, MFT 1)

Interrupt/DMA Control Register

Interrupt/DMA Priority Level

CPE CME DCTS DCTD SWEN PL2 PL1 PL0

07

SC1 SC0

IOCR (R248)
I/O Connection Register

IOCR (R248)

TxINA and TxOUTA
Internally connected or not
for each even MFT.

TxINA and TxOUTA
Internally connected or not for each odd MFT.

72/138

ST9+ USER GUIDE

Figure 38 . MFT Block Diagram

Figure 39 . Using a Counter and 2 Compare Registers to Modulate 2 Pulse Widths

Actually, as nearly everything is configurable by values in control registers, this is only one of
the ways to do it. In particular, the direction of the counter (upward or downward) and the ef-
fect of the actions on the outputs (set/reset) can be chosen at will.

Compare Register 1

Comparator 1

Free-running

Comparator 0

Counter

Compare Register 0

Load Register 0

Prescaler

Set

Reset

Reset

Set

CPU
Clock

Clock

Full Count

Phase A PWM

Phase B PWM

Compare Signal

Overflow Signal

Compare Signal

Output B

Output A

Reload
Value

Register 0
Value

Compare
Register 1
Value

Compare

Current contents of the counter

73/138

ST9+ USER GUIDE

This value of the Load Register determines the frequency of the output signals. For example,
with a reload value of 255 and a 25 Mhz internal clock, the PWM frequency is 1/256 of the 25
MHz clock divided by 3, that is 32,552 kHz. In this case, the range of the compare registers is
1 to 255 inclusive. A value of 0 locks the outputs to the high state.

To use the timer to deliver variable PWM, we need to change the value of the compare regis-
ters from time to time. The simple way that first comes to mind is to write into the compare reg-
ister whenever we need to update the PWM rate. This can lead to problems.

If we write the new value into the compare register while the counter value matches the pre-
vious contents, this can make the comparison fail and the pulse that changes the state of the
output is not produced. The result is the output signal misses one cycle, as follows:

Figure 40 . Compare Register is modified while its Content matches Counter

This will obviously have a bad effect on the electronic circuit connected to this output.

Another problem can occur if the reload value exceeds 255. Then, two bytes are needed to ex-
press the compare values. Since the ST9+ is an 8-bit machine, the two bytes that make up the
word are sent one after the other. If the high bytes of the old and new values are the same,
there is no problem. But if they differ, there are three possibilities for the value in the compare
register:

– The register contains the old value

– The register contains one byte of the old value, and the other byte of the new value

– The register contains the new value

Reload
Value

Compare
Register 0
Value

Output A

This pulse is missing.

This comparison has failed

74/138

ST9+ USER GUIDE

Depending on the relative values of the old and new values, on the order of writing the bytes
(high byte first, or low byte first), and on the direction of the timer (up-counting or down-
counting), various things may happen. These can range from a missed comparison (see
Figure 40) to two comparisons in the same cycle (not a problem).

This indicates that you have to pay attention to the time at which the compare register has to
be updated. If we consider that the duty cycle does not vary widely from one cycle to another,
the safest time to change value is as soon as possible after the match. The best way to do it
is to store the new value in a variable (a register is a good choice), and configure the MFT to
trigger an interrupt when the match occurs. Then, the interrupt service routine is executed and
the new value is safely copied into the compare register.

4.4.2 Generating a Pulse Width Modulated Wave with a Cleaner Spectrum

The use of a MFT to produce two PWM signals is convenient, especially for example in a
stepper motor application. There, an ST90158 is used and only one MFT is available for PWM
generation, since the other one is used for other purposes. However, this method suffers from
a parasitic phase modulation of the signal since the falling edge is fixed, and the rising edge
moves with the desired duty cycle. This leads to the production of unwanted harmonics in the
resulting spectrum. This is not a problem for a lot of applications.

Sometime these harmonics are prohibited. Example: when we want to drive a high power in-
duction motor, these harmonics have two serious drawbacks:

– They produce parasitic frequencies that are injected in the mains, which is not allowed by
power distribution companies,

– They feed the induction motor with even ranked harmonics, which degrade the efficiency of
the motor and reduce the peak output power.

You can improve this situation by using a symmetrical PWM generation, producing waveforms
as follows:

Figure 41 . Symmetrical PWM Waveforms

You use the MFT in the following way. One MFT being used for one output signal, you use
only output A. You configure it so that it is set on a comparison with compare register 1, and
reset on a comparison with compare register 0. These registers are always loaded with values

82%

18%

50%

75/138

ST9+ USER GUIDE

that are symmetrically centred on half of the reload value. For example, if the reload value is
255, the compare registers are set to the following values:

You need to ensure that the compare registers are not written while they are used for a com-
parison. Because of this, they are written in an interrupt service routine that is triggered by the
MFT itself. To allow maximum latency time, the interrupt is triggered either by a compare 0 or
a compare 1 event, according to the value of the duty cycle. For duty cycles between 0 and
50%, the compare 0 event is used. Between 50% and 100%, the compare 1 event is used.
The following figures shows the timing diagram.

Figure 42 . Output A Timing

Duty Cycle Compare Register 0 Compare Register 1
10% 115 140
25% 96 159
50% 64 191
75% 32 223
90% 13 242

Output A

Reload
Value

Compare
Register 1
Value

Compare
Register 0
Value

Reload
Interrupt

76/138

ST9+ USER GUIDE

4.4.3 Incremental Encoder Counter

An incremental encoder is a device that generates two square signals in quadrature when its
shaft rotates. Its main specification is the number of cycles per revolution, i.e. the number of
square signal cycles for one shaft revolution. The greater the number of cycles, the more ac-
curate it is, and the more it costs.

In a stepper motor application, it is used to monitor the rotation of the motor. Here however, we
have taken an encoder that has a great resolution, and this section will show you how to use
an MFT to count encoder pulses, and rescale it to another resolution to meet your project
needs.

4.4.3.1 Description

The MFT includes an input block, a counter block, an event block and an output block. In this
application, no output signal is required, since the counter is expected to produce a value that
is read in registers.

The MFT must provide the following functions:

– Use the inputs to drive the counter according to the amount and direction of rotation

– Keep the count undisturbed by events other than the transitions at the inputs

– Allow reading the current counter value

– Allow setting the counter to an arbitrary initial value

We configure the input block to use the two square signals delivered by the encoder to drive
the up and down counting of the counter. We do this using a special mode of the input block
called ”autodiscrimination”. In this mode, the input pulses clock the counter, and the phase re-
lationship between the two signals selects up or down counting. Since the process is incre-
mental, once the MFT configured this way, it automatically follows the rotation of the encoder
shaft and the counter value reflects its position relative to the position it was in when the
counter was configured. In our example, the encoder produces 512 cycles per revolution. Be-
cause the counter is 16-bit, it can monitor shaft positions 65536/512 = 128 (or +/-64) full rev-
olutions from the original position.

To operate with an encoder as the input pulse source, we need to set the MFT to Continuous
Mode. When the counter crosses the FFFF to 0000 boundary in either direction, this is called
an End-Of-Count event. In the normal Continuous mode, the End-Of-Count event reloads the
counter with the contents of REG0R (or REG1R in biload mode). In this application, no auto-
matic reload may occur at any time so we can use the full range of the counter and be able to
cross the boundary. To prevent the reload from occurring, we must set the REG0R register to
Capture Mode. The MFT is then said to be in Free-Running Mode.

We have thus selected Free-Running Mode, yet we need to be able to set the counter to any
arbitrary value that is taken as the initial position. For this we need to use the REG0R register

77/138

ST9+ USER GUIDE

as the Load register. The solution is to initialise the MFT with REG0R in capture mode by set-
ting the RM0 bit of the TCR register to ensure Free-Running Mode. When we need to load a
value in the counter, we temporarily clear the RM0 bit. Then we set REG0R to the value that
must be written in the counter. The CP0 bit in the FLAGR register is pulsed high to write the
contents of REG0R into the counter. Then we set bit RM0 again.

4.4.3.2 Initialisation

The code for initializing the MFT is given below.

Note: The ICR register sets the input to Autodiscrimination mode. In this mode, the lower four bits are
irrelevant.

void ConfigTimer1 (void)

{

SelectPage (T1D_PG) ;

T_REG0R = 0 ;/* This register is used to preload the counter */

T_REG1R = 0 ;/* This register is used to read the counter */

/* T_CMP0R and T_CMP1R are not used */

T_TCR = Tm_cen ;/* enable counter */

/* The counter will not start until the Global Counter Enable is set in
register CICR */

T_TMR = Tm_rm0 ;/* capture using REG0R and monitor using REG1R */

/* This mode is not desired, but is implies free-running, which we need
*/

T_ICR = Tm_ab_aa ;/* inputs used in autodiscriminating mode */

/* For so, the port 3 must be set to input on pins P3.4 and P3.6 */

T_PRSR = 0 ;/* prescaler rate = 1 */

T_OACR = 0 ;/* output A not used */

T_OBCR = 0 ;/* output B not used */

T_FLAGR = 0 ;/* not used */

T_IDMR = 0 ;/* not used */

}

4.4.3.3 Reading

To read the value of the counter, you need to capture it in one of the registers, since the
counter itself does not have an address and cannot be read directly. There are two ways of
reading the counter:

Set one of the registers REG0R or REG1R to Capture mode. A pulse on bit CP0 or CP1, re-
spectively, transfers the contents of the counter to the corresponding register.

78/138

ST9+ USER GUIDE

Put REG1R in Monitor mode. In this mode, REG1R continuously reflects the value of the
counter, without the need for pulsing a bit in a register.

In the stepper motor application, we have chosen to use Monitor mode. No special function is
needed to read the counter. A simple assignment of REG1R to a variable is enough, such as:

Pos = REG1R ;/* Get current counter value */

4.4.3.4 Updating

As mentioned in Section 4.5.3.1, updating requires switching the mode of REG0R from Cap-
ture to Load.

/* This function forces the MFT1 counter to a value given in argument */

void SetEncoder (int Value)

{

SelectPage (T1D_PG) ;

T_TMR &= ~Tm_rm0 ;/* Switch temporarily to ”Load with REG0R” mode */

T_REG0R = Value ;/* set encoder */

/* convert motor position to match the encoder’s resolution */

T_FLAGR |= Tm_cp0 ;/* Load counter with this value by pulsing CP0 high */

T_FLAGR &= ~Tm_cp0 ;/* Return CP0 to low */

T_TMR |= Tm_rm0 ;/* Go back to ”Capture with REG0R” mode that implies
free-running */

}

 0) 7 $ SSOLFDWLRQ * HQHUDWLQJ 3 : 0 V XVLQJ ,QWHUUXSWV

This application generates 2 independent PWM signals on pins T0OUTA and T0OUTB pro-
vided that a logical low level is applied to gate T0INA. The outputs are reset on compare
events and set on the counter underflow. This application is found in the MFT/appli1 directory.

Counter compare interrupts are used to reload compare registers in order to modify the duty
cycle.

When running one of these three examples on an ST92F120 microcontroller, note that MFT
outputs are pure open drain.

 0) 7 $ SSOLFDWLRQ * HQHUDWLQJ D 3 : 0 XVLQJ ’ 0 $

This application generates a PWM signal on pin T0OUTA using a DMA channel to transfer
duty cycle data from memory to register COMP0. The DMA transfer only occurs once as it is
not re-initialized in the DMA end of block interrupt routine. This application is found in the MFT/
appli2.

79/138

ST9+ USER GUIDE

 0) 7 $ SSOLFDWLRQ * HQHUDWLQJ D 3 : 0 XVLQJ WKH ’ 0 $ 6Z DS 0 RGH

This application generates a PWM signal on pin T0OUTA using the DMA swap mode to
transfer duty cycle data from memory to register COMP0. This application is found in the MFT/
appli3 directory.

Swap mode uses two sets of DMA registers and swaps from one to the other at the end of
each transfer. The end of block interrupt routine reloads the unused set of DMA registers for
the next transfer.

4.5 SERIAL PERIPHERAL INTERFACE

4.5.1 Description

The SPI is a synchronous input-output port that you can configure in various modes, including
S-Bus. It can have many more uses, of which two are considered here: interfacing with serial-
access EEPROMs and interfacing with a liquid-crystal display.

The main block of the SPI is an 8-bit shift register which can be read or written in parallel
through the internal data bus of the ST9+, and that can shift the data in or out on two separate
pins, named SDI and SDO, respectively. The serial transfer is initiated with a write to the SPI
Data Register (SPIDR). Data is input and output simultaneously with each most significant bit
being output on SDO while the level at SDI becomes the least significant bit. Each time a bit
is transferred, a pulse is output at the SCK pin. When eight bits are transferred, eight pulses
have been sent on SCK, and the process stops. If the proper bits are set in the SPI Control
Register (SPICR), an interrupt can be requested on end of transmission. To summaries:

– Transfers are started by writing a byte into the SPI data register

– Data is input and output at the same time

– Data is input and output with the most-significant bit being sent first

– Eight clock pulses are output on the SCK pin synchronously with bit shifting

– An interrupt request can be issued on end of transmission

The SPI is configured with the SPICR register. Four bits of this register are of special interest
in the applications detailed here: these are the CPOL-CPHA pair, and the SPR1-SPR0 pair.

The CPOL-CPHA pair defines the polarity and phase of the clock pulses. This allows them to
adapt to the external device. CPOL selects between rising edge or falling edge as the active
transition, and CPHA selects whether the first active edge is the first edge of the pulse train or
the second one.

The SPR1-SPR0 pair selects one of four different transfer speeds.

80/138

ST9+ USER GUIDE

4.5.2 Static Liquid-Crystal Display Interface Example

This example uses a static liquid-crystal display that shows a simple number. This can be the
voltage in a digital voltmeter, or any 3 1/2 digit value. A very simple demonstration program is
supplied in the Companion Software. Some of the routines are reused in the bar code reader
described later.

A static liquid-crystal display is composed of a glass back-panel, and a set of front-panel elec-
trodes printed on a glass front-panel. The space between both panels is filled with a liquid-
crystal solution. The electrodes are transparent, and the panels may be fitted with a combina-
tion of polarisers, so that the whole display, unpowered, is either transparent or opaque ac-
cording to the selected polariser combination. When a difference of potential is applied be-
tween one electrode and the backplane, the area delimited on the front panel by the shape of
the electrode takes the reverse state, i.e. opaque or transparent, respectively. Using a seven-
segment pattern, it is possible to display numbers, by activating the appropriate segments to
show the desired figures.

A liquid-crystal display presents a high impedance between its electrodes, ranging typically in
the megaohm region. It is thus a voltage-controlled device, with a threshold of about 3 V to
change from one state to the other. Driving such a display is then a simple matter, but one fun-
damental precaution must be taken to avoid premature destruction of the display: it must be
driven with alternating voltage, to avoid electrolysis within the inter-electrode solution. The fre-
quency is of little importance, and the best values range between 30 and 100 Hz.

This basic explanation does not cover all the details and precautions relative to LCDs but is
sufficient to understand the use of the SPI as a LCD driver.

In this application, the display is installed on a separate board. Since it has 40 pins, it is not
convenient to connect this board with a 40-wire cable. Using a serial synchronous transmis-
sion, only four wires are required. The block diagram of the circuit of the display board is:

81/138

ST9+ USER GUIDE

Figure 43 . LCD Interface Example

As shown by this diagram, to make it easy to wire our display board, the correspondence be-
tween the segment positions and the bit positions in the bytes transferred is actually:

And the conversion between the figures (0 to 9) and the display pattern is done by a constant
array defined in this case as:

; Table of characters. Gives the patterns for the last 3 digits, from 0 to 9.

Characters:

.byte 3Fh, 0Ch, 5Bh, 5Eh, 64h, 76h, 77h, 1Ch, 7Fh, 7Eh

The LCD electrodes are connected to the outputs of a serial input, parallel output shift register.
The backplane is also connected to one output. This allows us to provide the A.C. drive for the
electrodes, as shown in the table below:

In short, the segment is On if its level is different from that of the backplane. It is Off if its level
is the same as that of the backplane. Thus, to generate the drive pattern, it is only necessary
to build the four bytes that correspond to the various segments, keeping the bit corresponding
to the backplane at level zero. Then, using a periodic interrupt, these four words are trans-

Bit position 7 6 5 4 3 2 1 0
Segment dp g f a b c d e

Level of the back-
plane

Level of one of the
segments

State of the liquid crystal
between the electrodes

0 0 off
0 1 on, positive voltage
1 0 on, negative voltage
1 1 off

Liquid Crystal Display

One digit

32 bit serial input, parallel output shift register

Ground

Serial Input

Shift Clock

+5V

a

b

c
d

e

f g

dp

+1 back panel dp g f e d c b a dp g f e d c b a dp g f e d c b a

82/138

ST9+ USER GUIDE

mitted serially, but complemented every other time. As an example, to display the value 375,
as in the demonstration program, the following message is built:

Since in this original message the backplane bit is kept at zero, all bits that are 1 correspond
to an activated segment; the others remain invisible. This message is sent at intervals of about
16 ms, but it is inverted every other time, giving the succession:

This succession of inverted words guarantee a zero D.C. component across the liquid crystal
solution, which is absolutely necessary.

4.5.3 EEPROM Serial Interface Example using I C

An I C Serial EEPROM is a very convenient device that stores a few bytes for at least 10 years
in a secure manner. The serial I C access uses only two wires, which allows the memory to fit
in an 8-pin DIL package. The serial access requires a serial transmission protocol, which
makes the access more difficult than with a parallel-bus EEPROM device. This, however, is
not a real drawback, for two reasons:

– The serial synchronous transmission is very easy to implement, and is not time-critical

– Using a serial protocol makes it impossible (or very unlikely) that you will overwrite or erase
data by mistake, which ensures a high safety level for the application

Thus, for applications that can manage with a small amount of permanent data, a serial EE-
PROM is the best choice. Examples include storing the reading of a counter or a recording
meter, storing configuration parameters or calibration values. The application described here
uses a 24C08 memory chip from STMicroelectronics, that takes advantage of the SPI to ex-
change data with minimum software overhead.

4.5.3.1 Additional Clock Timing

Compared to I C timing, SPI timing needs additional software to manage the following:

– The start condition

– The ninth bit for acknowledgement

Symbols Hundreds Tens Units
00000000 01011110 00011100 01110110

Symbols Hundreds Tens Units
00000000 01011110 00011100 01110110
11111111 10100001 11100011 10001001
00000000 01011110 00011100 01110110
11111111 10100001 11100011 10001001
00000000 01011110 00011100 01110110
11111111 10100001 11100011 10001001

etc.

83/138

ST9+ USER GUIDE

– The stop condition

These three timing differences are implemented by changing the input/output port data and
configuration registers, to pull the level on the SDA and SCL pins up or down.

 , & $ SSOLFDWLRQ ,P SOHP HQWDWLRQ RI , & 3 URWRFRO XVLQJ WKH 6 3 ,

This example only works on a ST90158 because the ST92F120 does not have the same SPI
cell.

In the example the two acknowledge management sub-routines are ”I2C_ACK()” for the
output data and ”I2C_WAIT_ACK()” for the input data. This application is found in the I2C/
appli directory.

The start condition sub-routine is ”I2C_START()”, and the stop condition sub-routine is
”I2C_STOP()”.

Figure 44 shows the I C Timing implemented with additional SPI timing software.

All of these sub-routines are in the ”I2C.C” file.

Figure 44 . I C Data and Clock Timing with Additional SPI Software

4.5.3.3 EEPROM I C Protocol

To connect more than one device to an I C interface, each device needs an address to be se-
lected. The EEPROM 24C08, used for our example, has an address equal to A0h.

Following a start condition, the bus master (SPI) must output the address of the EEPROM it is
accessing. The most significant four bits are the device type identifier (1010). The following bit

SCL

SDA

SCL

SDA

Normal SPI Timing

I C Timing with + additional SPI software

I C_START() I C_STOP()

I C_ACK() for writing
I C_WAIT_ACK() for reading

1 2 8 1 2 8

1 2 8 9 1 2 8 9

1st BYTE n th BYTE

Ack Ack

Clock pulse
driven by
software

84/138

ST9+ USER GUIDE

identifies the specific memory location on the bus (it is matched to the chip enable signal).
Once the 6th and 7th bits are sent, select the block number and the 8th bit sent is the read or
write bit (1 for read, 0 for write). After the address has been sent, ten data bytes can be sent
to the EEPROM for writing, and all the data bytes can be read successively from the EEPROM
for verification.

4.6 SERIAL COMMUNICATIONS INTERFACE

4.6.1 Description

The SCI is the association of a UART and a complex logic that handles tasks such as char-
acter recognition and DMA. It can also work as a simple serial expansion port that then resem-
bles the SPI. The example given here appears as a classical UART application, viewed exter-
nally, but it is assisted by the built-in DMA controller to provide effortless transfers of data in
and out of the application. As serial communication is a feature that is very often used, it will
be found in all three applications.

The SCI has four operating modes:

– Asynchronous mode where data and clock can be asynchronous. Each data is sampled 16
times per clock period. The baud rate should be set to the 16 division mode and the frequen-
cy of the input clock is set to suit.

– Asynchronous mode with synchronous clock where data and clock are synchronous but the
transmit and receive clock are asynchronous. The receive clock must be given by the exter-
nal peripheral.

– Serial Expansion mode where data and clock are synchronous and the clock is supplied by
the transmitter (ST9+ in transmission and externally in reception).

– Synchronous mode where data and clock are synchronous, the transmit data clock is sup-
plied by the ST9+ and the receive data clock is received by the external peripheral. In this
mode there are no start and stop bits.

These four operating modes allow you to connect the ST9+ to any external interface.

4.6.1.1 UART

The UART offers all the usual functions for asynchronous transfer. You can set it to handle
word lengths of 5 to 8 bits, with or without parity, even or odd. It offers also the possibility to ap-
pend a signalling bit (called Address bit or 9th bit -- regardless of the word length) at the end
of the transmitted data, just before the stop bit. This can be used to help design a multidrop
network. The UART can be set to interrupt the processor only when this bit is high, indicating
that the current character is an address or other identifier. This prevents the processor from
being disturbed by the traffic on the network unless an address byte is received, so that the
processor can check if it is concerned or not by the incoming data.

85/138

ST9+ USER GUIDE

The UART is set to 8 bits, 1 stop bit and no parity, by writing the appropriate value in the
CHCR register.

A timer is part of the SCI block. It is used as a Baud Rate Generator (BRG). It allows you to di-
vide either the internal clock or the frequency available at the RXCLK input pin, by an arbitrary
value. This output can be fed to the receive and transmit sections, though each section can
have its own clock frequency supplied on pins RXCLK and TXCLK for receive and transmit,
respectively. Here, we use the BRG to clock both sections.

At the clock input of the transmit and receive shift registers, two other dividers can be inserted,
to further divide the frequency by 16. It must be used in Asynchronous mode to allow detection
of the start bit using a local clock. If an external clock is supplied, at the same frequency and
phase as the serial incoming data, the 16x divisor must not be used. Here, the predivisor is
used.

The UART is surrounded by logic that allows it to detect errors on reception, a break state on
the line, and also to recognize a match between the character received and a reference char-
acter stored in a register. This last feature is used here. The ACR register is loaded with the
value 10 representing the LF character, and the IMR interrupt mask register is set to enable an
interrupt on a character match. Since DMA is used to transfer the incoming characters to
memory, this technique is used to detect the end of message, if we state that all commands
must end with an LF character.

4.6.1.2 DMA Controller

The DMA is used for the automatic data transfer from memory or a register to the serial trans-
mitter or from the serial receiver to a register or memory, or both.

The working of the DMA in conjunction with the UART merits some detailed explanation, be-
cause it is subtle and you need to take some precautions to make it work properly. Once ini-
tialized, it is easy to use and it consumes very little computing power to initialise transmission
or re-enable reception.

The DMA transfers in each direction are controlled by two registers: the DMA transaction
counter and the DMA pointer. The transaction counter is used to stop the transaction when a
predefined number of characters is transferred. The DMA pointer points to the character to be
sent or to the location that will hold the next character to be received. To initialise a DMA
transfer, the transaction counter must be set to the number of characters to be transferred and
the DMA pointer must be set to the beginning of the storage area that contains the data to be
transmitted or that will hold the data string received.

Transfers can occur between the UART and either the memory or register file.

The transaction counter and the DMA pointer must be registers in the register file. If the reg-
ister file is involved in the transfer, both the transaction counter and the pointer must be single

86/138

ST9+ USER GUIDE

bytes (the addressing range of the register file is 0 to 255). If the memory is involved, the
counter and the pointer must be each a pair of registers, since the addressing range in
memory is 0 to 65535 for one segment.

Once you have defined in which registers you will put the counter and the pointer, you must let
the SCI know. The SCI has two registers for this purpose called the DMA Address Pointer
Register (DAPR) and DMA Counter Pointer Register (DCPR). These registers are not the ac-
tual counter and the pointer, they point to where you want to locate them in the register file.
This double pointer mechanism is similar to that described for interrupts.

Here there can be two cases: the transfer involves the memory or the register file.

If the transfer involves the memory, it’s standard procedure. The DCPR points to the 16-bit
Counter register, and the DAPR points to the 16-bit Address register. These two register pairs
may reside anywhere there is room for them in the register file. Since register pairs are used,
their addresses are even. The DCPR must be even. To reach the DMA segment the DMASR
(or ISR depending on DAPR bit 0) MMU register contains the segment number.

If the transfer involves the register file, things are a bit different. Both the transaction counter
and the address register are 8-bit values. They are supposed to be adjacent in the register file,
i.e. they occupy two successive registers: the first one, even numbered, is the address reg-
ister. The second one, odd numbered, is the transaction counter. To select this mode, the
least significant bit of the DCPR must be one. Its value is the address of the address register
(which is even) plus one. The DAPR is not used.

The whole mechanism described above applies for both the transmitter side and the receiver
side. Thus, there are twice as many registers as mentioned: the TDCPR and the TDAPR for
the transmitter side, the RDCPR and the RDAPR for the receiver side. The registers you have
located in the register file are also twice as many. So, the TDCPR points to the transmitter
transaction counter and the TDAPR points to the transmitter address register (with the excep-
tion mentioned above if the transaction involves the register file). The RDCPR points to the re-
ceiver transaction counter and the RDAPR points to the receiver address register.

When a DMA transfer is in progress, the processor is not even aware of it (except that it is
slightly slowed down by the stolen clock cycles). So nothing special has to be done as far as
the program is concerned. The question is: how to start and end a DMA transfer? Here, the
processor is involved, and some code is needed. Depending on which side is concerned, the
processes are different.

4.6.1.2.1 Transmitter Side

To start a DMA transmission, you need to do the following operations, in order:

– Set the DMA segment register DMASR (or ISR) to point to the selected segment of data
memory.

87/138

ST9+ USER GUIDE

– Set the transmit address register to the address of the second word to be sent (not the
TDAPR, which is only set once at initialisation, and points permanently to the transmit ad-
dress register).

– Set the transmit transaction counter to the number of characters to be transmitted minus one
(not the TDCPR, which is also only set once at initialisation, and points permanently to the
transmit transaction counter).

– Set the TXD bit of the IDPR register. This bit enables the Transmitter holding register empty
flag (TXHEM bit of register ISR) to trigger a DMA transfer when the last character is sent.
When TXD is reset, the holding register empty flag would trigger an interrupt instead.

– Load the Transmit Buffer Register (TXBR) with the first character to be sent. This starts the
DMA process as soon as this character is transmitted.

– Clear the Transmitter holding register empty flag (TXHEM bit of register ISR) and the Trans-
mitter buffer register empty flag (TXSEM bit of register ISR) to prevent DMA transfer from
starting before the first character is fully transmitted.

– Enable the end of DMA interrupt by setting the Transmitter Data Interrupt Mask (TXDI bit of
register IMR).

The DMA is now started and will stop when the transaction counter reaches zero.

Note: The transmit address register is initialized with the address of the second word and the transmit
transaction counter is initialized to the number of characters to be transmitted minus one, be-
cause the DMA transfer begins when the first word is transmitted (a write in the Transmit Holding
Register), so the first word is transmitted ”by hand”.

4.6.1.2.2 Receiver Side

The receiver side is a little more complicated as two kinds of events can occur during recep-
tion:

– There can be transmission errors that must be handled.

– A break is received or a character match event can occur.

The receiver is set in a ready for DMA condition by the initialisation code.

Reception normally finishes when the DMA transaction counter has reached zero. But this is
not necessarily the way one wants to use the serial input, since it implies that the number of
characters to be received must be known before the transfer starts. In most cases, character-
type messages have a variable length.

In this application, the transaction counter is not expected to reach zero, since the size of the
buffer assigned for reception exceeds the longest message defined in the specification. Thus,
if the transaction counter reaches zero this is in fact an overflow condition. In this case, the
contents of the buffer are discarded and a new reception is initiated. In both cases, the steps
to perform an End of Block are:

88/138

ST9+ USER GUIDE

– Reset the Receiver End of Block (RXEOB bit of register IMR) to remove the interrupt request.

– Use the received characters, if required.

– Re-enable the end of block interrupts by setting the Receive DMA Bit (RXD bit of register
IDPR).

– Restore the DMA capability by setting the receive address pointer (not the RDAPR) to the
address of the beginning of the receive buffer.

– Set the receive transaction counter (not the RDCPR) to the number of characters to be re-
ceived. This will re-enable the DMA capability.

In a typical application, command messages could have variable length and be terminated by
an LF character. So, the character match event capability built in to the SCI should be used.

If the Address/Data Compare Register (ACR) contains the value 10 (ASCII code for LF), and
the Receive Address Mask (RXA bit of register IMR) is set, whenever an LF character is re-
ceived, an interrupt is generated. This interrupt is considered in the application as a good Mes-
sage Received signal. It is processed the following way:

– In this application, no other characters are expected until the previous message has been
answered by the program. However, it may be useful to inhibit further DMA cycles by clearing
the RXD bit in the IDPR register and also the RXDI bit in the IMR register.

– Read the Receive Buffer Register (RXBR) to remove the interrupt request (see note below).

– Make use of the received characters.

– Restore the DMA capability by setting the receive address pointer (not the RDAPR) to the
address of the beginning of the receive buffer.

– Set the receive transaction counter (not the RDCPR) to the number of characters to be re-
ceived. This will re-enable the DMA capability.

Note: When matching occurs between the incoming character and the ACR register contents, the
DMA request is not generated, neither is an interrupt request for ”character received”. So, the
incoming character remains in the receive buffer and no other character can be received until it
has been removed. This is why it is not sufficient to clear the RXAP bit in the ISR register to
reinstate the DMA transfer. You must clear the RXBR register by reading it during the character
match interrupt service routine.

Finally, an error may occur during transmission. This can be a parity error (if parity checking is
enabled), a framing error or an overrun error. If one of these errors occurs, take the following
steps:

– Clear the bits that indicate an error condition in the ISR register.

– Restore the DMA capability by setting the receive address pointer (not the RDAPR) to the
address of the beginning of the receive buffer.

– Set the receive transaction counter (not the RDCPR) to the number of characters to be re-
ceived. This will re-enable the DMA capability.

89/138

ST9+ USER GUIDE

4.6.1.2.3 Interrupt Vectors

The interrupt vector scheme has been explained in Section 3.4.1 using the example of the
MFT to illustrate the mechanism. Here is the equivalent table for the SCI giving the position of
the four vectors dedicated to the four interrupt causes.

 6 &, $ SSOLFDWLRQ 6 HQGLQJ %\ WHV XVLQJ ,QWHUUXSWV

This application sends 10 bytes to the USART. An interrupt is generated at the end of every
single byte transmission. During this interrupt routine, the TXBR register is loaded with the
next byte to be transmitted. This application is found in the SCI/appli directory.

The character format is: 2400 bauds, 8 data bits, 1 stop bit and odd parity. Sent bytes can be
received on a PC loaded with a serial communication management software program such as
Hyperteminal.

 6 &, $ SSOLFDWLRQ 6 HQGLQJ %\ WHV XVLQJ ’ 0 $

This application sends bytes from the memory to the SCI peripheral using a DMA channel.
The transfer is re-initialized twice in the DMA End of Block interrupt routine so that data is
transmitted three times. This application is found in the SCI/appli2 directory.

 6 &, $ SSOLFDWLRQ 6 HQGLQJ DQG 5 HFHLYLQJ %\ WHV XVLQJ ’ 0 $

This application sends bytes from the memory to SCI and receives bytes from SCI to the reg-
ister file using two DMA channels. The SCI cell is configured in loopback so that each byte
sent is immediately received by the SCI. This application is found in the SCI/appli3 directory.

 6 &, $ SSOLFDWLRQ 0 DWFKLQJ ,QSXW %\ WHV

This application receives bytes from the USART and reacts only if an ”F” (upper case) is re-
ceived: on a character match, a ”0” is displayed on the 7-segment LED display on port 4. This
application is found in the SCI/appli4 directory.

Value in IVR 50

Interrupt cause
Address in ROM of the

selected pointer
Value of the Pointer to interrupt

routine
Receiver error 50 Address of error processing routine

Break detect or address match 50+2
Address of Address match process-
ing routine

Receiver data ready or DMA end of
block

50+4
Address of receive DMA end of block
processing routine

Transmitter buffer empty of DMA end
of block

50+6
Address of transmit DMA end of block
processing routine

90/138

ST9+ USER GUIDE

4.7 ANALOG TO DIGITAL CONVERTER

4.7.1 Description

The analog to digital converter is one of the simplest peripherals of the ST9+ family to use. It
converts the voltage applied to one of eight inputs using an 8-bit successive approximation an-
alog to digital converter. According to the value of bits SC2, SC1 and SC0 of the Control Logic
Register (CLR), one to eight inputs are converted at each conversion cycle, starting at the
channel number specified by these bits and ending with channel 7.

The simplified block diagram is the following:

91/138

ST9+ USER GUIDE

Figure 45 . A/D Converter Block Diagram

The conversion cycle can either be started in Single-shot mode, by a trigger (software or hard-
ware, the latter being internal or external) or in Continuous mode, restarted as soon as the
previous cycle is finished.

88

2

A/D End of conversion or
AWD interrupt to the core

3 bits of
CICR

4 bits of
ICR

Priority
Mechanism

1 bit of
IVR

A/D or AWD
Interrupt Vector

selection

Pending & Mask bits

3 bits of
CCR Compare Result

Analog Watchdog

2 threshold
registers (Ch.6)

2 threshold
registers (Ch.7)

3 bits of
CLR

Data
Register A/D Converter AIN pins

channels 0 to 7

Autoscan Logic See fully detailed
diagram of the

A/D converter in Section 7

Synchronisation to
Start/Stop the
A/D Converter

3 bits of
CLR

ADTR pin

3 bits of
ICR

2

4 bits of
ICR

92/138

ST9+ USER GUIDE

Each channel uses one bit of a port (the port depends on the variant of the ST9+), and the con-
version result is stored in a register. Eight such registers are available, named D0R to D7R.

The end of conversion sets the ECV bit in the ICR register, and can trigger an interrupt re-
quest, if the ECI bit (mask of the end of conversion interrupt request) of the Interrupt Control
Register (ICR) is set.

Notes The internal interrupt controller does not automatically reset the ECV bit. It must be reset by the
interrupt service routine prior to returning from interrupt. Failure to do this would cause the in-
terrupt to loop endlessly.

As mentioned in Section 4.2 on parallel ports, you must configure the corresponding pins to
alternate function both to reduce loading on the analog source and to avoid excessive dissipa-
tion in the pin’s input buffer. For the same reason, it is advised to keep this I/O configuration if
an analog voltage is present on the pin, even if it is not being converted at this time.

4.7.2 Analog Watchdog

A special feature of this peripheral is the so-called Analog Watchdog. If enabled, the values of
D7R or both D6R and D7R are each compared after each conversion with a pair of upper and
lower thresholds stored in registers LT6R and UT6R, for D6R, and LT7R and UT7R, for D7R.
If the value is outside the bounds, the AWD bit of the ICR register is set. This can trigger an in-
terrupt request if the AWDI bit of the same register is set. To know which of the four thresholds
has been exceeded, the Compare Result Register (CRR) has four bits with one each corre-
sponding to one of these thresholds. The appropriate bit is set when the threshold has been
exceeded.

Notes: The AWD bit, like the ECV bit, is not automatically reset by the internal interrupt controller. Thus
it must be reset by the interrupt service routine prior to returning from interrupt. Failure to do this
would cause the interrupt to loop endlessly.

To permit power saving in applications where energy conservation is important, you can power
the ADC on and off so that it only consumes power when used. However when you switch it on,
a delay of 60 µs may occur. The reset condition is off.

4.7.3 Interrupt Vectoring

Two vectors are dedicated to the ADC: the end of conversion vector and the analog watchdog
vector. This allows these two events to be serviced by two different routines. The vectors used
depends on the state of the W1 bit in the IVR register. This bit is set or reset according to the
source of the interrupt.

However, it may occur that both interrupts are generated simultaneously. In that case, the an-
alog watchdog takes over.

93/138

ST9+ USER GUIDE

 $ ’ & $ SSOLFDWLRQ $ ’ &RQYHUVLRQV DQG $ QDORJ : DWFKGRJ XVLQJ ,QWHUUXSWV

This application converts the analog value presented on P77 and enters the conversion re-
sults in a chart as long as the converted value resides within the user-defined threshold. The
end of conversion interrupt is used to transfer the result of the conversion to the chart. The an-
alog watchdog interrupt, when triggered, stops the A/D converter. This application is located in
the ADC/appli directory.

4.8 PERIPHERAL INITIALIZATION

All the ST9+ peripherals have a large number of configuration options. This makes them
highly adaptable, but has a complex initialization procedure.

To help you to use the peripherals easily, you can find all the initialization programs on the
<http://www.st.com> internet site.

The purpose of these programs is to give you C language programs to get started with pro-
gramming each peripheral. This program package consists of a Header file, a peripheral func-
tion, a startup and a main program for each peripheral.

The startup (crtbegin.spp) and the main (main.c) files are not explained here. Have a look at
these files for more details. All you now have to know is that whenever an interrupt subroutine
is used, the startup program is initialized with the interrupt subroutine address.

For example the INTADC_EndConv() ADC interrupt subroutine address declared in the file
<adc.c> is loaded in the startup routine <crtbegin.spp> at the Interrupt Vector Register loca-
tion.

4.8.1 initialization Header File

The initialization header file defines all the constants, the file to be included, the function pro-
totypes and the peripheral mode.

The initialization header file has to be included any time the peripheral is referenced. The next
section uses the Analog to Digital Converter peripheral file as an example. The ADC initializa-
tion header file is <adc.h>.

4.8.1.1 Constants already Initialized and to be Initialized

The <adc.h> file is complementary to the <ad_c.h> header file located in the toolchain header
files directory, with the other peripheral header files.

The 8 initialized constants, CHANNEL0 to CHANNEL7, give you the 8 possibilities of initial-
izing the non-initialized constant AD_CHANNEL. This constant will initialize the AD_CLR ADC
Control Logic Register in the <adc.c> file.

94/138

ST9+ USER GUIDE

4.8.1.2 Files to be Included

The files to be included contain other initialized constants like in the previous <adc.h> file.

4.8.1.3 Function Prototype Declarations

Each of these functions can be called by the main program <mainc.c> or other functions for
managing the ADC. They are defined in the <adc.c> file.

The <adc.h> file function prototypes are:

void INIT_ADC(void);

void START_ADC(void);

void STOP_ADC(void);

void INIT_ADC_IT(void);

void Enable_ADC_IT(void);

4.8.1.4 Defining the Functional Mode

To initialize the peripheral mode, you can activate the define directive by removing the <</* */
>>.

e.g.: In the <adc.h> file, you can select Continuous mode with:

#define continuous

/*#define single*/

4.8.2 Peripheral Function File

These files contain the peripheral management functions. The function prototypes are placed
in the header file as explained before.

The functional mode and the constants initialized in the header file modify the functions so that
they can be used directly by the application program.

4.8.2.1 Presentation of Peripheral Function Files

4.8.2.1.1 ADC File

The ADC function file is <adc.c> and contains 6 functions initialized for using channel 7 of the
ADC corresponding to I/O port P77. It performs 15 conversions and stores the converted
values in chart measures. Moreover, the analog watchdog is enabled on this channel and
stops the series of conversions if the value is not within the prescribed thresholds.

95/138

ST9+ USER GUIDE

Table 4. $ ’ & &) XQFWLRQV

 6 3 ,) LOH

The SPI function file is <I2C.c> and contains 10 functions initialized to perform data exchange
between the ST90158 and an EEPROM connected on an I C bus at the I C address 0xA0.
Both read and write operations are performed:

– First, it writes the contents of chart display into the EEPROM.

– Then, it checks this write operation by reading the EEPROM using interrupts.

Read data are stored in chart EEPROM_REC.

The ports used for this application are:

– P5.1 SDI

– P9.7 SDO

– P9.6 SCL

Table 5. , & &) XQFWLRQV

 0) 7) LOHV Z LWKRXW ’ 0 $

The MFT function file is <mft\appli1\mft.c> and contains 6 functions that are initialized for gen-
erating two PWM signals using the two output pins of the MFT0.

Compare0 and Compare1 events are managed by interrupts.

Input A is used as a gate: as long as a +5V level is applied on it, the counter stops down-
counting and the PWM signals are thus not generated.

The following ports are used for this:

Function Description and Comments

void INIT_ADC(void);
Choice between Continuous and Single-shot modes. Possibility of initializ-
ing the analog watchdog on channel 6 or/and 7.

void START_ADC(void);
Choice between three triggers to start the conversions: internal, external
or software.

void STOP_ADC(void);
This routine stops the ADC after a series of conversions. Afterwards, all
power consuming logic is disabled (low power idle mode).

void INIT_ADC_IT(void);

The pointer to the array of two IT vectors dedicated to the AD is initialized.
The priority of these interrupts is initialized. This routine initializes both end
of count and analog watchdog. Don’t forget to initialize your start-up file
correctly.

void Enable_ADC_IT(void);
This routine enables interrupts: End of Conversion or/and Analog Watch-
dog.

void
INTADC_AnaWd(void);

Interrupt subroutine dedicated to Analog Watchdog.

void
INTADC_EndConv(void);

Interrupt subroutine which occurs after an end of conversion event.

96/138

ST9+ USER GUIDE

Function Description and Comments

void INIT_I2C (void);

Port initialization:(ST90158!)

- P9.6: SCL (I C Clock)
- P9.7: SDO (I C Data)

These two pins are initialized as: ALTERNATE FUNCTION, OPEN DRAIN,
TTL

The other pins of port9 are: BIDIRECTIONAL, WEAK PULL UP, TTL

-P7.1: SDI (I C Data)

This pin is initialized as INPUT. The SPI is configured to work with I C pro-
tocol. For the moment, the I C bus remains disabled (clock not generated).
If INTCLK > 12.8 MHz, change the value of constant I2C_SPEED in the
i2c.h file.

void I2C_WAIT(void);

This is a loop of 4.7µs (including call and ret cycles)

With an INTCLK of 12MHz, we need 57 cycles.

This routine is written for INTCLK = 12 MHz

void I2C_START(void);
This generates a start signal for I C communications.

While SCL remains high, SDA turns from high to low level.

void I2C_STOP(void);
This generates a stop signal for I C communications.

While SCL remains high, SDA turns from low to high level.

void
I2C_WAIT_ACK(void);

This function waits for an ACK from the slave.

To perform an ACK, the slave must force SDA to Low level.

The ST9+ polls the SDA pin configured in input, during ”timeout”.

If an ACK does not occur during this time, a STOP is generated, and the
communication ends.

If an ACK occurs before the end of timeout, the process leaves the function,
ready to send new data.

void I2C_ACK(void);

This function generates a software ACK from the ST9+:

During 4.7µs, SCL remains high whileSDA is forced to lowlevel.

Used in read operations.

void
I2C_SEND_DATA(un-
signed char sendbyte);

Unsigned char sendbyte: the byte to send to the slave (data, I2C address...)

sendbyte is sent on the I C bus.

This function can be used after: I2C_START() or I2C_WAIT_ACK().

The process remains in the function while the Busy Flag remains in the
HIGH level (the transmission is not finished).

If your software uses interrupts to send data on the I C bus, delete the last
line of this function (polling).

void
I2C_READ_DATA(void);

0xFF is written in the data register to start the transmission.

This function must be followed by I2C_ACK().

If your software doesn’t use interrupts to read data from the I C bus:

-Check that the busy flag is cleared before leaving this function.

- Modify this function so that it returns the read value (unsigned char
I2C_READ_DATA(void)).

97/138

ST9+ USER GUIDE

– T0OUTB

– T0OUTA

– T0INA

Table 6. $ 3 3 / , ?0) 7 &) XQFWLRQV

4.8.2.2.2 MFT files with DMA

The MFT function file is <mft\appli2\mft.c> and contains 7 functions that are initialized for gen-
erating a PWM signal using the MFT and a DMA channel.

The port used for this application is:

– T0OUTA

void INIT_I2C_IT(void);
This routine configures the interrupts after each I C End of Transmission
using interrupt channel INTB0.

Don’t forget to initialize your start-up file correctly.
void Enable_I2C_IT(void); Enable I2C interrupts on channel INTB0.

void
INTI2C_EndTrans(void);

Interrupt subroutine which occurs after an I C End of Transmission.

The ”user part” presents the way to deal with read data from the I2C bus (it
reads 10 bytes from EEPROM and stocks them in EEPROM_REC).

Function Description and Comments

void INIT_MFT(void);
MFT initialization.

It initializes the value loaded into the prescaler and into the counter.
void START_MFT(void); Start the MFT.
void STOP_MFT (void); Stop the MFT.
void INIT_MFT_IT(void); This function configures the IT for the MFT.
void
Enable_MFTCM_IT(void);

Enables Compare0 and Compare1 IT.

void
INTMFT_Compare(void);

Interrupt subroutine which occurs after:

- Compare 0

- Compare 1

Only one IT vector.

Function Description and Comments

98/138

ST9+ USER GUIDE

Table 7. $ 3 3 / , ?0) 7 &) XQFWLRQV

4.8.2.2.3 MFT files with DMA in Swap Mode

The MFT function file is <mft\appli3\mft.c> and contains 6 functions that are initialized for gen-
erating a PWM signal using the MFT and a DMA channel working in Swap mode.

The port used for this application is:

– T0OUTA

Table 8. $ 3 3 / , ?0) 7 &) XQFWLRQV

4.8.2.2.4 RCCU File

The RCCU file is <rrcu\rccu.c> and contains 5 functions for controlling the RCCU in your ap-
plication. The header file has no uninitialized constants since the functions are dedicated.

Function Description and Comments

void INIT_MFT(void);
MFT initialization.

It initializes the value loaded into the prescaler and into the counter.
void START_MFT(void); Start the MFT.
void STOP_MFT (void); Stop the MFT.
void
INIT_MFT_ITDMA(void);

This function configures the IT and the DMA for the MFT.

void Enable_MFTCP0_DMA
(unsigned int * CompBuffer,
unsigned int Count);

Enable Compare0 DMA.

void
INTMFT_CompEOB(void);

Interrupt subroutine which occurs after a compare0 DMA end of block.

The DMA is not re-initialized so only one block is transferred.

Same vector as compare0 interrupt.

void INTMFT_OUF(void);
Interrupt subroutine which occurs after an underflow.

It stops the timer when the whole PWM signal has been generated.

Function Description and Comments

void INIT_MFT(void);
MFT initialization.

It initializes the value loaded into the prescaler and into the counter.
void START_MFT(void); Start the MFT in the swap mode.
void STOP_MFT (void); Stop the MFT.
void
INIT_MFT_ITDMA(void);

This function configures the IT and the DMA for the MFT.

void
Enable_MFTCP0_DMA(un-
signed int * CompBuffer, un-
signed int Count)

Enable Compare0 DMA.

void
INTMFT_CompEOB(void);

Interrupt subroutine which occurs after a compare0 DMA end of block.

The DMA is swapped.

99/138

ST9+ USER GUIDE

Table 9. 5 &&8 &) XQFWLRQV

4.8.2.2.5 SCI Files

The SCI function file is <sci\appli1\sci.c> and contains 4 functions that are initialized for
sending ten bytes from the ST9+ to the serial link (RS232).

It uses End of Transmission interrupts.

Port used:

– Tx (S0OUT)

Table 10. 6 &, &) XQFWLRQV

4.8.2.2.6 SCI Files using DMA

The SCI function file is <sci\appli2\sci.c> and contains 4 functions that are initialized for
sending 26 bytes from the ST9+ to the serial link (RS232) by using the DMA.

It uses DMA channel (from memory).

Port used:

– Tx (S0OUT) (Uses End of Transmission interrupts).

FUNCTION DESCRIPTION AND COMMENTS

void INIT_PLL(void);
Initialize the PLL, Mul. by 6, div. by 1.

Wait 500µs to stabilize the PLL.
void INIT_clock2(void); INTCLK = CLOCK2 = EXT OSCILLATOR / 2.
void INIT_clock2_16(void); INTCLK = CLOCK2/16 = EXT OSCILLATOR / 32.
void
SWITCH_TO_EXTCLK(void
);

Stop the Xtal oscillator and select the external clock (if present).

void BACK_TO_XTAL(void); Restart the Xtal oscillator and select it as the clock source.

FUNCTION DESCRIPTION AND COMMENTS

void INIT_SCI(void);

Initialization of general parameters dedicated to the SCI:

- Baud Rate Generator: 9600 bauds.

- Characters: Eight data bits, one stop bit, odd parity.

- Pins...

The baud rate generator must be initialized following this structure
(BRGHR first and BRGLR at the end).

void INIT_SCI_IT(void); Initialization of the IT: vector, priority.

void SCI_SendByte(un-
signed char ToSend);

It sends byte ToSend to serial link.

This routine also enables end of transmission IT.

void
INTSCI_TransmitReady(voi
d);

Interrupt subroutine which occurs after the transmission of one charac-
ter.

If 10 bytes have been transferred, it disables the IT and so stops the trans-
mission.

100/138

ST9+ USER GUIDE

Table 11. 6 &, &) XQFWLRQV

4.8.2.2.7 SCI Files using DMA in the Loopback Mode

The SCI function file is <sci\appli3\sci.c> and contains 5 functions that are initialized for
sending 26 bytes from memory to the serial link.

The SCI is in Loopback mode, so that the bytes sent are then received by the SCI and stored
in the register file (from R16).

It uses DMA channels:

– From memory to peripheral for the transmission

– From the peripheral to the register file to receive the bytes.

No ports are used.

FUNCTION DESCRIPTION AND COMMENTS

void INIT_SCI_DMA(void);

Initialization of general parameters dedicated to the SCI:

- Baud Rate Generator: 9600 bauds.

- Characters: Eight data bits, one stop bit, odd parity.

- Pins...

The baud rate generator must be initialized following this structure
(BRGHR first and BRGLR at the end).

Initialization of the IT: vector, priority.

Initialization of DMA in transmission
void START_SendDMA(un-
signed char * TransmitBuff-
erMem, unsigned int
SCI_count);

After a few extra initialization, the transmission starts by loading data reg-
ister(TXBR) with the first value to send.

void
INTSCI_TransmitEOB(void)
;

Interrupt subroutine which occurs when a whole block of data has been
transferred using DMA.

In fact, the buffer ”table” is sent three times and then DMA is disabled.

101/138

ST9+ USER GUIDE

Table 12. 6 &, &) XQFWLRQV

4.8.2.2.8 SCI Files using Character Matching

The SCI function file is <sci\appli4\sci.c> and contains 5 functions that are initialized for re-
ceiving data on the input pin of the SCI and it only reacts when it receives character
SCI_MATCH (defined in sci.h).

Port used: Rx (S0IN)

FUNCTION DESCRIPTION AND COMMENTS

void INIT_SCI_DMA(void);

Initialization of general parameters dedicated to the SCI:

- Baud Rate Generator: 9600 bauds.

- Characters: Eight data bits, one stop bit, odd parity.

- Pins...

The baud rate generator must be initialized following this structure
(BRGHR first and BRGLR at the end).

Initialization of the IT: vector, priority.

Initialization of DMA in transmission and reception.

Bit b0 of DAPR registers must be set to 1!!!

voidSTART_DMA(unsigned
char * TransmitBufferMem,
unsigned int SCI_count)

After a few extra initialization, the transmission starts by loading data reg-
ister(TXBR) with the first value to send.

DMA is enabled in transmission and reception.

void
INTSCI_TransmitEOB(void)
;

Interrupt subroutine which occurs when a whole block of data has been
transferred using DMA.

Only one block of data is sent (DMA not re-initialized after this IT).

void
INTSCI_ReceiveEOB(void);

Interrupt subroutine which occurs when a whole block of data has been
received using DMA.

Only one block of data is received (DMA not re-initialized after this IT

102/138

ST9+ USER GUIDE

Table 13. 6 &, &) XQFWLRQV

4.8.2.2.9 ST Files

The ST function file is <st\timer.c> and contains 6 functions that are initialized for generating
a simple PWM signal using the Standard Timer (programmable duty cycle).

Port used:

– STDOUT

Table 14. 7,0 (5 &) XQFWLRQV

FUNCTION DESCRIPTION AND COMMENTS

void INIT_SCI(void);

Initialization of general parameters dedicated to the SCI:

- Baud Rate Generator: 9600 bauds.

- Characters: Eight data bits, one stop bit, odd parity.

- Pins...

The baud rate generator must be initialized following this structure
(BRGHR first and BRGLR at the end).

void INIT_SCI_IT(void);
Initialization of the IT: vector, priority.

The only interrupt which is enabled is ”character match”.

void
INTSCI_ReceiveMatch(void);

This interrupt subroutine occurs when the SCI cell has received the
matching character.

In this example, it displays 0 on a 7-segment LED connected to port 4.

FUNCTION DESCRIPTION AND COMMENTS

void INIT_ST(void);

Standard Timer initialization.

It must be used before any use of the ST.

It initializes the value loaded into the prescaler and into the counter.

To use the ST in output mode, you must initialize the output pin in push-
pull, alternate function . This means (PXC0R,PXC1R,PXC2R) = (1,1,0).

void START_ST(void); Starts the Standard Timer.
void STOP_ST (void); Stops the timer counter.

void INIT_ST_IT(void);
This routine configures the interrupts after each End of Count.

Don’t forget to initialize your start-up file correctly.
void Enable_ST_IT(void); Enables the Standard Timer Interrupt.
void
INTST_EndCount(void);

Interrupt subroutine which occurs after an end of count.

103/138

ST9+ USER GUIDE

4.8.2.2.10 WDT Files for PWM Generation

The WDT function file is <wdt\appli1\wdt.c> and contains 7 functions that are initialized for
generating a simple PWM signal using the WDT (programmable duty cycle).

Port used:

– WDOUT

Table 15. : ’ 7 &) XQFWLRQV

4.8.2.2.11 WDT Files in Watchdog Mode

The WDT function file is <wdt\appli2\wdt.c> and contains 4 functions that are initialized for en-
abling the WDT in Watchdog mode and refreshes it regularly.

No port is used.

FUNCTION DESCRIPTION AND COMMENTS

void INIT_WDT(void);

WDT initialization.

It must be used before any use of the WDT.

It initializes the value loaded into the prescaler and into the counter.

To use the WDT in output mode, you must initialize the output pin in push
pull, alternate function . This means (PXC0R,PXC1R,PXC2R) = (1,1,0)

void START_WDT(void); Start the Watchdog Timer.
void STOP_WDT (void); It stops the counting of the timer (useless in watchdog mode).

void
Restart_Watchdog(void);

This routine refreshes the Watchdog counter: At each End of Count, if this
function has not been used before, a reset is generated internally.

The periodic use of this function is the only way to avoid a reset.

void INIT_WDT_IT(void);
This routine configure the interrupts after each End of Count using inter-
rupt channel INTA0. NMI is thus configured as the Top Level Interrupt.

Don’t forget to initialize your start-up file correctly.
void Enable_WDT_IT(void) Enable the WDT interrupt.

void
INTWDT_EndCount(void);

Interrupt subroutine which occurs after an end of count.

The code written in the user part allow the generation of a simple PWM
signal (programmable duty cycle).

104/138

ST9+ USER GUIDE

Table 16. : ’ 7 &) XQFWLRQV

5 USING THE DEVELOPMENT TOOLS

5.1 DEVELOPING IN C LANGUAGE

Although the ST9+ C Compiler is an optional product, you are strongly advised to write your
software using a High Level Language. Naturally for the sake of optimization, especially to ob-
tain the best execution times from certain frequently-used pieces of code, assembly language
will still remain the right choice. This will be true at least for the initialisation file. But writing a
complete program in assembler has few advantages and many drawbacks, so there can be no
economic justification for using only assembler.

This is why some of the examples in this guide are written in assembler and some in C. The
development tools allow you to mix both languages easily.

A useful book, if you have some experience of C language is ”The C language”, by Kernighan
and Ritchie, second edition.

5.2 AVAILABLE TOOLS

The following tools are available for the ST9+ family:

– A Software development package, named GNU9P, that includes a C-compiler and a Make
utility.

– A range of emulators for the various sub-families.

You have two options in terms of development tool products. A software development
package is delivered with each emulator. This does not include the C-compiler. You must pur-
chase it separately. So with the emulator package alone you can only do assembler program-
ming.

As previously mentioned, you are strongly advised to use C programming as much as pos-
sible, for the obvious reasons of structuring the source code, of code portability and reus-
ability. In addition, developing the program is much easier and more reliable due to the con-
trols and checks performed by the C-compiler.

FUNCTION DESCRIPTION AND COMMENTS

void INIT_WDT(void);

WDT initialization.

It must be used before any use of the WDT.

It initializes the value loaded into the prescaler and into the counter.
void START_WDT(void); Start the Watchdog Timer.
void STOP_WDT (void); It stops the counting of the timer (useless in watchdog mode).

void
Restart_Watchdog(void);

This routine refreshes the Watchdog counter: At each End of Count, if this
function has not been used before, a reset is generated internally.

The periodic use of this function is the only way to avoid a reset.

105/138

ST9+ USER GUIDE

However, in the event that a program requires very fast processing, the C language is imprac-
tical so the program must be carefully written in assembly language

Another point worth mentioning is the development environment, which is the part of the soft-
ware that deals with the production and the modification of the source files.

5.3 INTRODUCING THE DEVELOPMENT TOOLS

The ST9+ Software Toolchain V6 allows complex applications to be developed easily and ef-
ficiently for the ST9+ family of microcontrollers. It is designed to provide the user with a pow-
erful development environment which can be used to design, debug, maintain and develop
applications in the C and assembly languages. In addition to the C compiler, assembler and
linker, the ST9+ Software Toolchain V6 provides an Integrated Development Environment
(IDE) that is used to edit, build and debug an application in a single environment.

Using the ST9+ Software Toolchain V6, it is possible to develop applications in the C language
without being hindered by the segmented architecture of the ST9+ microcontroller. Applica-
tions can be as large as 4 MB of code and data, and can be completely written in C language
as if developing standard C programs. This code is linked with the standard start-up code that
initializes the ST9+ microcontroller. Depending on the application board, the startup files may
need to be customized to ensure initialization.

With this software toolchain, variables can be handled in the ST9+ register file as if they were
in memory, handling variables in this manner dramatically reduces the size of code. Objects in
memory can be controlled either at a modular level or on an object by object basis. Thanks to
the powerful features of the debugger, such as advanced breakpoints, break on registers,
trace with 64K records and performance analysis, the debugging and tuning of an application
is made easier and quicker.

The ST9+ Software Toolchain V6 is designed for use with the ST9 HDS2V2 emulators.

To obtain further information about the toolchain, please refer to the toolchain docu-
mentation.

106/138

ST9+ USER GUIDE

5.4 PROGRAM CONFIGURATION AND INITIALISATION

Most programs are divided into several source files. This makes modifications easier and re-
compilation quicker, using the make utility that recompiles only the files that have changed
since the last compilation.

How you split the source text into files is a matter of taste. However, a few rules are worth fol-
lowing for keeping things well organized. They are:

– For sake of portability, assembler source text must not be mixed with C source text in the
same file. In actual practice, assembly statements may be written in C, but reduce these to
a minimum.

– Code that is very low-level is very machine-dependent. This code should be in one or more
specific files.

One or several higher levels of code can be defined according to the application. This is up to
you, but in all cases, machine-specific code, even written in C, should not reside in the same
file as a higher-level code. This is used to change the hardware configuration (assignments of
the port pins, etc.) by changing only those files that are involved with low-level routines.

Once this layout is established, you can then write the files mentioned below. These files are
used to configure the tools. Since they know the program structure, it can be maintained by
compiling the right portions whenever they change. So you absolutely have to go through the
following steps even though they are not directly related to writing code:

– Writing the makefile

– Writing the linker command file

– Writing the start-up file

These files are specific to each project and must be added to the list of source files. Examples
are given in the applications described in this book and are available in the Companion soft-
ware.

5.4.1 Writing the Makefile

The makefile is the template that puts all the program pieces together. It describes the module
interdependencies that enable the gmake utility to build the program efficiently by processing
only those source files that have been modified since the last invocation of gmake(6).

The Make language is very powerful, for a Make utility can be applied to almost any kind of
processing where several files provide a single result. It is a generic machine that manages
updates smartly. When developing programs for the ST9+, the makefile description is similar
from one project to another. Most of the changes relate to the name and the number of the

(6) See GNU9P Make Utility Manual.

107/138

ST9+ USER GUIDE

files involved. Thus, we propose here a skeleton makefile and we explain how you can tailor
it for a specific application, without going into the advanced features gmake offers.

A skeleton makefile is given on the companion software, and a variant is included in the direc-
tory of each application. This will help you understand typical makefile usage, which is not dif-
ficult to learn.

The skeleton makefile reads as follows:

#/*******************************/

#/* MAKEFILE SKELETON */

#/*******************************/

DEFINES

Here you declare your compilation options

CFLAGS = -m$(MODEL) -I$(INCDIR) -c -g -Wa,-alhd=$*.lis

Here you declare your linking options

LDFLAGS = -nostdlib -T$(SCRIPTFILE) -Wl,-Map,$(APPLI).map

Define here the name of your application without any extension

APPLI =

Here you specify the memory model used by your application (compact/
specmed/medium)

MODEL =

Here you give the name of the script file used by your application

SCRIPTFILE =

Give here the name of the C/SPP/ASM source files used in the application

C_SRC =

SPP_SRC =

ASM_SRC =

Give here the name of the startup files used in the application

108/138

ST9+ USER GUIDE

STARTUP_SRC=

List of directories to be searched

VPATH =

Location of include files. Do not leave this variable empty.

If you do not need it, remove or comment it.

INCDIR =

COMMON DEFINES

Name of file containing dependencies.

This file is automatically generated by this Makefile

DEP = $(APPLI).dep

The gcc9 driver is used for running the compiler, assembler, linker

GCC = gcc9

List of object files

OBJS = $(patsubst %.spp,%.o,$(filter %.spp,$(STARTUP_SRC))) \

$(patsubst %.asm,%.o,$(filter %.asm,$(ASM_SRC))) \

$(patsubst %.spp,%.o,$(filter %.spp,$(SPP_SRC))) \

$(patsubst %.c,%.o,$(filter %.c,$(C_SRC)))

Rule for building the target

$(APPLI).u : $(OBJS) $(LIBS) $(SCRIPTFILE)

$(GCC) $(LDFLAGS) $(OBJS) $(LIBS) -o $@

Rules

%.o:%.c

$(GCC) $(CFLAGS) $< -o $@

%.o:%.asm

$(GCC) $(CFLAGS) $< -o $@

109/138

ST9+ USER GUIDE

%.o:%.spp

$(GCC) $(CFLAGS) $< -o $@

include $(APPLI).dep

Rule for forcing the build without taking into account dependencies

rebuild:

gmake -f $(APPLI).mak clean

gmake -f $(APPLI).mak $(APPLI).u

Rule for making dependencies file

$(DEP): $(C_SRC) $(SPP_SRC)

@echo Generating dependencies ...

$(GCC) -MM -I$(INCDIR) $^ > $@

Rule for cleaning the application

.PHONY : clean

clean :

@echo off

if exist *.o del *.o

if exist *.u del *.u

if exist *.lis del *.lis

if exist *.map del *.map

if exist *.dep del *.dep

if exist *.hex del *.hex

The syntax of this file looks complicated. In fact, you typically only have to change the DE-
FINES section. The various items of the file are detailed below.

 &) / $ * 6 P 0 2 ’ (/ , ,1 &’ ,5 F J : D DOKG OLV

CFLAGS is a variable that contains the options that govern the working of the C-compiler. Re-
ferring to the option table of the compiler, it means:

Option Meaning
-m$(MODEL) Defines the memory model to use.

110/138

ST9+ USER GUIDE

 / ’) / $ * 6 QRVWGOLE 7 6 &5 ,3 7) ,/ (: O 0 DS $ 3 3 / , P DS

LDFLAGS is a variable that contains the options that govern the working of the linker. The op-
tions are:

5.4.1.3 APPLI = ...

This variable must contain the name of the main object file and related files, which are:

Example:

APPLI = SMCB

generates SMCB.U and SMCB.MAP using the script file to define the linker behavior.

 6 &5 ,3 7) ,/ (

This variable must contain the name of the script file to be used during the linking process.

5.4.1.5 C_SRC = ...

This variable must contain the complete list of the C source files involved in the program to be
built. Example:

C_SRC = main.c config.c serial.c calcul.c encoder.c

 6 3 3 B6 5 &

This variable must contain the complete list of SPP source files involved in the program to be
built. SPP are assembler source files needing preprocessing. Example:

SPP_SRC = register.spp decoder.spp

-I$(INCDIR) Defines user header files path.
-c Output an object file for later linking.

-g
Include in the object file all necessary information for the debugger to allow it to use
symbolic names.

-Wa,-alhd=$*.lis
Tells the gcc9 to transmit the option string -alhd=$*.lis to the assembler. These op-
tions makes the assemble generate the most complete assembly listing file to help
finding problems more easily.

Option Meaning
-nostdlib Inhibits the use of standard startup files or libraries.
-T$(SCRIPTFILE) Tells the linker to use the specified script file.

-Wl,-Map,$(APPLI).map
Tells gcc9 to transmit the -Map $(APPLI).map option string to the linker. This
option will make the linker print a link map in the map file.

File name Type of file

<main file name>.u
Object file ready for loading into the emulator. This is defined in conjunction with
the LD9 script file.

<main file name>.map The memory map file name.

111/138

ST9+ USER GUIDE

 $ 6 0 B65 &

This variable must contain the complete list of the assembler source files involved in the pro-
gram to build. Example:

ASM_SRC = startup.asm interrup.asm

 6 7$ 5 78 3 B65 &

This variable must contain the complete list of the startup files involved in the program to be
built. Example:

STARTUP_SRC = crtbegin.spp crtend.spp

 9 3 $ 7+

This variable must contain the list of directories that the Make function should search. Ex-
ample:

VPATH = ..\src ..\startup

 ,1 &’ ,5

This variable must contain the list of directories that contains header files needed by the pro-
gram. Example:

INCDIR = ..\INCLUDE ..\HEADER

5.4.1.11 Make Rules

A Make rule is a statement that both tells which file is dependent on which other file, and the
processing needed in order to update the result file when the source file has changed.

All files written under MS-DOS are marked in the directory with a date/time stamp. This allows
the Make utility to compare dates between files. If a file declared in a rule as being the result
of a source file, and the source file has a later date than that of the result, the result must be
regenerated. For example, in the following rule:

%.o:%.c

$(GCC) $(CFLAGS) $< -o $@

The first line says that any file with extension .c is the source for the corresponding .o file, so
that if the .c file is younger than the .o file, the source file must be recompiled.

The second line says that the compilation is done using GCC9, with the options stored in the
CFLAGS variable, that the input file ”$<” is the .c file (source file), and the output file ”$@”,
specified by option -o, is the target file.

5.4.2 Writing the Linker Command File using a Script File

The linker uses the linker command file(7)(or Script File) to correctly position the code and vari-
ables in the memory spaces. It defines the start and end of the ROM and RAM area(s), and

112/138

ST9+ USER GUIDE

gives the list of the object files to be linked. It also generates the appropriate labels to allow C
variables to receive their initial values before the program starts.

Once the Script File is written, the only thing you have to do is to add new file names or change
the mapping.

Below is an example of a generic script file for an ST90158:

MEMORY

{

ROM_CODE_1 :ORIGIN = 0x000000, LENGTH = 64K, MMU = IDPR0 IDPR1 IDPR2 NO

RAM1 : ORIGIN = 0x20F800, LENGTH = 2K, MMU = IDPR3

REGFILE (t) : ORIGIN = 0x0F, LENGTH = 192/* Groups 1 to 0x0C */

}

SECTIONS

{

_stack_size = DEFINED(_stack_size) ? _stack_size : 0x100;

.init :

{ *(.init) } > ROM_CODE_1

.fini :

{ *(.fini) } > ROM_CODE_1

.text :

{ *(.text)} >ROM_CODE_1

> ROM_CODE_1

.secinfo :

{ CREATE_SECINFO_TABLE } > ROM_CODE_1

.rodata :

{ *(.rodata) } > ROM_CODE_1

(7) ST9+ Family GNU Software tools, Second Part: LD9.

113/138

ST9+ USER GUIDE

.data : AT (LOADADDR(.rodata) + SIZEOF (.rodata))

{ *(.data) } > RAM1

.bss :

{ *(.bss) *(COMMON) } > RAM1

.stack :

{

_stack_start = DEFINED(_stack_start) ? _stack_start : . ;

. = . + _stack_size ;

_stack_end = _stack_start + _stack_size ; } > RAM1

.fardata : AT (LOADADDR(.data) + SIZEOF (.data))

{ *(.fardata) } > RAM1

.reg16_data :AT (LOADADDR(.fardata) + SIZEOF (.fardata))

{ *(.reg16_data)} > REGFILE

.reg16_bss :

{ *(.reg16_bss)} > REGFILE

.reg8_data :AT (LOADADDR(.reg16_data) + SIZEOF (.reg16_data))

{ *(.reg8_data) } > REGFILE

.reg8_bss :

{ *(.reg8_bss)} > REGFILE

}

For more details on the Command File, refer to the Command Language section in the GNU
Software Tools User Manual.

5.4.3 Writing the Start-Up File

This file is the very first file executed at power on. It performs the initialisation procedure re-
quired for the processor to start. It differs according to whether the program includes modules
written in C or not.

In all cases, it includes two main parts:

114/138

ST9+ USER GUIDE

– The reset, exception and interrupt vectors.

– The initialisation code that is required for the program to start.

5.4.3.1 Vector Table

The vectors consist of the Reset vector, the Divide by zero vector and the other interrupt vec-
tors. They are placed at defined addresses:

– The Reset vector must be located in the first word of the first segment.

– The Divide by zero trap must be placed at address 2 in each segment where a program uses
division. Each segment containing programs using division must have its own Address trap
branched to a local routine making only a ”CALLS DIVIDE_BY_ZERO” far call to the Divide
by zero service routine located in a single segment.

– All the other interrupt addresses must be placed in the Interrupt Segment. In ”ST9+” mode,
Interrupt Service Routines can make far calls to other segments.

They are organized as follows:

Table 17. 6 HJ P HQW

Table 18. 6 HJ P HQW Q QRW ,QWHUUXSW 6 HJ P HQW

Table 19. ,QWHUUXSW 6 HJ P HQW

The vectors above are placed at these addresses by hardware. You can place the following
ones at will, except that for each peripheral they must obey some rules like being a multiple of
a given number, e.g. 8 for the SCI.

Address Cause Point to

0
Reset (action on the reset pin,
Watchdog reset or Software

reset).

The start of the initialisation code. The reset address is the
start-up address.

2 Divide by zero
Address of the routine in segment 0 that handles the case
where a division by zero has occurred.

Address Cause Point to

2 Divide by zero
Address of the routine in segment n that handles the case
where a division by zero has occurred.

Address Cause Point to

2 Divide by zero
Address of the routine in segment ISR that handles the
case where a division by zero has occurred.

4 Top level interrupt The interrupt service routine for the top level interrupt.
... Interrupt Interrupt Service Routine addresses.

Address Cause Point to

n
First cause for the peripheral
whose IVR is set to n

The routine that handles the first interrupt cause for that pe-
ripheral.

115/138

ST9+ USER GUIDE

To force the linker to effectively position these vectors from address zero, the start-up module
must first be included in the module list in the linker command file.

5.4.3.2 Initialisation Code

The initialisation code mainly has to initialise the core. The core contains certain control regis-
ters that must be set to correct values or the program will fail to start. They are listed in the
table below. They are in the order they are initialized in a typical start-up file, though this order
is somewhat arbitrary.

n+2
Second cause for the periph-
eral whose IVR is set to n

The routine that handles the second interrupt cause for that
peripheral.

etc.

Register
Number

Register
Name

Function (*) Comments

235 MODER

Selects the space
where the stacks re-
side (register file or
memory), main clock
divider on/off, clock
prescaler division
rate.

If power and electromagnetic interference are not a
concern, the prescaler can be set to zero so that the
processor runs at full speed. Otherwise, the speed/
consumption trade-off can be handled at will accord-
ing to the needs of the program.

231 FLAGR
Selects the single
space of twin-space
mode for the memory.

In the ”ST9old” mode the DP bit of this register selects
program memory when cleared, or data memory
when set. It must be changed using the sdm and spm
instructions. Typically, one of these is used at the be-
ginning of the program and remains unchanged after-
wards. On some occasions, it may be changed, for
example to access tables of constants in ROM if two
spaces are used.

Therefore in ”ST9+” mode, DP must be set with the
sdm instruction (used only once in the start-up pro-
gram) to set the use of DPR register to address data
memory. The spm instruction must not be used. To
access data through the CSR register, use the ldpd,
lddp or ldpp instruction.

238-239 SSP

Position of the top of
the system stack in
memory or register
file

No subroutine or function call may be performed be-
fore the initialisation of SSP and MODER. Note that
since a call first decrements the stack pointer by two
and then writes the return address, if the stack is po-
sitioned in the register file, it may be initialised to the
register number of the top of stack + 1 to save stack
space.

116/138

ST9+ USER GUIDE

236-237 USP

Position of the top of
the user stack in
memory or register
file. Unused if only
one stack is used.

232-233 RP0-RP1

Selects the mode for
the working registers
as well as the abso-
lute register numbers
for r0 and r8.

These registers are set using the srp, srp0 and srp1
instructions. See the description of working registers
in Section 3.1.4.

230 CICR

Enables the MFTs,
enables the inter-
rupts, selects the ar-
bitration mode
(concurrent mode or
nested mode), and
the priority level of the
main program.

The GCEN bit of this register enables all the MFTs at
once. It may also be set once the MFTs are all initial-
ised, if it is desired that they be synchronised or that
they do not start before the remainder of the program
is ready.

The IEN bit enables all the interrupts at once. Again,
it may be set now, or only when the remainder of the
program is ready to process them.

The IAM bit selects either Concurrent Mode or Nested
Mode. It is better to do it now.

The three bits, CPL2 to CPL0, set the level of the
main program. Its value depends on the structure of
the program. Typically, it is set to 7, since the main
program is likely to be the low-priority process. See
the paragraph on interrupts in Section 3.4.

234 PPR

Sets the page
number for the paged
register group; set to
zero.

This register will probably be changed several times
during the execution of the program. It is first set now,
if the WCR needs to be initialised.

250
page 0

WDTPR
Prescaler register of
the WatchDog Timer.

If the WDT is used as a watchdog(†), it should be ini-
tialised before the WDGEN bit is cleared in the WCR
register below. In this case, it is advisable to initialise
it right now. See note for values.

248-249
page 0

WDTHR+W
DTLR

Reload registerof the
WDT.

Same note as above.

Register
Number

Register
Name

Function (*) Comments

117/138

ST9+ USER GUIDE

Once you have set these registers, the core is in good shape to start work. The next task is to
initialise the data memory and/or register file by entering a loop that writes zeroes into all lo-
cations used for data storage. This may seem superfluous, but there are two reasons for this:

– In C language, any non-initialized variable is supposed to contain zero at as an initial value.

– In any case, this makes the program behavior reproducible, even if not all variables are ini-
tialized explicitly.

Then, the table of initial values for the initialized variable (in the C language sense) is copied
to the location in RAM where the variables are positioned. The linker puts the initial values in
the same order as the variables in RAM, so a mere block copy is sufficient for this initialisation.

Eventually, the entry point of the main program written in C or assembler can be called. The
main program should be a closed loop and should not return. Typically in the start-up code,
the call to the main routine is followed by a halt instruction.

 6 WDUW XS) LOH &XVWRP L] DWLRQ

A generic start-up file is included with the Toolchain: crtbegin.spp. This file has to be modified
in order to fit the needs of your application.

In most cases, only two parts should be modified: part 2 (interrupt vectors declaration) and
part 6 (MMU setup).

Note: The start-up file initializes the ”ST9old” mode (ENCSR bit of EMR2 to 0) to be compatible with
the old ST9 version. In the main program you have to initialise this bit to 1 for ”ST9+” mode if
you want the MMU working with segments during interrupts.

251
page 0

WDTCR
Mode control register
of the WDT.

Same note as above.

252
page 0

WCR

Starts (or not) the
watchdog function of
the WDT, selects the
wait states for exter-
nal memory access
independently for up-
per and lower memo-
ries.

If you use the Watchdog function, first initialise the
Watchdog Timer. You can start it later using the
WDGEN bit of this register, but no protection is on be-
fore this time.

The external memory access is set by default to the
maximum number of wait states to allow the program
to start. You should reduce it to the exact number re-
quired by the type of memory to achieve maximum
performance.

(*) Some register functions may not be mentioned if not relevant for the initialisation.
(†) Device Datasheet; §9

Register
Number

Register
Name

Function (*) Comments

118/138

ST9+ USER GUIDE

 3 DUW ,QWHUUXSW 9 HFWRU ’ HFODUDWLRQ

/* +--+

| PART 2: INTERRUPT VECTOR DECLARATION |

+--+ */

; Interrupt vector definition

; Absolute address 0 is assumed (. == 0x0000)

.word __Reset ; address of reset routine

.word DIVIDE_BY_ZERO_TRAP_LABEL ; address of the divide by zero

; trap routine

.org 0x06

.word 0xffff ;no external watchdog used

.rept 126

.word __Default_Interrupt_Handler; default interrupt handler

; routine

.endr ; end of macro definition

The start-up file defines the reset vector and the divide by zero trap vector. All other vectors
are directed to a default interrupt handler.

A new vector must be defined for each interrupt routine of the user program. The vector loca-
tion must match the corresponding IVR register. Example:

.word __Reset ; address of reset routine

.word DIVIDE_BY_ZERO_TRAP_LABEL ; address of the divide by zero

; trap routine

.org 0x06

.word 0xffff ;no external watchdog used

.org 0x56

.word INTSCI_TransmitReady

119/138

ST9+ USER GUIDE

.org 0x100

 3 DUW 0 0 8 VHWXS

/* +--+

| PART 6: MMU SETUP |

+--+ */

#if defined(MEDIUM)

;

; Initialisation of registers controlling external memory interface

; EMR1 reset value is x000-000M

; MC, DS2EN, ASAF, NMB, ET0, BSZ should be checked against user

; memory configuration and EMR1 set accordingly

;

; EMR2 reset value is M000-1111

; ENCSR is 0, which selects ST9 compatibility mode for interrupt
handling.

; DMEMSEL, PAS1, PAS0, DAS1 and DAS0 should be checked against user
memory

; configuration and set complementary to WCR in page #0 (see below)

; DPRREM is forced to one to have DPRi registers accessible in group E

;

or EMR2, #EMR2_dprrem ; remap data page registers

;

; Initialization of DPR registers with initial value

;

ld DPR0, #_idpr0

ld DPR1, #_idpr1

ld DPR2, #_idpr2

ld DPR3, #_idpr3

120/138

ST9+ USER GUIDE

#else /* MEDIUM */

;

; Initialization of DPR registers with initial value

;

ld DPR0_P, #_idpr0

ld DPR1_P, #_idpr1

ld DPR2_P, #_idpr2

ld DPR3_P, #_idpr3

#endif /* MEDIUM */

#if defined(MEDIUM) || defined (SPECMED)

; ENCSR is 1, use CSR for interrupt handling.

or EMR2, #EMR2_encsr ; enable csr during interrupts

#endif /* MEDIUM */

#if defined(COMPACT)

; in compact programming model, the startup file

; will assumes that CSR = ISR, set by the bootrom

#endif /* COMPACT */

.endproc

In this part, the user only needs to comment DPR register initialization lines if one or more
DPRs does not map a memory region.

121/138

ST9+ USER GUIDE

5.5 GLOBAL INITIALISATION: CORE AND PERIPHERALS

5.5.1 Core Initialisation

Set the lower program memory addresses to the addresses of the interrupt service routines
that the peripherals will use.

Initialise the core, as shown above.

Initialise the PLL.

If the Multifunction Timers are to work synchronously, you must start them at the same time.
To do this,

Reset the Global Counter ENable bit (GCEN, bit 7 of register CICR) before the MFTs are ini-
tialised.

Then set it just before the main program starts.

Initialise the memory. This may include:

Resetting the register file and/or the data memory to zero, and

Preloading the variables with the initial values.

The procedure to follow when programming in C is described above.

5.5.2 Peripheral Initialisation

It is now time to configure the peripherals. For each one, you must take the following steps:

Set the Page Pointer Register to the page that contains the peripheral’s registers. On some
peripherals, several pages are involved so set the Page Pointer Register accordingly.

Set the various registers that define the behavior of the peripherals. In some cases, you have
to set them in a certain order. Refer to the appropriate Data Sheet. Do not yet set the bits that
start the peripheral working.

Set the Interrupt Vector Register of each peripheral to point to the corresponding group of
pointers to the interrupt service routines in program memory.

You can now set the Interrupt Mask Register, since the global Interrupt ENable bit is reset.

If you are using DMA, set the DAPR and DCPR registers to point to two registers in the reg-
ister file. Then:

– Initialise the address register to the address of the buffer in which the data is to be stored.

– Set the counter register to zero to inhibit DMA transfers.

You can now set the peripheral Enable bit or Start bit, unless you only want it to start later (as
can be the case with the Watchdog Timer).

122/138

ST9+ USER GUIDE

5.5.3 Port Initialisation

When you have configured all the peripherals as described above, you should initialise the
ports to your requirements: input or output, open drain or push-pull, TTL or CMOS levels, etc.
for the parallel I/O ports.

You must set the port pins that serve as inputs or outputs for peripherals as either:

– Alternate Function for peripheral outputs, or

– Regular Input for peripheral inputs

The exception is the A/D converter, where you must set the input pin as Alternate Function.

5.5.4 Final Initialisation

Install the Working Registers in the group defined for the main program.

Set the Page Pointer Register to a default value.

Set the Global Counter Enable, the global Interrupt ENable and, if required the Watchdog
function.

The main program is now ready to run.

5.6 INTERRUPT CONSIDERATIONS

The ST9+ has two main paging registers:

– The RPP register pair that selects the working register group

– The PPR register that selects one of 256 pages within register group 15

These registers are essential to the correct working of the program.

When an interrupt occurs, it is likely you will have to change either or both of these registers.
This is why you must push them to the stack on entry, and pop them back on exit.

An interrupt is requested by a bit in a register of a peripheral. This bit is not reset automatically
by the fact that the interrupt is serviced. You must reset it in the code of your interrupt service
routine.

If you write an interrupt service routine in C, by default PPR and all registers used by the rou-
tine are pushed on the stack. This can be time-consuming. If your program is entirely written
in C, and you use none or few registers explicitly, the register file has enough room to allocate
a private working register group for each interrupt service routine. You specify this by a
#pragma pseudo-instruction. This method provides the fastest response times.

6 DETAILED BLOCK DIAGRAMS

Here are the detailed block diagrams to supplement to the simplified ones used at various
points throughout this book.

123/138

ST9+ USER GUIDE

6.1 EXTERNAL INTERRUPT CONTROLLER

Figure 46 . External Interrupt Block Diagram

INT 0 Pin

End of Count WDR
see Timer Watchdog

and reset circuitry

Rising (set) or falling (reset) edge trigger event

Watchdog or INT 0 pin
10

INT A0 interrupt
to the core

01

Interrupt pending bit: channel A0

Comparison between
CPL and priority
level of INT A0 0’ for INTA0’

These bits are the MSB of the pointers in the
vector table, for the 8 external interrupts.

From another interrupt source;
Hardware interrupt daisy chain

IEN is common
for the 8 external

maskable interrupts

(See the priority level arbitration)

0
TED1 TED0 TEC1 TEC0 TEB1 TEB0 TEA1 TEA0

7
EITR (R242 page 0)

External Interrupt Trigger Event Register

IPD1 IPD0 IPC1 IPC0 IPB1 IPB0 IPA1 IPA0

IMD1 IMD0 IMC1 IMB1 IMB0 IMA1 IMA0 Interrupt mask bit channel A0

TEA0: Trigger event of Interrupt Channel A0
IAOS: Interrupt A0 Selection bit
IPA0 : Interrupt Pending bit Channel A0 (set and reset by

hardware, except if one wishes a software interrupt)
IMA0: Interrupt Mask Bit Channel A0
CPL (0,1,2):Current priority level of main
PL(1A,2A):Priority level of group INTA0, INTA1
IEN: Interrupt Enable

level of INT A0

0
V7 V6 V5 V4 TLTEVTLIS IAOS EWEN

7
EIVR (R246 page 0)

External Interrupt Vector Register

(See vector table organisation)

07
EIPR (R243 page 0)

External Interrupt Pending Register

07
EIMR (R244 page 0)

External Interrupt Mask-bit Register

IMC0

PL2D PL2C PL2B PL1B PL2A PL1A
07

EIPLR (R245 page 0)
External Interrupt Priority Level Register

PL1C

GCEN TLIP TLI IAM CPL2 CPL1 CPL0
07

CICR (R230)
Central Interrupt Control Register

IEN

PL1D

124/138

ST9+ USER GUIDE

6.2 TOP-LEVEL INTERRUPT INPUT

Figure 47 . Top-Level Interrupt Block Diagram

NMI pin

Rising (set) or falling
(reset) edge trigger
event on NMI pin

Watchdog or NMI pin
Top level interrupt

10

A pseudo NMI
Event Interrupt

A real

Event

or

Top level interrupt to the core
TLI routine has no interrupt vector register.
ISR routine in vector table:
byte4 (high), byte 5 (low) by hardware.

TLTEV:Top level trigger event bit
TLIS:Top level interrupt selection bit
TLIP:Top level interrupt pending bit

(set and reset by hardware only)
TLI:Top level interrupt bit
IEN:Interrupt enable
TLNM:Top level not maskable

01

Choosing between

End of Count WDR
see Timer Watchdog

and Reset circuitry 0
V7 V6 V5 V4 TLTEV TLIS IAOS EWEN

7
EIVR (R246 page 0)

External Interrupt Vector Register

0
GCEN TLIP TLI IEN IAM CPL2 CPL1 CPL0

7
CICR (R230)

Central Interrupt Control Register

0
HL5 HL4 HL3 HL2 HL1 HL0

7
NICR (R247 page 0)

Nested Interrupt Control Register 0
TLNM
7 Nested Interrupt Control Register

HL6
Interrupt

NMI

125/138

ST9+ USER GUIDE

6.3 WATCHDOG TIMER

Figure 48 . Watchdog Timer Block Diagram

WDTIN pin

Input Modes and
Clock Control LogicINTCLK / 4

Prescaler and Counter
Registers Control LogicWDT CLK

Output
Control Logic

End of Count

WDOUT
pin

NMI
pin

INT 0
pin

INTA 0
request

Reset to
the core

Top level
interrupt
request

EIVR (R246, Page 0)
External Interrupt Vector Register

0

0

1

1

PRS7 PRS0

WDTPR(R250 page 0)
Timer / Watchdog
Prescaler Register

PRS Latch
(read/write)

R15 R0

WDTR (RR248 page 0)
Timer / Watchdog 16-bit Down Counter

Counter Latch (RR248 write only)

7 0 015

Current value (RR248 read only)PRS Current Value

WCR (R252, Page 0)
07 Wait Control Register

X WDGEN WDM2 WDM1 WDM0 WPM1 WPM0WPM2

07
V7 V6 V5 V4 TLTEV IOAS EWENTLIS

ST_SP S_C INMD1 INMD2 INEN OUTENWROUTOUTMD

WDTCR (R251 page 0)
Timer/Watchdog Control Register

7 0

ST_SP: Start/Stop bit
S_C: Single-shot/Continuous
INMD1,2: Input mode selection bit
INEN: Input enable
OUTMD: Output mode
WROUT: Write Out
OUTEN: Output Enable bit
WDGEN: Watchdog Enable bit (active low)
TLIS: Top level input selection bit
IAOS: Interrupt channel A0 selection bit

Top level

126/138

ST9+ USER GUIDE

6.4 MULTIFUNCTION TIMER

Figure 49 . Multifunction Timer Block Diagram

UP/Down
Logic

Trigger up (TxINA)
Trigger down (TxINB)

Up / down (TxINA)
Autodiscrimination

Clock up (TxINA)
Clock down (TxINB)

8-bit Prescaler

Prescaler Register

Gate

3Internal
Clock

External clock either
TxINA or TxINB or
both of these inputs

Ext. clock

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Not used
Not used
Gate
Gate
Not used
Trigger
Gate
Trigger
Clock up
Up / down
Trigger up
Up / down
Autodiscrim.
Trigger
Ext. clock
Trigger

Not used
Trigger
Not used
Trigger
Ext. clock
Not used
Ext. clock
Trigger
Clock down
Ext. clock
Trigger down
Not used
Autodiscrim.
Ext. clock
Trigger
Gate

TxINA pin TxINB pin

0 0 nop
0 1
1 0
1 1 and

TxINA / TxINB
Configuration

(Inputs in alternate function)

TxOUTA pin TxOUTB pin

See operating modes of
the MFT block diagram

* MFT0 Registers, page 10
MFT1 Registers, page 8

(ST 9030 / 9040)

IN3 IN2 IN1 IN0 A0 B1B0A1

ICR (R250*)
External Input Control Register7 0

TxINA

Trigger

Input
Function

TxINB
Input

Function

PRSR (R251*)

P7 P0
07

B0 B1 B0 B1 B0 OPCEVB1

OACR (R252)
Output A Control Register

7 0
B0 B1 B0 B1 B0 OPCEVB1

OBCR (R253)
Output B Control Register

7 0

On-chip
Event Signal

on OVF

Preset Value or
Current Level

on TxOUTB Pin

<COMP0><COMP1><OVF> <COMP0><COMP1><OVF>

On-chip
Event Signal
on CMP0R

Preset Value or
Current Level

on TxOUTA Pin

Successful Event on MFT
Action on

TxOUTA or TxOUTB
Set
Toggle
Reset
Nop

B0

0
0
1
1

B1

0
1
0
1

TMR (R253)
Timer Mode Register

Bits 6 and 7

OE1 OE0
7 6

TxOUT A Enable
TxOUT B Enable

127/138

ST9+ USER GUIDE

Figure 50 . MFT Operating Modes Block Diagram

Up/Down
Logic

16-bit Counter
with Comparator

REG0HR, REG0LR (R240, R241*) REG1HR, REG1LR (R242, R243*)
Capture Load Register 1

U / D

Clock

Clear

DMA Controller

Capture 0
Load 1

Compare 1Compare 0

Clear
Logic

OVF / UNF

Load / Capture / Monitor
Logic

0 Retrigger mode
1 Trigger mode

Compare
Logic

* MFT0 registers page 10
MFT1 registers page 8

(ST 9030 / 9040)

(See I / O modes of
the MFT bloc diagram)

Counter enable

(See I / O modes of
the MFT bloc diagram)

OE1 OE0 BM RM1 RM0 CORENECK

TMR (R249*)
Timer Mode Register

1x0
1x1
000
010
001
011

Biload
Bicapture

load
load
capture
capture

monitor
capture
monitor
capture

REG0R REG1R

0 Continuous Mode
1 One-Shot Mode

7 0
CP0 CP1 CM0 CM1 OUF A0OCM0OCP0

FLAGR (R254*)
Flags Register7 0

Capture
Interrupt
Function
1 AND
0 OR

CM0CP0

<Capture><Compare>

0 Parallel Mode not selected
1 Parallel Mode selected

R15 R0
015Capture Load Register 0

R15 R0
015

CMP1HR, CMP1LR (R246, R247*)
Compare 1 Register

R15 R0
015

CMP0HR, CMP0LR (R244, R245*)
Compare 0 Register

R15 R0
015

DMA Controller

CEN CCP0 CCMP0 CCL UDC CSOF0UDCS

TCR (R248*)
Timer Control Register7 0

Capture 1

Counter Status

Load 0

128/138

ST9+ USER GUIDE

Figure 51 . Analog to Digital Converter Block Diagram

Set Reset

Software
Trigger

ADTR
pin

On-chip Event
(from MFTs)

Autoscan Logic EOC
Channel 7Start / Stop

Conversions

SC2 SC1 SC0

Autoscan Configuration

Selected
Channels

7
6-7

-
-
-

1 to 7
0 to 7

1 1 1
1 1 0
- - -
- - -
- - -
0 0 1
0 0 0

Control Logic Register

Synchronization to
Start/Stop the
A/D Converter

D7R (R247)
D6R (R246)
D5R (R245)
D4R (R244)
D3R (R243)
D2R (R242)
D1R (R241)
D0R (R240)

Successive
approximation
A/D converter

Ain 7 pin
Ain 6 pin
Ain 5 pin
Ain 4 pin
Ain 3 pin
Ain 2 pin
Ain 1 pin
Ain 0 pin

Comparison between
threshold and channel 7

values

Comparison between
threshold and channel 6

values

Threshold Registers (page 63)

UT7R(R251)

LT7R(R249)

LT6R(R248)

UT6R(R250)

Analog
Watchdog

C7U

Data Registers

CRR(R252 page 63)
Compare Result Register

V4 V3 V2 W1 XV7 V6 V5Set

Reset

ICR (R254 page 63)
Interrupt Control Register

IVR(R255 page 63)
Interrupt Vector Register

MSB of the vector table address
for the A/D converter interrupts

Comparison between
CPL and priority level

of A/D converter
interrupt

Interrupt
Mechanism

VR02110A

SC2SC1SC0 EXTG INTG STCONTPOW

(page 63)

C6U C7L C6L X X X X

EVC AWD ECI AWDI X PL2 PL1 PL0

CLR (R253, Page 63)

A/D Interrupt
to the Core

CPL0, CPL1, CPL2 of CICR (R230)

129/138

ST9+ USER GUIDE

7 GLOSSARY

A

A/D Analog to Digital

AC Alternating Current

ACR Address Compare Register

ADC Analog to digital converter

ADTR A/D Trigger

AIN Analog input

AWD Analog watchdog

B

BRG Bit Rate Generator

C

CCU Clock Control Unit

CHCR Character Configuration Register

CICR Central Interrupt Control Register

CLK Clock

CLR Control Logic Register

CMOS Complementary Metal Oxide Silicon

CMP Compare Register

CPL Current Priority Level

CR Carriage Return

CRR Compare Results Register

CS Chip Select

D

DAPR DMA Address Pointer Register

DC Direct Current

DCPR DMA Counter Pointer Register

130/138

ST9+ USER GUIDE

DI Data In

DIL Dual In line

DMA Direct Memory Access

DO Data Out

DP Data Page

E

ECV End of conversion

EEPROM Electrically-Erasable PROM

EIMR External Interrupt Mask-Bit Register

EIPLR External Interrupt Priority Level Register

EIPR External Interrupt Pending Register

EITR External Interrupt Trigger Register

EIVR External Interrupt Vector Register

EWDS Erase or Write Disable

EWEN Erase or Write Enable

F

FLAGR Flag Register

G

GCC9 GNU C Compiler for ST9+

I

I/O Input/Output

IAM Interrupt Arbitration Mode

ICR External Input Control Register

IDCR Interrupt/ DMA Control Register

IDMR Interrupt/ DMA Mask Register

IDPR Interrupt/DMA Priority Register

131/138

ST9+ USER GUIDE

IEN Interrupt Enable

INMD Interrupt Mode

INT Interrupt

IOCR I/O Connection Register

ISR Interrupt Segment Register or Interrupt Service Routine

IVR Interrupt Vector Register

L

LCD Liquid Crystal Display

LED Light Emitting Diode

LF Line Feed

LSB Least Significant Bit

M

MFT Multifunction Timer

MMU Memory Management Unit

MODER Mode Register

MSB Most Significant Bit

N

NICR Nested Interrupt Control Register

NMI Non-Maskable Interrupt

O

OACR Output A Control Register

OBCR Output A Control Register

OVF Overflow

P

PC Program Counter or Personal Computer

PFE Programmer’s File Editor

PPR Page Pointer Register

132/138

ST9+ USER GUIDE

PRL Priority Level

PROM Programmable ROM

PWM Pulse Width Modulator

PXC Port Control Register

PXDR Port Data Register

R

RAM Random Access Memory

RCCU Reset and Clock Control Unit

ROM Read-Only Memory

RPP Working Register Pointer

RXCLK Receiver Clock Input

RXDATA Receiver Data

S

SEG Extract the 6 bits segment of a label

SCI Serial Communications Interface

SCK Serial Clock

SOF Extract the 16 bits offset of a label

SPI Serial Peripheral Interface

SPICR SPI Control Register

SPIDR SPI Data Register

SRP Set Register Pointer

SSPR System Stack Pointer Register

T

TCR Timer Control Register

TLNM Top Level Not Maskable

TMR Timer Mode Register

TTL Transistor to Transistor Logic

133/138

ST9+ USER GUIDE

TXCLK Transmitter Clock Input

TXD Transmitter Data

U

U/D Up/Down

UART Universal Asynchronous Receiver/Transmitter

UNF Underflow

USPR User Stack Pointer Register

UV Ultraviolet

W

WDT Watchdog Timer

WDTCR Watchdog Timer Control Register

WDTLR Watchdog Timer Low Register

WDTPR Watchdog Timer Prescaler Register

134/138

Index

8 INDEX

A

ADC
configuring the input pin................... 59
detailed block diagram 128
interrupt vectoring.............................. 92

Address spaces
overview .. 10

Addressing modes..................................... 37
Analog watchdog

overview .. 92
Arguments

passing arguments in C 35
Arrays

accessing .. 37
AWD bit ... 92

B

Bit rate generator....................................... 85
Block copy .. 37

C

Causes
interrupt causes 39

C-compiler .. 104
CCU

Clock Control Unit 53
Character matching

SCI ... 85
CICR

overview .. 42
Clock selection

MFT.. 67
Compare Result Register......................... 92
Concurrent mode....................................... 43

interrupts ... 42
Context switching 13,122
Continuous mode

WDT... 63
WDT example 65

Control registers
example of programming 57

Copy
block copy... 37

Core
overview .. 6, 10

CPL
overview .. 42

CPUCLK
CPU clock ... 53

CSR
Code Segment Register................... 20

D

DCPR52
Development tools 104

overview .. 105
Divide instructions32
DMA

using in conjunction with the UART85
DMA controller

application... 84
overview .. 50

DMASR
DMA Segment Register 23

Driver
I/O .. 59

E

ECV bit .. 92
Emulator.. 104
Enable

interrupt enable flag 43
Event counter mode

WDT... 61
Examples

context switching 13
divide instructions.......32
DMA application 84
interrupt initialisation 65
interrupt routine.................................. 50
IVR ... 39
LCD interface80

135/138

Index

makefile... 107
MFT initialisation................................ 77
MFT interrupt vector.......................... 40
nested interrupts................................ 44
parameter passing in C 35
periodic interrupt timer application . 64
programming peripheral control regis-

ters 57
programming peripheral registers .. 57
PWM application................................ 74
PWM output.. 71
selecting a register page.................. 18
test and jump...................................... 34
test under mask 31

Extract the page number of a data......... 25

F

FLAGR register .. 115

G

Gated input mode
WDT... 61

GNU9... 104
Groups

register groups 12

I

I/O pins59
I/O port

configuration registers 59
IEN bit .. 43, 48
Include files

peripheral register definition 58
Initialisation

global ... 121
MFT example 77
stacks .. 27
WDT... 65

Initialisation code 115
Instruction set

overview .. 29
INTCLK

Peripheral clock 53
Interrupts

ADC ... 92
analog watchdog 92
causes ... 39
concurrent mode 42, 43
context switching 122
CPL .. 42
enable flag (IEN) 43
external interrupt vectors 50
external interrupts block diagram ... 47
external, detailed block diagram... 123
initialisation example......................... 65
interrupt routine

example.. 50
nested mode 42, 43
pins .. 46
priorities... 41
SCI interrupt vectors 89
system overview 37
top-level interrrupt 47
vectors... 38

ISR
Iunterrupt Segment Register 23

IVR
example... 39

J

Jump
test and jump...................................... 34

L

Latency
interrupt latency 41

LCD interface example............................. 80
Load instructions 29
Look-up tables

implementing...................................... 34

M

Make file example107
Make utility.. 104, 106

136/138

Index

Mask register
interrupt and DMA mask register.... 70

Masking
external interrupts.............................. 46

Memory spaces
overview .. 10

MODER register 27,115
Moving data blocks 29
Multifunction timer

detailed block diagram 126
initialisation example......................... 77
interrupt and DMA mask register.... 70
interrupt vector example................... 40
operating modes detailed block diagram

127
PWM example............................ 71
swap mode ... 53

Multiplexing
pins... 49

N

Nested mode .. 42, 43
example... 44

NMI... 42, 46, 47

P

PAG 25
Parallel I/O .. 59
Parameter passing

C language example......................... 35
Periodic interrupt application 64
Peripheral register pages......................... 12
Peripherals

control registers programming example
57

list of main................................... 7
overview .. 57
programming control registers 57
register definition include files 58

Pins
external interrupts.............................. 46
I/O pins.. 59
multiplexing... 49

WDT output pin.................................. 63
POF

extract the offset of the data address.25
Pointers

register pointers................................. 12
stack pointer 27

Port
initialisation....................................... 122

Prescaler register
MFT.. 67

Priority
assigning to interrupt source 42
external interrupts 46
interrupt priorities............................... 41
interrupt priority mechanism........37
top-level interrupt............................... 47

Processor core....................................... 6, 10
PWM

application example 71
PWM application example 74

R

RCCU
Reset and Clock Control Unit.......... 53

Realtime programming 41
Register

peripheral pages................................ 12
Register file

overview .. 11
Register numbers table 15
Register page number table 17
Register-oriented machine

definition of ... 7
Register-oriented programming model

overview .. 10
Registers

definition include files 58
groups ... 12
page selection example 18
pointers ... 12
working .. 11, 12

Retriggerable input mode
WDT... 62

137/138

Index

S

SCI
theory of operation 85

SEG
Extract the 6 bits segment of a label20

Serial communication interface
overview .. 84

Serial peripheral interface
interrupt vectors 89
overview .. 79

Single mode
WDT... 63

SOF
Extract the 16 bits offset of a label . 20

Sources
interrupt sources................................ 39

Srp instruction .. 13
SSP .. 115
ST9040 block diagram................................ 8
ST90R540 block diagram 8, 9
Stack

overview .. 26
Stacks

initialisation ... 27
locating stack pointer in register 27
location options.................................. 28

Start-up file113
Structures

accessing .. 37
Swap mode

multifunction timer 53
Switching

working registers 13

T

Test and jump .. 34
Test under mask .. 30
Timer

block diagram..................................... 60
event counter mode 61

gated input mode............................... 61
output pin.....................63
retriggerable input mode 62
single/continuous mode 63
triggerable input mode...................... 62

TLNM bit.. 47
Tools .. 104
Top-Level interrupt 47

block diagram..............48
detailed block diagram 124

Triggerable input mode
WDT... 62

U

UART application 84
USP.. 116

V

Vector table .. 114
Vectors

example with MFT............................. 40
external interrupts 50
interrupt vectors overview................ 37

W

Watchdog
analog.. 92

Watchdog timer.................................... 46, 47
detailed block diagram 125
output pin.....................63
overview .. 60

WDT
initialisation example......................... 65
periodic interrupt application 64

Working registers
example... 13
overview .. 11, 12
register pointers................................. 12
switching ... 13

138/138

ST9+ USER GUIDE

NOTES:

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without the express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

 2000 STMicroelectronics - All Rights Reserved.

Purchase of I2C Components by STMicroelectronics conveys a license under the Philips I2C Patent. Rights to use these components in an
I2C system is granted provided that the system conforms to the I2C Standard Specification as defined by Philips.

STMicroelectronics Group of Companies
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain

Sweden - Switzerland - United Kingdom - U.S.A.

http:// www.st.com

