
 ST52T301/E301
8-Bit OTP/EPROM DuaLogic MCUs WITH ADC,

UART, TIMER, TRIAC & PWM DRIVER
ADVANCED DATA SHEET

High Speed dedicatedstructures forFuzzy Logic
(3.5 µs to compute a 4 In x 1 Out rule)

Capability to perform simple boolean and
arithmetic operations

Up to 4 Input, 2 OutputConfigurableVariables for
each Fuzzy Algorithm and up to 300 Rules

Up to 16 Triangularand TrapezoidalMembership
Functions for each Input variable

Up to 256 Singleton Membership Functions for
all Consequents

Program and Data EPROM: 2 Kbytes

16 general purpose registers available as
Register File

Working Clock Frequencies:5, 10 and 20MHz

On-Chip Clock Oscillator driven by Quartz
Crystal or Ceramic Resonator

One external interrupt

Standard TTL compatible input

CMOS compatible output

4 channel 8 bit Analog to Digital Converter

Bandgap reference 2.5V

Digital 8 bit I/O port indepedentlyprogrammable
with handshake signal

Ser ial Communic at ion In terface with
asynchronousprotocol (UART)

Programmable Timer with internal Prescaler

Internal Power Fuzzy Control to drive external
Triac (up to 25mA source, 50 mA sink current)

Internal Fuzzy controlled PWM to drive an
external power device

Software tools and Emulators availability

Windowed and One Time Programmable (OTP)
Memory parts available for prototyping and
production phases

44 pinPlastic (PLCC44) and Ceramic Windowed
Leaded Chip Carrier (CLCC44-W)

July 1998

CLCC44-W

PLCC44

1.1 GENERAL DESCRIPTION

ST52E301 (1) and ST52T301 (1) devices are
membersof the W.A.R.P.family of 8-bit DuaLogic
microcontrollers. They are able to perform, in an
efficientway, both booleanand fuzzyalgorithms, in
order to reach the best performances that the two
methodologies allow.

TheST52E301is theerasableEPROMversion and
the ST52T301 is the OTP version.

The ST52x301 is completely developed and
produced by STMicroelectronics using the reliable
high performance CMOSM5E (O.7µm) process.

Thanks to Fuzzy Logic, ST52x301 allows to
describea problemusing a linguistic model instead
ofa mathematicalmodel. In thisway it is very useful
and easy to modelize complex system with very
high accuracy.

The linguistic approach is based on a set of
IF-THEN rules, describing the control behaviour,
and on Membership Functions associated to input
and output variables.

Fuzzy Inference is a set of operations which
computes the output values according with the
truth values of the involved rules.

Note: (1) Formerly W.A.R.P.3TC

1/99

The flexible I/O configuration of ST52x301 allows
to interface with a wide range of external devices,
like D/A converters, power control devices (SCRs,
TRIACs) and external sensors.

The OTP (One Time Programmable) device is fully
compatible with the EPROM windowed version,
which may be used to create prototype systems
and for the pre-production phases.

The Fuzzy Core includes the fuzzifier (ALPHA
calculator), the inference unit and the defuzzifier.

It allows to manage up to 300 Rules (4 Inputs and
1 Output). The rules could be shared in different
fuzzy subroutines that can be activated by user
defined conditions.

The I /O capab i l it ies, demanded f rom
microcontroller applications, are fulfilled by
ST52x301 with 4 Analog Inputs, an asynchronous
Peripheral interface (UART) and an 8-bit I/O
communicationport inorderto transferdata from/to
the on-chip Register File.

The voltage reference provides biasing to the
analog portion of the internal circuitry. The internal
reference is a 2.5V Bandgap reference.

The voltage reference can supply up to 0.1 mA of
current to power external circuitry.

ST52x301 includes an 8-bit sampling Analog to
Dig ital (A/D) Conve r te r with a 4 ana log

channel fast multiplexer (32µs convers ion
time/channel).
It is possible to perform operations on data stored
in the Register File (16 bytes), allowing to manage
new inputs and feedbackoutputs.
The TRIAC/PWM Driver peripheral allows to
manage directly power devices, implementing
three different operating modes: Burst Mode
(i.e.Thermal App li ca t ion s), Phase Ang le
Partialization (i.e. Motors Control by TRIACs) and
high frequency PWM controls.
A programmable Timer with Internal Prescaler,
using both internal or external clock, is available.

The microcontroller configuration is stored in the
internal EPROM.
A powerfu l development environment ,
FUZZYSTUDIO  3.0, consisting of a board
a n d s o f t wa re t o o l s , a l l ow s a n e a s y
configuration and use of ST52x301.
S T 5 2 x 3 0 1 i s f u l l y s u p p o r t e d b y
FUZZYSTUDIO3.0 so f tware tools a llowing
to graph ical ly design a project and obtain an
optimized microcode.
ST52x301 exploits a SGS-THOMSON patented
strategy to store the MFs in its internal memory.

OSCILLATO R

ALU
-

FUZZY
CORE

SYSTEM
REGISTERS

CONTROL
UNIT

REGISTER
FILE

PARALLEL
I/O PORT

2kBytes
EPROM

TRIAC/PWM
DRIVER

PROG.TIMER
WITH

PRESCALER
SCI

A/D
CONVERTER

BAND-GAP
REFERENCE

Figure 1. ST52x301 Architectural Block Diagram

2/99

ST52T301/E301

Figure 2. CLCC44-W Pin Configuration

Figure 3. PLCC44 Pin Configuration

3/99

ST52T301/E301

PIN NAME TYPE Programming Phase Working Phase

1 not connected - -

2 AVDD Analog VDD Analog VDD

3 AVSS Analog Ground Analog Ground

4 EVDD EPROM Digital Power Supply EPROM Digital Power Supply

5 EVSS EPROM Digital Ground EPROM Digital Ground

6 VPP
EPROM Programming

Power supply (12V ±5%) EPROM VDD (5V ±10%)

7 VDD Digital Power Supply Digital Power Supply

8 VSS Digital Ground Digital Ground

9 P0 I/O I/O EPROM Data Digital I/O

10 P1 I/O I/O EPROM Data Digital I/O

11 P2 I/O I/O EPROM Data Digital I/O

12 P3 I/O I/O EPROM Data Digital I/O

13 P4 I/O I/O EPROM Data Digital I/O

14 P5 I/O I/O EPROM Data Digital I/O

15 P6 I/O I/O EPROM Data Digital I/O

16 P7 I/O I/O EPROM Data Digital I/O

17 READY O I/O port Handshaking Signal

18 P8 O Digital Output

19 TEST I (must be set to 0) (must be set to 0)

20 MAIN2 I/O Zero Crossing/Prescaler Output

21 MAIN1 I Zero Crossing

22 VDD Digital Power Supply Digital Power Supply

23 VSS Digital Ground Digital Ground

24 TRIACOUT O Triac/PWM Driver Output Pulses

25 MODE I Functionment Mode Selector Functionment Mode Selector

26 RESET I General Reset General Reset

27 CE/INT I Chip Enable EPROM External Interrupt

28 TIMEROUT O Output Timer

29 ERES / TRES I EPROM Address Counter Reset External Timer Reset

30 OE / TCTRL I EPROM Output Enable Timer Start/Stop Signal

31 OSCout I/O Oscillator Output Oscillator Output

32 OSCin I Oscillator Input Oscillator Input

33 CADD / TCLK I EPROM Change Address Clock Timer External Clock

34 VSS Digital Ground Digital Ground

35 VDD Digital Power Supply Digital Power Supply

36 TxD O SCI Output

37 RxD I SCI Input

38 not connected - -

39 not connected - -

40 AIN3 Ainp Analog Input

41 AIN2 Ainp Analog Input

42 AIN1 Ainp Analog Input

43 AIN0 Ainp Analog Input

44 BG Aout Band Gap Output

Table 1. PLCC44 and CLCC44-W Pin Configuration

4/99

ST52T301/E301

1.2 PIN DESCRIPTION
VDD, EVDD, VSS, EVSS, AVDD, AVSS, VPP. In order to
avoid noise disturbances, the power supply of the
digital part is kept separated from the power supply
of the analog part.
VDD. Main Power Supply Voltage (5V 10%).
VSS. Digital circuit Ground.
EVDD. EPROM Main Power Supply Voltage (5V
10%).
EVSS. EPROM Digital circuit Ground.
AVDD. Analog VDD of the Analog to Digital
Converter.
AVSS.AnalogVSS of theAnalogtoDigitalConverter.
Must be tied to VSS.
VPP. Main Power Supply for the internal EPROM
(12.5V 5%).
OSCin and OSCout. These pins are internally
connected with the on-chip oscillator circuit. A
quartz crystal or a ceramic resonator can be
connectedbetweenthese two pins in order to allow
the correct operations of ST52x301 with various
stability/cost trade-offs. An external clock signal
canbe applied to OSCin, in thiscase OSCout must
be grounded.
RESET. This signal is used to restart ST52x301 at
the beginningof its program.It also allows to select
the program mode for the EPROM.
INT. External interrupt active on rising or falling
edge.
AIN0-AIN3. These 4 lines are connected to the
inputs of the analog multiplexer. They allow to
acquire 4 analog inputs.
BG.A Voltageequal to 2.5Vis availableon this pin.
It can be used for Analog signal conditioning.
P0-P7.These 8 lines are organizedas oneI/O port.
During the Programming phase such port is used
for the EPROM data read/write.
READY. Handshake signal of the parallel port.
P8. Digital output.
TxD. Serial data output of the SCI transmitter
block.

RxD. Serial data input of the SCI receiver
block.
TRES, TCLK, TCTRL, TIMEROUT.These pins are
related with the internal Programmable Timer. The
Timer can be reset externally by using TRES. In
Working Mode, TRES resets the address counter
of the Timer. TRES is active at low level
The Timer Clock can be the internal clock or can
be supplied externally by using the pin TCLK.
AnexternalStart/Stopsignal can beused to control
theTimer throughthe pin TCTRL.The Timeroutput
is available on the pin TIMEROUT.
MAIN1, MAIN2, TRIACOUT. ST52x301 is able to
drive a TRIAC in two different modes: Burst mode
or Phase Angle Partialization control mode.
The Burst mode is used for thermal regulation.
MAIN1 and MAIN2 signals are used to detect the
zero crossing of the main voltage.
Thepulseto drivethe TRIACis givenbyTRIACOUT
pin.
It is possible to use the same pins to implement a
PWM Driver. In this case it is possible to fix the
period of PWMand to changethe duty cycle on fly.
The PWM output is given by TRIACOUT pin.
CE, OE, ERES, CADD, VPP. These pins are used
to manage the EPROM during the Programming
phase. Dur ing the Programming pha se
(programming) VPP must be set at 12V. In the
Working phase VPP must be equal to VDD.
ERES in Programming Mode resets the address
counter of the EPROM; it is active at high level.
In the Working phase OE, CE and CADD are used
like handshaking signals for the parallel port.
MODE. I t selects the funct ionment mode
(Programming or Working mode).
TEST. It enables the testing functionalities;during
the Programmingand Working phaseit mustbe set
to 0.

5/99

ST52T301/E301

2 INTERNAL ARCHITECTURE
ST52x301 is made up by the following blocks and
peripherals:

Control Unit

Fuzzy Core

ALU

EPROM

Clock Oscillator

Analog Multiplexer and A/D Converter

Prescaler Timer

Bandgap

Triac / PWM Driver

Digital I/O port

Serial Communication Interface

ST52x301 Operating Modes
ST52x301 works in two modes, Programming and
Working Modes, depending on the control signals
level RESET, TEST and MODE.
The Operating modes are selected by setting the
control signal level as specified in the Control
Signals Setting table.

2.1 CONTROL UNIT

The Control Unit (CU) manages: Registers File,
Input Registers, Configuration Registers, ALU,
Accumulator and Multiplexer inputs. Moreover the
CU drives the Fuzzy Core and the peripherals
(Triac/PWM Driver and Timer).

The CU reads the stored instructions on the
EPROM (Fetch) and decodifies them. If the
instructions are arithmetic or logic, the CU runs
them directly, sending the control signals to the
related blocks. If there is a STOP instruction, the
CU transfers the control to the Fuzzy Core.

The Fuzzy Core (FC) will read the next instruction
(thatmust be a fuzzy instruction)from the EPROM.
The FC mantains the control of the program until
the next STOP instruction. Then the FC transfers
the control to the CU.

Thesecharacteristicsallow to mix fuzzy algorithms
with mathematical and logic instructions.

Figure 2.1 shows a flow-chart reasuming the logic
behaviour of the instructions management.

Control
Signal Programming Reset Working

RESET 0 0 1

TEST 0 0 0

MODE 1 0 0

Table 2.1. Control Signals setting

CU
Reads fromthe EPROM

and
Decodifies the instruction

CU
executesinstruction

FuzzyCore
Reads fromthe EPROM

and
Decodifies the instruction

STOP?

STOP?

No

No Fuzzy Core
executes instruction

Yes

Yes

Figure 2.1. Computation Algorithm Flow Chart

6/99

ST52T301/E301

8 BIT
A/D CONVERTER

EPROM
2 KBytes

TIMER
TRES

TCLK

TIMEROUT

FUZZY CORE

I/O
PARALLEL PORT

P0..P7

AIN0..AIN3

POWER SUPPLY OSCILLATOR RESET

TRIAC/PWM

DRIVER

MAIN1

MAIN2

TRIACOUT

CONTROL
UNIT

RESETOSCinVSSVDD

ALUPC

Register FileInput
Registers

INP_PORT
SCI_IN
SCI_ST

FUZZY_OUT_0

FUZZY_OUT_1

ADC_OUT_0
ADC_OUT_1
ADC_OUT_2
ADC_OUT_3

TMR_OUT

TMR_ADC_ST

VPP

Reg 0

Reg 15

Reg 1

REG_CONF0

REG_CONF15

REG_CONF1

Configuration
Registers

SCI
(UART)

TxD

TCTRL

RxD

FLAGS

P8

READY

OSCout

Peripheral
Register

PERIPH_REG_0

PERIPH_REG_1

PERIPH_REG_2

Figure 2.2. ST52x301 Block Diagram

7/99

ST52T301/E301

It is not possibile to stop the fuzzy inference before
the end of the defuzzificationof one output.Aset of
26 different arithmetic and logic instructions is
available.Eachinstruction requiresfrom4 to7 clock
pulses to be performed.

2.1.1 Program Counter
The Program Counter (PC) is a 11-bit register that
contains the address of the next memory location
to be processed by the core.This memory location
may be anopcode,an operand or an addressof an
operand.

The 11-bit length allows the direct addressing
mode of 2048 bytes in the program space.

After having read the current instruction address,
the PC value is incremented. To execute relative
jumps the PC and the offset are shiftedthrough the
Fuzzy Core or the ALU, where they will be added.
The result of this operation is shifted back into the
PC.

The PC can be changed in the following ways:

JP (Jump) instruction PC = Jump Address

Interrupt PC = Interrupt Vector

RETI instruction PC = Pop (stack)

Reset PC = Reset Vector

Normal Instruction PC = PC + 1

2.1.2 Flags
The ST52x301 core includes two pairs of flags that
correspondto 2 differentmodes:normal mode and
interrupt mode. Each pair consist of a CARRY flag
and a ZERO flag.One pair (CN, ZN) is used during
normal operation and one is used during the
interrupt mode (CI, ZI).

The ST52x301 core uses the pair of flags that
correspond to the actual mode: as soon as an
interrupt is generated,the ST52x301core uses the
interrupt flagsinsteadof thenormal flags.When the
RETI instruction is executed the normal flags are
restored if the MCU was in the normal modebefore
the interrupt. It should be observed that each flag
set can only be addressed in its own routine.

The flags are not cleared during the context
switching and remain in the state they were at the
exit of the last routine switching.

The Carry flag is set when a carry or a borrow
occurs during arithmetic operations,otherwise it is
cleared.
The switching between the two sets of flags is
automatically performed when an interrupt or a
RETI instruction occur.
2.2 ADDRESS SPACES
W.A.R.P3TC has four separate address spaces:

Register File: 16 8-bit registers

Input Registers:11 8-bit registers

Configuration Registers:16 8-bit registers

PeripheralRegisters: 3 8-bit registers

Program memory up to 2K Bytes
The Program memory will be described in further
detail in the MEMORYsection

2.2.1 Register File
The Register File (RF) consists of 16 general
purpose 8-bit registers Reg0 to Reg15.
All the registers in theRF can be specifiedby using
a decimal address,
e.g. 0 identify the first register of the RF, called
Reg0.
Reg0:3 are directly connected to the FC input. It
means that the input values of the fuzzy algorithm
must be loaded into these registers by the user.
These registers are used as temporary registers
during the macros’computation.

8/99

ST52T301/E301

Inpu t R egis ters A L U

LD R I

R eg ister F ile
F U ZZY

C OR E

LD P R

LD R R

LD R C

LD C F

C O R E O N -C H IP P E RIP H E R A LS

P eripher al R eg isters

C onfigura tion
R eg isters

P rogram Mem ory

P E R IP H E R A L
B L OC K

LD C F C R i, x
(1)

Figure 2.3. Address Spaces description

Register File

Reg0
Reg1

Reg2

Reg3
Reg4

Reg5
Reg6

Reg7

Reg8

Reg9
Reg10

Reg11
Reg12

Reg13

Reg14
Reg15

FUZZY_IN_0
FUZZY_IN_1

FUZZY_IN_2

FUZZY_IN_3

Free

Free

Free

Free
Free

Free
Free

Free

Free
Free

Fuzzy CoreRegister Description

Free

Free

Figure 2.4. Register File description

9/99

ST52T301/E301

Figure 2.5. Input Registers Bench description

2.2.2 Input Registers Bench
The Input Registers (IR) bench consists of 11 8-bit
registers containing data or status of the
peripherals.
All the registerscan bespecifiedbyusing a decimal
address,e.g. 0 identifies the first register of the IR.
The first four registers (ADC_OUT_0:3) of the IR
are dedicated to the 4 converted values coming
from the ADC.
TMR_OUT registers contains the current counted
value by the internal Timer; whereas TMR_ST is

the Timer status. For details about TMR_ST,
please refer to Timer description.

Data read by the Parallel I/O Port are stored
automatically in the 6-th register, INP_PORT.

Data read by the SCI are stored automatically in
the 7-th register SCI_IN and SCI status is stored in
the SCI_ST register. For details about SCI_ST,
please refer to SCI description.

The Fuzzy Core writes the computed outputvalues
in the FUZZY_OUT_0:1 registers.

10/99

ST52T301/E301

Figure 2.6. TMR_ADC_ST Registers

Figure 2.7. SCI_ST Registers

11/99

ST52T301/E301

2.2.3 Configuration Registers
The ST52x301 setting permits to configure all
blocks.Table2.2 describesthe relatedblocktoeach
bit of the Configuration Registers.
Use and meaning of eachregisterwill be described
in further details in the corresponding section.

Register Peripheral Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

REG_CONF0
PARALLEL

PORT IO7 IO6 IO5 IO4 IO3 IO2 IO1 IO0

REG_CONF1
SCI, CORE,
I/O PORT RDRF OVR BRK TDRE TXC ECKF P8 OUT

REG_CONF2 ADC not used IADD 1 ADRST

REG_CONF3 SCI BRSL T8 M RE TE

REG_CONF4 TIMER TMLSB

REG_CONF5 TIMER TMMSB

REG_CONF6 TIMER not used POL TMS CKSL TMEL IESL TMST TMRST

REG_CONF7 TIMER not used FZSL INPSL INTR INTF INTSL

REG_CONF8 TRIAC TCLSB

REG_CONF9 TRIAC TCMSB

REG_CONF10 TRIAC IOSL PSF CKSL MODE TCST TCRST

REG_CONF11 TRIAC INTSL TCMSK TCTRS POL

REG_CONF12 TRIAC FZSL INPSL UTPMSB

REG_CONF13 TRIAC UTPLSB

REG_CONF14 INTERRUPT EXTI not used MSKTC MSKTM MSKSCI MSKAD MSKE

REG_CONF15 INTERRUPT INT4 INT3 INT2 INT1

Table 2.2. Configuration Registers description

12/99

ST52T301/E301

2.2.4 Peripheral Registers
Peripheral Registers contain the initialization
values for the Timer, Triac/PWM Driver and Parallel
Port.
The peripheral initialization value is kept from a
location of the Register File, by using a LDPR
instruction, or from FUZZY_OUT_0/1 Input
Register according with the related Configuration
Registers.
Table 2.3 describes the related peripheral to each
Configuration Register.
Use and meaning of eachregisterwill be described
in further details in the corresponding section.

Peripheral Register Peripheral

PERIPH_REG_0 Timer

PERIPH_REG_1 Triac/PWM Driver

PERIPH_REG_2 Parallel Port

Table 2.3. Peripheral Register description

13/99

ST52T301/E301

2.4 FUZZY CORE

ST52x301 Fuzzy Core main features are:

Up to 4 Inputs with 8-bit resolution

Up to 16 Membership Functions (Mbfs) for each
Input (64 possible Mbfs)

Up to 2 Outputs with 8-bit resolution

Possibility to process fuzzy rules with a max.
number of 8 antecedents

2.4.1 Internal Structure

The block diagram shown in figure 2.9 describes
thestructureof ST52x301Fuzzy Core.In this figure
wecandistinguishdifferentfunctionalblocks:Alpha
Calculator, Inference Unit and Defuzzifier. These
blocks allow to perform a MAMDANI type fuzzy
inference with crisp consequents.It is important to
underline that the fuzzy inference is performed by
using as inputs the first 4 locationsof the Registers
File.

2.4.2 Alpha Calculator Unit
This block performs the intersection (alpha weight)
between the input values and the related Mbfs (fig.
2.8).

1

Input Value

αij

j-th Mbf

i-th INPUT VARIABLE

Figure 2.8. Alpha Weigth calculation

Figure 2.9. Fuzzy Core Block Diagram

Notice that the inputs for this block come from the
first four locationsof the Register File; it means the
user, to evaluate a fuzzy function, must load the
input values in these registers.
Alpha Calculato r performs what is called
fuzzification : the input data are transformed in
activation level (alpha weight) of the Mbfs.

14/99

ST52T301/E301

2.4.3 Inference Unit
It managesthe alphaweightsobtainedby the Alpha
Calculator Unit to compute the truth value (ω) for
each rule.

This is a calculation of the maximum (for the OR
operator) and/or minimum (for the AND operator)
performedon alpha values according to the logical
connectivesof fuzzy rules.
It is possibile to link together up to eight conditions
by linguistic connectives AND/OR, NOT operator
and brackets.
Each rule can have at maximum 8 alpha weights
(however they are connected).

The truth value ω and the related output singleton
are passed to the Defuzzifier to complete the
inference calculation.

Input 1X1

α1

Input 2X2

α2

OR = Max

IF INPUT 1 IS X1 ORINPUT 2 IS X2 THEN

Input 1X1

α1

Input 2X2

α2

IF INPUT 1 IS X1 AND INPUT 2 IS X2 THEN

Figure 2.10.

2.4.4 Defuzzifier
This block consists of a Multiplier, two Adders and
one Divider. It generates the output crisp values
implementing the consequent part of the rules.
In this phase each consequent Singleton Xi is
multiplied by its weight values ωi, calculatedby the
Inference Unit in order to compute the upper part
of the defuzzification.
Each outputvalue (FUZZY_OUT0, FUZZY_OUT1)
is deduced from the consequent crisp values (Xi)
by using the defuzzification formula:

Yi =
∑Xij ωij

j

N

∑ωij

j

N

where:
i = 0,1 identifies the current output variable
N = numberof theactive rules on thecurrentoutput

ωi j =weigth of the j-th singleton
Xij = abscissa of the j-th singleton

The two fuzzy outputs are stored in the location 9
and 10 of the Input Registers (FUZZY_OUT_0,
FUZZY_OUT_1).

1

i-th OUTPUT
VARIABLE

0 X
ij

X
i0

X
in

ω
i0

ω
ij

ω
in

j-th Singleton

Figure 2.11.

15/99

ST52T301/E301

2.4.5 Input Membership Function

ST52x301 allows to manage triangular Mbfs. In
order to define a Mbf it is necessary to store three
different data on the memory:

the vertex of the Mbf: V;

the lenght of the left semi-base: LVD;

the lenght of the right semi-base: RVD;

In order to reduce the dimension of the memory
area and the computational effort the vertical
dimension of the vertex is fixed to 15 (4 bits)

By using the previous memorization method it is
possible to store different kinds of triangular
Memberships Functions. In the following figure is
shown a typical example of Mbfs that can be
defined in ST52x301

Each Mbf is then defined storing 3 bytes.To store
all the information related with the fuzzy project
Mbfs, it is necessary to use 192 bytes of the
memory (3 bytes*16Mbfs*4 Inputs = 192 bytes).

X

15

LVD RVD

V

15

0

0

Input Mbf

Output Singleton

Output Variable

Input Variable

w

Figure 2.12. Mbfs Parameters Figure 2.13. Example of valid Mbfs

The Mbf is memorized by using the following
instruction:

DATA n m lvd v rvd
where

n identifies the input, m identifies the Mbf among
the 16 possibleMbfs, lvd, v, rvd are the parameters
describing the Mbf’s shape.

2.4.6 Output Singleton

ST52x301uses for the output variablesa particular
kind of membership function called Singleton. A
Singleton has not a shape, like a traditional Mbf,
and it is characterized by a single point identified
by the couple (X, ω), where the ω is calculated by
the Inference Unit as described before.

Often a Singleton is simply identified with its Crisp
Value X.

16/99

ST52T301/E301

2.4.7 Fuzzy Rules.
The rules can have the following structures:
if A op B op C...........thenZ
if (A op B) op (C op D op E...)thenZ
where op is one of the possible linguistic operators
(AND/OR)
In the first case the rule operators are managed
sequentially; in the second one, the priority of the
operator is fixed by the brakets.

Each rule is codified by using an istruction set, the
inference time for a rule with 4 antecedents and 1
consequent is about 3 microseconds.
The assembler Instruction Set allowing to manage
the fuzzy instructions are reported in the following
table:

Instruction Description

DATA n m lvd v rvd Stores the Mbf m of the input n with the shape identified by the parameters lvd, v and rvd.

LDP n m Fixes the alpha value of the input n with the Mbf m and stores it in the data stack.

LDN n m Calculates the negated alpha value of the input n with the Mbf m and store the result in the data
stack.

FZAND Implements the fuzzy operation AND between the last two values stored in the data stack.

FZOR Implements the fuzzy operation OR between the last two values stored in the data stack.

LDK Stores the result of the last fuzzy operation executed in the data stack.

SKM Stores the result of the last fuzzy operation executed in the memory register M.

LDM Copies the value of the register M in the data stack.

CON crisp Multiplies the crisp value with the last ω weight.

OUT n_out Performs the defuzzification.

STOP Ends the fuzzy algorithm.

Table 2.4. Fuzzy Instructions Set

17/99

ST52T301/E301

Example 1:
IF Input1 IS NOT Mbf1 AND Input4 is Mbf12 OR Input3 IS Mbf8 THEN Crisp1

is codified by the following instructions
LDN 1 1 calculates the NOT α value of Input1 with Mbf1 and stores the result in the data stack
LDP 4 12 fixes the α value of Input4 with M12 and stores the result in the data stack
FZAND adds the NOT α and α values obtained with the operations LDN1 1 and LDP 4 12
LDK stores the result of the operation FZAND in the data stack
LDP 3 8 fixes the α value of Input3 with Mbf8 and stores the result in the data stack
FZOR implements the operation OR between the results obtained with the operationsLDK

and LDP
CON crisp 1 multiplies the result of the last Ω operation with the crisp value Crisp1

Example 2, the priority of the operator is fixed by the brakets:
IF (Input3 IS Mbf1 AND Input4 IS NOT Mbf15) OR (Input1 IS Mbf6 OR Input6IS NOT Mbf14) THEN Crisp2

LDP 3 1 fixes the α value of Input3 with Mbf1 and stores the result in the data stack
LDN 4 15 calculates the NOT α value of Input4 with Mbf15 and stores the result in the data

stack
FZAND adds NOT α and α values obtained with the operations LDP 3 1 and LDN 4 15
SKM stores the result of the operation FZAND in the memory register M
LDP 1 6 fixes the α value of Input1 with Mbf6 and stores the result in the data stack
LDN 2 14 calculates the NOT α value of Input6 with Mbf14 and stores the result in the data

stack
FZOR implements the operation OR between the α and NOT α values obtained with the

two previous operations (LDP 1 6 and LDN 2 14)
LDK stores the result of the operation OR in the data stack
LDM copies the value of the memory register M in the data stack
FZOR implements the operation OR between the last two values stored in the data stack

(LDK and LDM)
CON crips 2 multiplies the result of the last Ω operation with the crisp value Crip2

At the end of the fuzzy rules set a byte, to identify
the output involved in the rules, and the STOP
istruction must be inserted.
When the STOP instruction is performed, the
control of the algorithm goes back to the CU.

18/99

ST52T301/E301

2.5 ARITHMETIC LOGIC UNIT
The 8-bit Arithmetic Logic Unit (ALU) allows to
perfo rm arithmetic calcu la tions and logic
instructions which can be divided into 4 groups:
Load, Arithmetic, Jump and Program Control
instructions (refer to the ST52x301 Assembler Set
for further details).

Load Instructions

Menmonic Instruction Bytes Cycles Z S

LDCF LDCF conf, const 2 6 - -

LDRC LDRC reg, const 2 6 - -

LDRI LDRI reg, inp 2 6 - -

LDPR LDPR per, reg 1 6 - -

LDRR LDRR regi, regj 2 6 - -

Arithmetic Instructions

Mnemonic Instruction Bytes Cycles Z S

ADD ADD regi, regj 2 7 I I

AND AND regi, regj 2 7 I -

SUB SUB regi, regj 2 7 I I

SUBO SUBO regi, regj 2 7 I I

Jump Instructions

Mnemonic Instruction Bytes Cycles Z S

JP JP addr 2 6 - -

JPNS JPNS addr 2 6 - -

JPNZ JPNZ addr 2 6 - -

JPS JPS addr 2 6 - -

JPZ JPZ addr 2 6 - -

SCI Instructions

Mnemonic Instruction Bytes Cycles Z S

SRX SRX regi 2 5 - -

STX STX regi 2 5 - -

Notes:
I affected
- not affected

Table 2.5. Arithmetic & Logic Instructions Set

The computational time required for each
instruction consists of one clock pulse for each
Cycle plus 3 clock pulses for the decoding phase.

19/99

ST52T301/E301

Program Control Instructions

Mnemonic Instruction Bytes Cycles Z S

RETI RETI 1 5 I I

RINT RINT int 1 4 - -

STOP STOP 1 4 - -

WAITI WAITI 1 4 - -

UDGI UDGI 1 4 - -

UEGI UEGI 1 4 - -

MDGI MDGI 1 4 - -

MEGI MEGI 1 4 - -

IRQ IRQ int label 2 6 - -

IRQM IRQM mask 2 6 - -

IRQP IRQP cost 2 6 - -

Notes:
I affected
- not affected

Table 2.6. Arithmetic & Logic Instructions Set (Continue)

20/99

ST52T301/E301

3 EPROM
The EPROM memory provides an on-chip
user-programmable non-volatile memory, that
allows fast and reliable storage of user data.
There are 16K bits of memory space with an 8-bit
internal parallelism (2Kbytes) addressed by an
11-bit bus. The data bus is of 8 bits.
The memory has a double supply: VPP is equal to
12V±5% in Programming Phase and 5V±10%
during Working Phase.VDD is equal to 5V±10%.
The EPROM memory of ST52x301 is divided in
three main blocks (see Figure 3.1):

Mbfs Setting with (0 through 191) contains the
coordinatesof the vertexes of every Mbf defined
in the program.

Interrupt Vectors (192 through 201) contain the
addresses for the interrupt routines.
Each address is composed of two bytes.

Program Instruction Set (202 through 2048)
contains the instruction set of the user program.
It can be composed of more Boolean and Fuzzy
Algorithms

The operation that can be performed, during
Programming Phase, on the EPROM are: Writing,
Verify, Writing Inhibit, Standbyand Erasing.
Figure 3 .2 shows the signa ls t imin g in
Programming Mode.

0

192
191

202
201

2048

Mbfs Setting

Interrupt Vectors

Program
InstructionsSet

Boolean Algorithm

Boolean Algorithm

Fuzzy Algorithm

Fuzzy Algorithm

· · · · · ·

INT_EXT
INT_TRIAC
INT_TIMER

INT_SCI
INT_ADC

Mbf Parameters

Figure 3.1. Memory Map

3.1 EPROM Programming Phase Procedure
Programming mode is selected by applying
12V±5% voltage to the VPP pin and set the control
signal as following:
RESET: 0, TEST:0, MODE:1.
CADD, ERES, OE and CE are the control signals
used during the Programming Mode. CADD is
active on edge, the others are active on level (OE,
CE are active low, ERES is active high).

3.1.1EPROM Writing
When the memory is blank, all the bits are at logic
level ”1”. The data are introduced by programming
only the zeros in the desired memory location;
however all input data must contain both ”1” and
”0”.
The only way to change ”0” into ”1” is to erase the
whole memory (by exposure to Ultra Violet light)
and reprogram it.
The memory is in Writing mode when:
CE = LOW
OE = HIGH
with stable data on the data bus P(0:7).
The total programming pulse width (CE = 0 V) is,
typically, 50 µs (by meansof 5 pulses of 10 µs), but
beforeactivating such pulse, it is suggested to wait
for at least 2 µs after VPP rises at 12 V . After the
disactivation of the pulse it is suggested to wait for

21/99

ST52T301/E301

at least 2 µs before updating the data and the
address.
The data updating for the next programming is
performed, directly by the user, on the data bus
P(0:7) while the address is incremented through
the pin CADD.

3.1.2 EPROM Verify
A Verify mode is available in order to verify the
correctness of the data written. It is possible to
activate the Verify mode immediately after the
writing of each byte:
CE = HIGH
OE = LOW
Then, if any error in writing occured, the user has
to repeat the EPROM writing.
The data, during this phase, are avalaible on the
bus P(0:7)
3.1.3 Writing Inhibit
It occurs between the Writing and Verify Mode:
CE = HIGH
OE = HIGH
3.1.4 Standby Mode
The EPROM has a standby mode which reduces
the active current from 10mA (Programming mode)

to less than 100 µA. The Memory is placed in
standby mode by setting CE at HIGH Logic Level
(VPP might be equal to 5 V too). When in standby
mode, the outputs are in high impedance state.

3.2 Eprom Erasure
Thanks to the transparent window present in the
CLCC44-W package, its memory contents may be
erased by exposure to UV light.
Erasurebegins when the device is exposed to light
with a wavelengthshorter than 4000Å.It should be
noted that sunlight, as well as some types of
artificial light, includes wavelengths in the
3000-4000Årange which, on prolonged exposure,
can cause erasure of memory contents. It is thus
recommended that EPROM devices be fitted with
an opaque label over the window area in order to
prevent unintentionalerasure.
The recommended erasure procedure for EPROM
devicesconsistsof exposureto shortwaveUV light
having a wavelength of 2537Å. The minimum
recommended integrated dose (intensity x
expo-su re t ime) for complete erasure is
15Wsec/cm 2 .
This is equivalent to an erasure time of 15-20
minutes using a UV source having an intensity of
12mW/cm 2 at a distance of 25mm (1 inch) from
the device window.

OE

P(0:7) DATA IN

VPP
5V

12V

CE

Inhibit

min 2us

2us typ.

DATA OUT

RESET

CADD

Writing Verify

ERES

INPUT
PORT

50us typ.

OUTPUT
PORT3us min.

Figure 3.2. EPROM Programming Timing

22/99

ST52T301/E301

4 INTERRUPTS
The Control Unit (CU) responds to peripheral
events and external events through its interrupt
channels.

When such an event occurs, if it is not maskedand
according to a priority order, the current program
execution can be suspended to allow the CU to
execute a specific response routine.
Eachinterrupt isassociatedwith an interruptvector
that contains the memory address of the related
interrupt service routine. Each vector is located in
the Program Space (EPROM Memory) at a fixed
address (see Interrupt Vectors table fig.4.2).
4.1 Interrupt Functionment
If, at the end of an arithmetic or logic instruction,
there are pending interrupts, the one with the
highest priority is passed. To pass an interrupt
means to store the arithmetic flags and the current
PC in the stack and execute the associated
Interrupt routine, whose address is located in one
of the EPROM memory location between address
192 and 201.
The Interruptroutine isperformedas a normal code
checking, at the end of each instruction, if a higher
priority interrupt has to be passed. An Interrupt
request with the higher priority stops the lower
priority Interrupt. The Program Counter and the
arithmetic flags are stored in the stack.
With the instruction RETI (Return from Interrupt)
the arithmetic flags and ProgramCounter (PC) are
restored from the top of the stack.This stack, used
for the Interrupt priority, is a LIFO queue.
An Interrupt request cannot stop the processing of
the fuzzy rules but this is passed only after the
definitionof the fuzzy output or at the end of a logic
or arithmetic instruction.
4.2 Global Interrupt Request Enabling
When an Interrupt occurs, it generates a Global
Interrupt Pending(GIP), that can be hanged up by
software. After a GIP a Global Interrupt Request
(GIR) will be generate and Interrupt Service
Routine associated to the interrupt with higher
priority will start.
In order to avoid possible conflicts between
interrupt masking set in the main programor inside
macros, the GIP is hanged up through the User
Global Interrup Mask or the Macro Global Interrup
Mask (see fig.4.3).
UEGI/UDGI instruction switches on/off the User
Global InterrupMask enabling/disablingthe GIR for
the main program.
MEGI/MDGI instructions set the Macro Global
InterruptMask in order toassure that the macrowill
not be broken.

NORMAL
PROGRAM

FLOW

INTERRUPT
SERVICE
ROUTINE

RETI
INSTRUCTION

INTERRUPT

Figure 4.1. Interrupt Flow

InterruptVectorsINT_TIMER

198

196

200

199

197

195
194

193

192

191

INT_SCI

INT_ADC

INT_TRIAC

INT_EXT

202

201

Figure 4.2. Interrupt Vectors Mapping

Global Interrupt
Pending

User Global
Interrupt Mask

Macro Global
Interrupt Mask

Global Interrupt
Request

Figure 4.3. Global Interrupt Request generation

23/99

ST52T301/E301

4.3 Interrupt Sources

ST52x301manages interrupt signalsgenerated by
the internal peripherals (Timer, Triac/PWM
Driver,Analog to Digital Converter and Serial
Communication Port) or coming from the INT pin.

The po la r ity of the External Interrupt is
programmed by the EXTI bit of the REG_CONF14
(see Table 4.1 and fig. 4.4). EXTI=0 means that
INT_EXT is active on rising edge, otherwise it is
active on falling edge.

Each peripheral can be programmed in order to
generatethe associate interrupt;further detailsare
described in the related chapter.

4.4 Interrupt Maskability

The interrupts can be masked by configuring the
REG_CONF14. The interrupt is enabled when the
bit associated to the mask interrupt is ”1”.
Viceversa, when the bit is ”0”, the interrupt is
masked and is kept pendent.

For example LDCF 14, 6
(CONF_REG14 =00000110) enables interrupts
coming from the ADC(INT_ADC) and from the SCI
(INT_SCI).

4.5 Interrupt Priority

Six priority levels are available: level 5 has the
lowest priority, level 0 has the highest priority.

Level 5 is associated to the Main Program, levels 4
to 1 are programmable by means of the priority
register called REG_CONF15 (see fig.4.5);
whereas the higher level is related to the external
interrupt (INT_EXT).

Timer, Triac/PWM Driver, SCI and ADC are
identified by a two bits Peripheral Code (see Table
4.2); in order to set the i-th priority level the user
must write the peripheral label i in the related INTi
priority level.

Bit Name Value Description

0 MSKE

0
External Interrupt
Masked

1
External Interrupt
Not Masked

1 MSKAD

0
A/D Converter Interrupt
Masked

1
A/D Converter Interrupt
Not Masked

2 MSKSCI

0
SCI Interrupt
Masked

1
SCI Interrupt
Not Masked

3 MSKTM

0
TIMER Interrupt
Masked

1
TIMER Interrupt
Not Masked

4 MSKTC

0
TRIAC/ PWM Interrupt
Masked

1
TRIAC/ PWM Interrupt
Not Masked

5 not used -

6 not used -

7 EXTI
0 Active on Rising Edge

1 Active on Falling Edge

Table 4.1. Configuration Register 14 Description

Name Description Priority Peripheral
Code Maskable EPROM

Locations

INT_EXT External Interrupt (INT) Ext Highest - yes 200-201

INT_ADC ADC Int Programmable 00 yes 192-193

INT_SCI SCI Int Programmable 01 yes 194-195

INT_TIMER TIMER Int Programmable 10 yes 196-197

INT_TRIAC TRIAC Int Programmable 11 yes 198-199

Table 4.2. Interrupts Description

24/99

ST52T301/E301

D7 D6 D5 D4 D3 D2 D1 D0

REG_CONF14
Interrupt

MSKE - External Interrupt Mask

MSKAD - ADC Interrupt Mask

EXTI - External Interrupt Polarity

MSKSCI - SCI Interrupt Mask

MSKTM - TIMER Interrupt Mask

not used

not used

MSKTC - TRIAC Interrupt Mask

Figure 4.4. Interrupt Configuration Register 14

D7 D6 D5 D4 D3 D2 D1 D0

REG_CONF15
Interrupt

INT1 - HIGH Level Interrupt

INT2 - MEDIUM-HIGH Level Interrupt

INT3 - MEDIUM-LOW Level Interrupt

INT4 - LOW Level Interrupt

Figure 4.5. Interrupt Configuration Register 15

25/99

ST52T301/E301

i.e. LDCF 15, 201 (REG_CONF15=11001001)
define the following priority levels:

Level 1: INT_SCI(SCI Code: 01)

Level 2: INT_TIMER(TIMER Code: 10)

Level 3: INT_ADC(ADC Code: 00)

Level 4: INT_TRIAC(TRIAC Code: 11)

When a source provides an Interrupt request, and
the request processing is also enabled, the CU
changes the normal sequential flow of a program
bytransferingprogramcontrol toa selectedservice
routine.

Whenan interruptoccurs the CU executes a JUMP
instruction to the address loaded in the related
location of the Interrupt Vector

Whenthe executionreturns to the originalprogram,
it begins immediately following the interrupted
instruction.

4.6 Interrupt RESET

An eventuallypending interrupts can be reset with
the instruction RINT int i which resets the i-th
interrupt

Bit Name Value Level

0, 1 INT1 Peripheral
Code

High

2, 3 INT2 Peripheral
Code

Medium-High

4, 5 INT3 Peripheral
Code

Medium-Low

6, 7 INT4 Peripheral
Code

Low

Table 4.3. Configuration Register 15 Description

Figure 4.6. Example of a Sequenceof Interrupt Requests

26/99

ST52T301/E301

5 CLOCK
ST52x301 can work by using a 5, 10 or 20 MHz
clock.
The ST52x301 Clock Generatormodule generates
the internal clock for the internal Control Unit, ALU,
Fuzzy Core and on-chip peripherals and it is
designed to require a minimum of external
components.
Thesystemclock maybe generatedby usingeither
a quartz crystal , or a ceramic resonator
(CERALOC); or, at least, by means of an external
clock.
The different clock generator options connection
methods are shown in Figure 5.1.
When an external clock is used, it must be
connectedon thepin OSCin while OSCoutmust be
grounded.
The crystal oscillator start-up time is a function of
manyvariables:crystal parameters(especiallyRS),
oscillator load capacitance (CL), IC parameters,
ambient temperature, supply voltage.
It must be observed that the crystal or ceramic
leads and circuit connections must be as short as
possible. Typical values for CL1, CL2 are 10pF for
a 20 MHz crystal.

Figure 5.1. Oscillator Connections

27/99

ST52T301/E301

6. A/D CONVERTER

The A/D Converter of ST52x301 is an 8-bit analog
to digital converter with up to 4 analog inputs
offering 8 bit resolution with a total accuracy of 2
LSB and a typical conversion time of 32 µs.

The conversion range is 0 - 2.5 V.

The A/D peripheral converts the input voltage with
a process of successive approximations using a
fixed clock frequency derived from the oscillator.

The ADC uses 5 registers: one Configuration
Register, REG_CONF2, and four Data Registers.
These 4 registers are the first 4 Input Registers.

The A/D converter drives the analog Multiplexer in
order to sequentially pick up the external inputs to
be put in output and stored automatically in 4 8-bit
registers.

It is possibile to configuretheMultiplexerby means
of the register REG_CONF2, in order to select the
number of analog inputs to convert.

For example, if the bit 3 and bit 2 of REG_CONF2
are configured at 10, then the Multiplexer will
sequentially pick up only the inputs 0,1 and 2.

Table 6.1 shows the convertion sequences
according to the possible values of the two bit
REG_CONF2 (3:2).

The A/D Converter, at the end of the conversion,
will send a signal (end-of-conversion)which can be
used like an interrupt signal. The user can select
the priority of the A/D interrupt and mask it (see
”Interrupt Routine” chapter)

The conve rs ion sta r ts wri t ing ”1” on
REG_CONF2(0).The A/D is reset by writing ”0” in
REG_CONF2(0).

The converted dataare automaticallystored in four
8-bit Input Registers.

By performing an instruction:

LDRI regj ingi

theanalog input ”ingi” is loadedin theregister”regj”
of the Register File.

Figure 6.1. A/D Converter Structure

CONF_REG2 (3:2) INPUT SEQUENCE

00 Ain0

01 Ain 0, Ain1

10 Ain 0, Ain 1, Ain 2

11 Ain 0, Ain 1, Ain 2, Ain 3

Table 6.1.

28/99

ST52T301/E301

The power consumption of the device can be
reduced by turning off the A/D converter,

To switchoff the A/Dconverter the CONF_REG2(0)
bit must be reset to ”0”.

The A/D Converter features a sample and hold.

The input voltage Ain, which has to be converted
must be constant, for 12.8 µs.

An internal bandgap reference is available on pin
44, BG. By using this signal as reference for the
signal to be converted, the conversion accuracy is
not strongly related with the variation of the power
supply.

The power supply of the A/D converter (AVDD and
AVSS) in order to avoid interferences is mantained
separatedfrom the powersupply of the digitalcore.

D7 D6 D5 D4 D3 D2 D1 D0

ADC
Configuration Register

REG_CONF2

Reset ADC

Must be 1

ADC input selection

Not used

Figure 6.2. Configuration Register REG_CONF2

29/99

ST52T301/E301

7.TIMER

ST52x301 offers one on-chip Timer peripheral.
TheTimer consists of an 8-bit counter with a 16-bit
programmable prescaler, thus giving a maximum
count o f 224, and control logic that allows
configuring the functionment and the type of
peripheral outputs. Figure 7.2 shows the Timer
block diagram and Figure 7.3 shows the internal
structure of the Timer.

Thecontent of the 8-bit countercan be read/written
and is incrementedon the RisingEdge of the 16-bit
prescaleroutput(PRESCOUT).Moreover, it can be
read under program control at any instant of the
counting phase and loaded in a location of the
RegisterFile.The prescalercan be givenanyvalue
between 0 and FFFFh setting the 4-th (TMLSB)
and 5-th (TMMSB) locations of the Configuration
Registers Bench.

7.1 Timer Functionment

The Timer requires three signals: TMRCLK, TRST
and TSTART(see Figure7.3).Each of them can be
generated internally or externally, this possibility is
programmable by the user.

TMRCLK increments the counted value of the
Prescale r. It can be, by se tting CKSL of
REG_CONF6 register, the internal clock signal
(CLKM) or the signal provided on the pin TCLK.

TRSTresets to zero the contentof the 8 bit counter.
It is generated by the TRES or RESET external
signalsor it is forcedby TMRSTbit of REG_CONF6
register.

TSTART starts/stops the Prescaler counting.It can
be given on the pin TCTRL or it is forced by TMST
bit of REG_CONF6 register.

The TSTART signal allows to work in two different
modes:

LEVEL (Time Counter) : If the TSTART signal is
high the Timer starts the count.When the TSTART
is low the count is stoppedand the current value is
stored in the TMR_OUT register of the Input
registerBench, then it can be transferred to the j-th
location of the Registers File by using the
instruction:

LDRI reg-j 4

EDGE(Period Counter) : After the reset, when the
first edge of the TSTART signal appears, the Timer
starts the count, at the next TSTART the Timer is
stopped. In this way it is possible to measure the
period of an external signal.

The functionment modality is set by the TMEL
configurationbit of REG_CONF6 register.

The starting value of the Counter can be either a
value contained in the Register File or directly a
Fuzzy Output. If INPSL (REG_CONF7(3)) is set to
”1” then the value comes from one of the locations
of the Register File (LDRP 0, reg-i); on the
contrary it is generated by the Fuzzy Core. The
choice between the two possible fuzzy outputs is
set by the FZSL configuration bit of REG_CONF6
register

FZSL=0/1 means the starting value is the loaded
from the FUZZY_OUT_0/1.

Level

Edge
start stop start

start

stop

start

0 0 033321

Reset

Clock

Counted
Value

Figure 7.1. Timer Functionalities

30/99

ST52T301/E301

Figure 7.2. Timer Peripheral Block Diagram

31/99

ST52T301/E301

Figure 7.3. Timer Internal Structure

32/99

ST52T301/E301

7.2 Timer Interrupt
It is possible to enable the Timer Interrupt by
software control.The Timer can be programmedto
generate an Interrupt request until the end of the
count or when there is an external TSTART signal.
The Timer can generate programmable Interrupts
in to 4 different modes:
Interrupt mode 1 : Interrupt on counter Stop.
Interrupt mode 2 : Interrupt on Rising Edge of
TIMEROUT.
Interrupt mode 3 : Interrupt on Falling Edge of
TIMEROUT.
Interrupt mode 4 : Interrupt on both edges of
TIMEROUT.
Inorder toprogramtheinterruptmode INTSL, INTF
and INTR bits of the REG_CONF7 must be set
following theindicationsshownin the Table7.1.The
Timer interrupt can be used to exit the MCU from
the WAIT mode.

7.3 Timer Configuration
The Timer configurationneeds to set 4 registersof
the Configuration Register Bench.
CONF_REG4:
TMLSB contains the less significative bits of the

Prescaler starting value.
CONF_REG5:
TMMSB contains the more significative bits of the

Prescaler starting value

Timer Output
Type 1

Type 2

Prescout*Counter

Figure 7.4.TIMEROUT Signal Type

INTERRUPT
MODE INTSL INTF INTR

1 1 X X

2 0 1 0

3 0 0 1

4 0 1 1

Table 7.1. Timer Interrupt Setting

D7 D6 D5 D4 D3 D2 D1 D0

REG_CONF4
Timer

TMLSB - Prescaler Init Value
Less Significative Bits

D7 D6 D5 D4 D3 D2 D1 D0

REG_CONF5
Timer

TMMSB - Prescaler Init Value
More Significative Bits

Figure 7.5. Timer Configuration Register 4 and 5

33/99

ST52T301/E301

D7 D6 D5 D4 D3 D2 D1 D0

REG_CONF6
Timer

TMRST - Internal Timer Reset

TMST - Internal Timer Start

not used

IESL - Internal/External Signals Selector

TMEL - Edge/Level Timer Abilitation

TMS - Timer Output Shape

POL - Timer Output Polarity

CKSL - Internal/External Clock Select

Figure 7.6. Timer Configuration Register 6

Bit Name Value Description

0 TMRST
0 Stop

1 Start

1 TMST
0 Stop

1 Start

2 IESL
0 Internal Signals

1 External Signals

3 TMEL
0 on Edge

1 on Level

4 CKSL
0 Internal Timer Clock

1 External Timer Clock

5 TMS
0 Pulse Wave (Type 2)

1 Square Wave (Type 1)

6 POL
0 Positive Polarity

1 Negative Polarity

7 not
used -

Table 7.2. Configuration Register 6 Description
CONF_REG6:
TMRST sets the internal INR signal.
TMST sets the internal INS signal.
IESL selects the source of the TRES and

TSTART signals.
IESL=”0”signalsare the internal INRand
INS.
IESL=”1” signals come from the TRES
and TCTRL pins.

TMEL selects the TSTART signal allowing to
work in LevelMode or in Edge Mode like
previously described.
TMEL=”0” means Edge Mode
TMEL=”1” means Level Mode.

CKSL selects the sourceof the TMRCLK(work-
ing Timer frequency).
CKSL=”0”, the TMRCLK is the internal
MCLK divided by the Prescaler starting
value.
CKSL=”1”, the TMRCLK is an external
clock by TCLK pin.

TMS TIMEROUT is a signal with frequency
equal to the working Timer frequency
divided by the starting value of the Pres-
caler (16 bit) and Counter (8 bit). The
Timer outputcan be eithera squarewave
with duty-cycle 50% or a pulse signal
(with the pulse durationequal to the Pres-
caler output signal period).
TMS=”1”, TIMEROUT is a square wave
TMS= ”0”, TIMEROUT is a pulse signal.

POL defines the polarity of the Timer output
signal (TIMEROUT).

34/99

ST52T301/E301

Bit Name Value Description

0 INTSL

0
INT_TMR on Falling Edge of
Counter Stop

1
INT_TMR on Edges of
TIMEROUT

1 INTF

0
NO INT_TMR on Falling
Edge of TIMEROUT

1
INT_TMR on Falling Edge of
TIMEROUT

2 INTR

0
NO INT_TMR on Rising
Edge of TIMEROUT

1
INT_TMR on Rising Edge of
TIMEROUT

3 INPSL

0
Timer Data Input coming
from the Fuzzy Core

1
Timer Data Input coming
from a Register File location

4 FZSL

0
Timer Data Input coming
from FUZZY_OUT_0

1
Timer Data Input coming
from FUZZY_OUT_1

5 not used -

6 not used -

7 not used -

Table 7.3. Configuration Register 7 Description

D7 D6 D5 D4 D3 D2 D1 D0

REG_CONF7
Timer

INTSL - Interrupt GeneratorSelector

INTF - Interrupt on TIMEROUT Falling Edge

INTR - Interrupt on TIMEROUT Rising Edge

INPSL - Input Data Selector

FZSL - Fuzzy Input Selector

not used

not used

not used

Figure 7.7. Timer Configuration Register 7

CONF_REG7:
INTSL It allows to select the interrupt mode for

the Timer.
INTSL=”0” Interrupt is generated on the
falling edge of the Counter Stop.
INTSL=”1” the interrupt is generated on
the edges of TIMEROUT.

INTF
INTR
INPSL selects the source of the value of the

Counter between a location of the Regis-
ter File and the Fuzzy Core.
INPSL=”0”, Counter value coming from
the FC.
INPSL=”1”, Counter value coming from
the RF.

FZSL FZSL=”0”, the valueof the TimerCounter
is equal to FUZZY_OUT_0
FZSL=”1”, the valueof the TimerCounter
is equal to FUZZY_OUT_1

35/99

ST52T301/E301

8 I/O PORT
ST52x301 is provided with dedicated lines for
input/output.These lines, grouped into an 8-bit I/O
Port P(0:7), can be programmedto provide parallel
input/output with a handshake line (READY) to
carry data in/out.
The I/O Port is not able to perform operations on
the single bit, and the communication cannot be
performed at the same time in input and output.

It is possible to program the parallel port direction
by using the register REG_CONF0 in order to set
which bits are in input and which are in output.
The por t has an in terna l reg iste r
(PERIPH_REG_2) dedicated to hold output data
coming from the Register File through an LDPR
instruction.
Inputdata are automaticallystored in the IN_PORT
register, 6-th location of the Input Register.
P8 pin is a digital output line available directly
connected to the OUT bit of the REG_CONF1;
then it can be set by using a LDCF instruction.
(see table 8.2 and Figure 8.8)

PERIPH_REG_2(i)

P(0:7)
I/O PIN

TTL
CMOS

IO(i)

INP_PORT(i)

TRISTATE

REG_CONF0(i)

P8
OUTPUT PIN

REG_CONF1(0)
OUT

Figure 8.1.

Figure 8.2.

36/99

ST52T301/E301

8.1 I/O PORT CONFIGURATION

REG_CONF0 allows dynamic change in I/O Port
configurationduring program execution setting the
communication direction of each bit.

IOi setting equal to ”0” configures the i-th bit
of the P(0:7) I/O Port in input. Data com-
ing from external digital devices are
stored in the 6-th location (INP_PORT)of
the Input register bench.

IOi=”1” sets the i-th bit of the port in
output. Data stored in the i-th location of
the Register File is written on the port by
using the instruction:

LDPR 2, regi

Bit Name Value Description

0 IO0
0 Input Pin

1 Output Pin

1 IO1
0 Input Pin

1 Output Pin

2 IO2
0 Input Pin

1 Output Pin

3 IO3
0 Input Pin

1 Output Pin

4 IO4
0 Input Pin

1 Output Pin

5 IO5
0 Input Pin

1 Output Pin

6 IO6
0 Input Pin

1 Output Pin

7 IO7
0 Input Pin

1 Output Pin

Table 8.1. Configuration Register 0 Setting

D7 D6 D5 D4 D3 D2 D1 D0

REG_CONF0
I/O Port

IO0 - I/O Communication Direction Bit

IO1 - I/O Communication Direction Bit

IO2 - I/O Communication Direction Bit

IO3 - I/O Communication Direction Bit

IO4 - I/O Communication Direction Bit

IO5 - I/O Communication Direction Bit

IO6 - I/O Communication Direction Bit

IO7 - I/O Communication Direction Bit

Figure 8.3. Configuration Register 0

37/99

ST52T301/E301

8.2 INPUT HANDSHAKE
Figure 8.5 illustrates the timing associatedwith the
READY Handshake signal, when the instruction
LDRI reg 6 is performed.
When the LDRI instruction is executed to read the
port, ST52x301 resets the READY signal to
indicate that it is not possible to change the input
data during this phase of reading.
To synchronizethetransmissionwithREADYsignal
will prevent the INP_PORT data from changing
while ST52x301 is reading the port.
READ PORT signal represented in figure 8.5 is an
ST52x301 internal signal.
Input data on the port are continuously sampled
and are strobed into the port only when READY is
set.

W.A.R.P.3TC

xxxxxx 0x

REG_CONF1

P(7:0)

IOP

EXTERNAL
PERIPHERAL

DATA

READY

I/O
PORT

Figure 8.4. One Line Input Handshake

PIO(7:0)

READY

DATA IN

READ PORT

CLK

NEW DATA IN

Figure 8.5. One Line Input HandshakeTiming

38/99

ST52T301/E301

8.3 OUTPUT HANDSHAKE

Figure 8.7 illustrates the timing associatedwith the
READY Handshake signal, when the instruction
LDPR 2 reg is performed.

WhenREADY is reset no significantdata are on the
output port pins,because ST52x301 is writing into
the PERIPH_REG_2.

When the data is ready in PERIPH_REG_2,
READY signal is set.

The rising edge of READY signal can be used as a
latching signal.

No peripheral acknowledge is waited for.

If the signal READY is high, it means that the data
out is still not read.In this case, the followingLDPR
instruction is stored in a one register peripheral
stack.

If the READY is maintained high, the following
LDPR instructions store the data coming from the
Registers File on the same register stack.

Figure 8.6. One Line Output Handshake

Figure 8.7. One Line Output Handshake Timing

39/99

ST52T301/E301

It means thateach LDPRinstructiondeletesthe old
value contained in the parallel port stack register
and rewritea newvalue on the samestack register.
Only the last LDPR instruction is executed if the
READY signal is maintained high during several
LDRP instructions.

Bit Name Value Description

0 P8 - Digital Output Bit

1

ECKF

00 5 MHz

01 10 MHz

2
10 20 MHz

11 20 MHz

3 TXC

0
SCI End Transmission
Interrupt Disabled

1
SCI End Transmission
Interrupt Enabled

4 TDRE

0
SCI Transmission Data
Register Empty Interrupt
Disabled

1
SCI Transmission Data
Register Empty Interrupt
Enabled

5 BRK

0
SCI Break Error Interrupt
Disabled

1
SCI Break Error Interrupt
Enabled

6 OVR

0
SCI Overrun Error Interrupt
Disabled

1
SCI Overrun Error Interrupt
Enabled

7 RDRF

0
SCI Received Data Register
Full Interrupt Disabled

1
SCI Received Data Register
FullInterrupt Enabled

Table 8.2 ConfigurationRegister 1 Setting

Figure 8.8.

40/99

ST52T301/E301

9 SERIAL COMMUNICATION INTERFACE
The Serial Communication Interface (SCI)
integrated into the fuzzy processor ST52x301
provides a general purpose shift register
peripheral, that allows to link several widely
distributed MCUs, through their SCI subsystem.
The SCI gives a serial interface providing
communication with common baud rates, up to
38400 Hz, and flexible character format.
The SCI is a full-duplex UART-type asynchronous
system with standard Non Return to Zero (NRZ)
format for the transmitted/received bit. The length
of the transmittedword is 10/11 bits (1 start bit, 8/9
data bits, 1 stop bit).
The SCI is composed of three modules: Receiver,
Transmitter and Baud-Rate Generator and it is
configured by means of Configuration Registers 3
and 1.

9.1 SCI RECEIVER BLOCK
The SCI Rec eiver b lock ma nages the
synchronization of the serial data stream and
stores the data characters. The SCI Receiver is
mainly formed by two sub-systems: Recovery
Buffer Block and SCDR_RX Block.
The RE configuration bit set to ”1” (Configuration
Register 3) enables the SCI Receiver.
The SCI receives data coming from the RxD pin
and drives the Recovery Buffer Block, that is a
high-speed shift register operating at a clock
frequency (CLOCK_RX) 16 times higher than the
fixed baud rate (CLOCK_TX). This sampling rate,
higher than the Baud Rate clock, allows to detect

Figure 9.1. SCI transmitted word structures

Figure 9.2. SCI Block Diagram

41/99

ST52T301/E301

Bit Name Value Description

0 TE
0 Transmission DISABLED

1 Transmission ENABLED

1 RE
0 Receiver DISABLED

1 Receiver ENABLED

2

M

00 8, No Parity, 1 bit stop

01 8, No Parity, 2 bit stop

3
10 8, Parity, 1 bit stop

11 9, No Parity, 1 bit stop

4 T8

0
Parity Odd, if Parity is
selected (M = 10); otherwise
9th Data bit

1
Parity Even, if Parity is
selected (M = 10); otherwise
9th Data bit

5

BRSL

000 600 Hz

001 1200 Hz

010 2400 Hz

6

011 4800 Hz

100 9600 Hz

101 19200 Hz

7
110 38400 Hz

111 External Clock

Table 9.1 ConfigurationRegister 3 SettingtheSTARTcondition,theNoiseerrorand theFrame
error.
When the SCI Receiver is in IDLE status, it is
waiting for the START condition, that is obtained
with a logic level 0, consecutive to a logic level 1.
Thisconditionis detected,if,with thefixedsampling
time, three logic levels 0 are sampled after three
logic levels 1.
The recognition of the START bit forces the SCI
Receiver Block to enter in an data acquisition
sequence, according to serial mode.
The 2 bits, M, of the ConfigurationRegister 3 allow
todefinetheserial modewith theconventionshown
in table 9.2.

Thebit, T8, in caseof M = 10 is used to set the parity
check to perform,as indicated in the previous table
9.2.
The recognition of STOP condition allows to
transfer the received data, from Recovery Bufferto
SCDR_RX buffer, adding the eventual ninth data
bit,according to the meaningshown in the previous
table 9.2. After this operation, RXF flag of SCI
Status Input Register 8 (fig.9.3) is set to logic level
1.The Control Unit reads the data from SCDR_RX
buffer (in read-only mode) with SRX instruction
and provides a reset at logic level 0 to RDRF flag.
If a data of Recovery Buffer is ready to be
transferred into SCDR_RX buffer, but the previous
one was not yet read by the Core, an OVERRUN
Error takes place: the status flag OVERR indicates
the error condition. In this case the information
stored in SCDR_RX buffer is not altered, but the
one that has caused the OVERRUN error can be
overwritten by a new data coming from the serial
data line.

Recovery Buffer Block
This block is structured as a synchronised finite
state machine on the CLOCK_RX signal falling
edge.
When the Recovery Buffer Block is in IDLE state it
waits for the reception of the correct 1 and 0
sequence representing the START.
The recognition takes place by sampling the input
RxD at CLOCK_RX frequency, that has a
frequency 16 times higher than CLOCK_TX. For
this reason, while the external transmitter sends a
single bit, the Recovery Buffer Block samples 16
states (from SAMPLE1 to SAMPLE16).

42/99

ST52T301/E301

Bit Name Value Description

0 P8 - Digital Output Bit

1

ECKF

00 5 MHz

01 10 MHz

2
10 20 MHz

11 20 MHz

3 TXC

0
SCI End Transmission
Interrupt Disabled

1
SCI End Transmission
Interrupt Enabled

4 TDRE

0
SCI Transmission Data
Register Empty Interrupt
Disabled

1
SCI Transmission Data
Register Empty Interrupt
Enabled

5 BRK

0
SCI Break Error Interrupt
Disabled

1
SCI Break Error Interrupt
Enabled

6 OVR

0
SCI Overrun Error Interrupt
Disabled

1
SCI Overrun Error Interrupt
Enabled

7 RDRF

0
SCI Received Data Register
Full Interrupt Disabled

1
SCI Received Data Register
FullInterrupt Enabled

Table 9.2 ConfigurationRegister 1 SettingThe analysis of RxD input signal is carried out
looking three samples for each bits received.0
If these threesamples are not equal, then the noise
error flag, NSERR, of Input Register 8 is set to 1
and the received data value will be the one
assumed by the majority of the samples.
By means of the procedure described above, to
avoid SCI becomes IDLE, because of a limited
noise due to an erroneous sampling, the
transmissionis recognizedas correctand the noise
flag error is set.
At the end of the cycle relative to the reception of
a bit, Recovery Buffer Block will repeat the same
steps 9 times: one step for each received bit, plus
onefor the stop acquisition(10 timesin caseof 9-bit
data, double stop or parity check).
At the endof datareception,RecoveryBufferBlock,
will supply information on eventual frame errors by
setting to 1 FRERR flag bit of Input Register 8.
A frame error can occur if the parity check has not
been successfully achieved or if STOP bit has not
been detected.
If Recovery Buffer Block receives 10 consecutive
bits at logic level 0, a break error occurres, and
interrupt routine request starts.

SCDR_RX block
It is a finite state machine synchronized with the
falling edge of the clock master signal, CKM.
The SCDR_RX block waits the signal of complete
reception, from the Recovery Buffer, to load the
word received. Moreover, the SCDR_RCX block
loads the values of FRERR and NSERR flag bits
(Input Register 8), and sets the RXF flag to 1.
Using SRX instruction the data are transferred to
Register File and RXF flag is reset to 0, to indicate
SCDR_RX block is empty.
If a new data arrives before the previous one has
been transferred to Register File, an overrun error
occurres and OVERR flag, of Input Register 8, is
set to 1.

43/99

ST52T301/E301

9.2 SCI TRANSMITTER BLOCK
The SCI Transmitter Block consists of the following
underblocks: SCDR_TX and SHIFT REGISTER,
synchronized, respectively, with the clock master
signal (CKM) and the CLOCK_TX.
The whole block receives through Configuration
Register 3 (M bits) the settings for the following
transmission modes (see table 9.1):

8-bit word and a single stop signal

8-bit wordplus a paritybit and a singlestop signal

8-bit word plus a double stop signal

9-bit word
In case of 9 bit frame transmission, the most
significat ive bit arrives through T8 of the
Configuration Register 3.
In an 8-bit transmission, instead, T8 is used to
configure the SCI, according to information
containedin M (seetable9.1):in particularto chose
the polarity control (even or odds) to implement the
parity check.
After a RESET signal, RST, the SCDR_TX block is
in IDLE stateuntil it receivesenablingsignal,TE=1,
of Configuration Register 3.
If TE=1, using STX instruction the data, to be
transmitted, are transferred from Register File to
SCDR_TX block and the flag of Input Register 8,
TXEM, is reset to 0, to indicate SCDR_TX block is
full.
If the core supplies a new data, this could not be
loaded in the SCDR_TX blockuntil the current data
has not been unloaded on the Shift Register block.
This means that only when TXEM is 1, it is possible
to load data in the SCDR_TX Block.
When the SHIFT REGISTER Block loads the data
to be transmitted on an internal buffer, TXEND is

reset to 0 to indicate the beginning of a new
transmission. At the end of transmission TXEND is
set to 1, allowing to load in the SHIFT REGISTER
a new data coming from SCDR_TX.
It is important to underline that TXEND = 1 does
notmean SCDR_TXis readyto receivea newdata.
For this reason it is better to utilise the TXEM signal
to synchronize the STX instruction to the SCI
TRANSMITTER block
If ST52x301 core resets TE to 0, the transmission
is interrupted, but the SCI Transmitter block
completes the transmission in progress before to
reset.

9.3 Baud Rate Generator Block
The Baud Rate Generator Block performs the
division of the clock master signal (CKM), in a set
of synchronism frequencies for the serial bit
reception/transmissionon the external line.
Table 9.1.shows the set of frequenciesselected by
means of BRSL (Configuration Register 3).
Reception frequency (CLOCK_RX) is 16 times
higher than transmission frequency(CLOCK_TX) .
If BRSL is equal to 111, CLOCK_RX and
CLOCK_TX signals coincide with clock master,
CKM.

Figure 9.3. SCI Status Input Register

44/99

ST52T301/E301

10 TRIAC/PWMDRIVER
ST52x301 offers a peripheral able to generate a
signal on pin 24, TRIACOUT, to drive an external
device, like a TRIAC, a IGBT or a Power Mos.
Triac/PWM driver can perform 3 different working
modes according to REG_CONF10 bits, MODE
(see Table 10.4):
MODE = ”01”: PWM
MODE = ”10”: Burst Mode Triac Control

(Thermal Regulations)
Note: in this case CKSL of REG_CONF10 must
be set to ”1x”. (see Table 10.4)
MODE = ”11”: Phase Angle Partialization

Triac Control (Motor Control)

The Triac/PWM Driver can be initialized by using a
valuefixed by a controlalgorithm, that canbe either
the output of a fuzzy inference or the result of an
arithmetic calculus stored in the Register File.

In the latter case, by using the LDPR 1,reg-i
instruction, the value, contained in the i-th register
of Register File, is stored in the Triac Driver/PWM
peripheral register PERIPH_REG_1.

Figure 10.1 shows the internal structure of
Triac/PWM Driver.

PWM Mode

The PWM working mode is obtained by setting
REG_CONF10 bits, MODE, at ”01” value.

It consistsof a signal,with fixed period, whoseduty
cycle can be modified.

Figure 10.1. TRIAC/PWM Driver Simplified Block Diagram

45/99

ST52T301/E301

D7 D6 D5 D4 D3 D2 D1 D0

REG_CONF8
TRIAC / PWM

TCLSB - Prescaler init value
Least Significative Bits

D7 D6 D5 D4 D3 D2 D1 D0

REG_CONF9
TRIAC / PWM

TCMSB - Prescaler init value
Most Significative Bits

Figure 10.2. TRIAC/PWM Configuration Register 8 and 9

The PWM period can be generated, internally, by
dividing the masterclock or, externally, by using an
external clock signal.
In both cases, the clock signal is dividedby a 16-bit
Prescaler, managed by REG_CONF8 and
REG_CONF9 (see Figure 10.2).
The duty cycle is fixedby a value,that can be either
the output of a fuzzy inference or the result of an
arithmetic calculus. In the first case, it can be
loaded directly in the register of the peripheral,
otherwise it can be stored in one location of the
Register File for further manipulations and then
used for the control of the PWM.
Burst Mode
It is based on turning on and off the TRIAC, for a
fixed integer number of main voltage periods, in
order to control the power transferred to the load.
For this reason a Burst Mode TRIAC control
consists of a signal, with a period, T, containing an
integer number of the main voltageperiods, whose
duty cycle is proportional to the number of periods
in whichthe TRIAC is ON (Duty Cycle).This kind of
Triac control is mainly used for thermal regulation.
Theduty cycle is fixedbya valuethatcan bedirectly
the output of a fuzzy inference or the result of an
arithmetic calculus.

In order to work in Burst mode, it is necessary to
detect the pre-post zero-crossing of main voltage,
by using an external inserting circuitry.
The user can define the period T, by means of the
internal 16-bit prescaler, setting REG_CONF8 and
REG_CONF9 (see Figure 10.2).T is proportional to
the main voltage period, it is in the range 0 to 21.8
sec (if the main frequencyis 50Hz).
The width and the polarity of the pulses can be
programmed according to the Triac and the circuit
characteristics.

Phase Angle Partialization Mode
This method is basedon turning on the TRIAC only
for a part (phase angle) of each main voltage
period. When the phase angle is large the energy
(power)supplied to the loadis low,viceversa,when
the phase angle is small the energy supplied to the
load is high.

The phase angle can be fixed by a fuzzy algorithm
or by a value stored in the Register File.

The phase angle is an 8-bit value.

The peripheral is programmable in order to work
with a main voltage frequency of 50 or 60 Hz.

46/99

ST52T301/E301

10.1 PWM GENERATOR WORKING MODE
When REG_CONF10 (3:2) bits, MODE, are ”01”,
the peripheral is programmed to work in PWM
Mode.
By using the 16-bit prescaler, the PWM period can
be generatedby dividing the internal master clock,
or an external clock signal applied on the pin
MAIN1,or themain voltage frequency,by using the
circuit shown in Figure 10.6.
NOTE: The external clock signal, applied on
MAIN1 pin,must have a frequencyat least three
time smaller than the internal master clock.
The clock source can be selected by using
REG_CONF10(5:4)bits,CKSL(see Table10.4and
Figure 10.9). If the clock source selected is not the
main voltage frequency(CKSL=1x),MAIN2pin can
be configured as input or output, by using
REG_CONF10(7) bit, IOSL (see Table 10.4).
If MAIN2 is an output, on this pin it is possible to
get the prescaler output signal Tck.
The period of the PWM signal is obtained by using
the following relation:
T=256*Tck
where Tck is the output of the 16-bit prescaler
managedby REG_CONF8 and REG_CONF9(see
Figure 10.2).
NOTE. In PWM working mode, the value N,
stored in the 16-bit prescaler, must be in the
range from 2 to 2 16-1
By using a 20 MHz clock master it is possible to
obtain a PWM frequency in the range 1.2 Hz to
26.04 KHz.
The value Ton is proportional to a value,
INIT_VALUE, that can be a fuzzy output or a value

Value Description

01 PWM Driver

10 Burst Mode Control (1)

11 Phase Angle Control

Note: (1) REG_CONF10(5) must be set to ”1”

Table 10.1.MODE - Triac/PWMWorking Mode
Settings

MCLK
Frequency

1/T
min max

5 MHz 0.3Hz 6.51 kHz

10 MHz 0.6 Hz 13.02 kHz

20 MHz 1.2 Hz 26.04 kHz

Table 10.2. PWM Frequencies

T = 256 * Tck

Ton = INIT_VALUE* Tck Toff

TRIACOUT

Figure 10.3. PWM Functionament

coming from Register File, according with the
INPSL and FZSL conf igurat ion b its o f
REG_CONF12 (see Table 10.6 and Figure 10.12).

The Ton is equal to:

Ton= INIT_VALUE*Tck.

It means the Ton can be fixed by the control
algorithm that can be either the output of a fuzzy
inference or the result of an arithmetic calculus. In
thesecond case, the data,stored in the i-th location
of the Register File, can be loaded by using the
instruction:

LDPR 1, reg-i .

If the INIT_VALUE is 255 the Toff is equal to Tck.

47/99

ST52T301/E301

10.2 BURST MODE
When REG_CONF10 (3:2) bits, MODE, are ”10”
the peripheral is programmed to work in BURST
MODE.
Notice that when you are working in Burst mode
CKSL must be set to ”1x” . (see Table 10.4)
A square wave, Tb, is generated with a duty cycle
proportional to the power the user intends to
transfer on the load. A pulse is generated for each
zero crossing of the main voltage included in the
Ton of the fixed period. Figure 10.4 shows the
typical Burst Controlworking mode.The periodT of
the signal Tb (see Figure 10.4) is equal to 256*Tck.

ThesignalTckisgeneratedprogrammingthe 16-bit
Prescaler, by REG_CONF8 and REG_CONF9
(see Figure 10.2). Tck is equal to the main voltage
frequency (50 or 60 Hz) divided by N+1, where N
value is from 0 to 216-1.
The value Ton is proportional to a value,
INIT_VALUE, that can be a fuzzy output or a value
coming from Register File, according with the
INPSL and FZSL conf ig urat ion b its of
REG_CONF12 (see Table 10.6 and Figure 10.12).
On TRIACOUT pin is generated a sequence of
pulses, programmed, by using REG_CONF11(0)
bit, POL (see Table 10.5), in order to be positive or
negative, to drive the Triac in different quadrants.
The number of generated pulses, N_PULSES, is:
N_PULSES = 2 [(N+1)*INIT_VALUE - N]
where N is the value stored in the 16-bit pescaler.
Then Ton = (N_PULSES / 2)* TPOWER LINE

The first pulse is obtained during the first zero
crossing of the main voltage and the last one is
generated after INIT_VALUE*Tck clock pulses,
where Tck is the Prescaler output, generated by

using the main voltagefrequencyapplied to MAIN1
and MAIN2 pins.

Theperipheral canbeprogrammed inorder to work
with 50 or 60 Hz main voltage frequency,by setting
the REG_CONF10(6) bit, PSF (see Table 10.4).
Ranges of the Tb signal period depend on the
power line frequency(see Table 10.3).
In order to drive a Triac in Burst Mode it is required
to generate a sequence of pulse, that must be
centred on the zero crossing of the power line as
shown in the Figure 10.7. For this reason, the pre
zero crossing and the post zero crossing of the
power line must be detected.
To detect the zero-crossing and get also the main
voltage frequency, the user must generate MAIN1
and MAIN2 signals, by using the circuit shown in
Figure 10.6.
MAIN1 and MAIN2 signals are used in the block
called PULSE GENERATOR of the peripheral (see
Figure 10.1).

In particular the pulses are generatedby using the
rise edge of the signal MAIN1 and the falling edge
of the signal MAIN2.

Figure 10.5 shows the generation of the Triac
pulses Tp .
The first firing pulse for the Triac is generated on
the zero crossing of the power line, while the next
pulses are centred on the zero crossing.

Power Line
Frequency

T

min max

50 Hz 5.12 s 335544 s

60 Hz 4.26 s 279620 s

Table 10.3. TRIACOUT Signal Period

-1.5

-1

-0.5

0

0.5

1

1.5

Ton

Tb

Power
Line

TRIACOUT

T = 256 * Tck

Figure 10.4. Burst Working Mode

48/99

ST52T301/E301

Normally the Triac firing pulses start 1/3 Tp before
the zero crossing and the lengthof the pulses isTp,
see Figure 10.5.

The length Tp of the pulses is programmable by
using UTP value, that is a 14-bits number,obtained
with REG_CONF12(5:0) bits, UTPMSB, and
REG_CONF13, UTPLSB (see figure 10.12 and
table 10.6):

UTP(13:0) = [UTPMSB(5:0) UTPLSB(7:0)]

TP = TMCLK * UTP

The value Tp is in the range 0 to 4.9 ms when the
clock master is 20 MHz.

According to REG_CONF11(0) configuration
register bit, POL, it is possible to set the firing

(1)

(0.5)

0

0.5

1

Ig

Tp

Negative
Triac Gate

Current 2/3 Tp

Tp

1/3 Tp

Positive
Triac Gate

Current

Power
Line

Ig

II and III quadrants

I and IV quadrants

Figure 10.5. Burst Mode pulse polarity

Figure 10.6 Burst Mode Zero Crossing Circuit

MAIN1

MAIN2

-1.5

-1

-0.5

0

0.5

1

1.5

Main Voltage

TRIACOUT

Tp Tp TpTMASK TMASK

Figure 10.7 Burst Mode Zero Crossing

MCLK
Frequency

TP

min max

5 MHz 0.0012 ms 19.6608 ms

10 MHz 0.0006 ms 9.8304 ms

20 MHz 0.0003 ms 4.9152 ms

pulses polarity; in order to obtain positive or
negative gate Triac currents, allowing to work
respectively in I and IV quadrants, or in the II and
III quadrants (see Figures 10.5 and 10.12).
To increase the immunity of the peripheral against
the electrical noise of the main voltage, a
programmable masking t ime, by using
REG_CONF11(5:2) bits, TCMSK (see Table 10.5)

49/99

ST52T301/E301

and Figure 10.11), is introduced after each firing
pulse (see Figure 10.7):
Masking time =(2^TCMSK*200 +100) nS.
If TCMSK is 0 then Masking time is 0.
In fact, to avoid the detection of electrical noise,
during the masking time no signal, coming from
MAIN1 and MAIN2, is taken into account.
Working in the II and III quadrant the peripheral
implements the following procedure:
1) The firing pulse is set to ”1”on the rising edge of
MAIN1.
2) The firing pulse is reset to ”0” after the time Tp
fixed by program.
3) The firing pulse is reset to ”0” for a time equal to
the fixed masking time.
4) On the falling edge of MAIN2 the firing pulse is
set to ”1”
5) The firing pulse is reset to ”0” after the time Tp
fixed by program.
6) The firing pulse is reset to ”0” for a time equal to
the fixed masking time.
Following this approach it is possible to filter
electrical noise and oscillations on the signal
MAIN1 and MAIN2.
It is possible to generatea programmable Interrupt
in four different ways:
1) No Interrupt;
2) Interrupt on the rising edge of the signal Tb.
3) Interrupt on the falling edge of the signal Tb.
4) Interrupt on both the edge of the signal Tb.
The Interrupt is programmablebyusing the register
REG_CONF11(7:6), INTSL (see Table 10.5).

(1.5)

(1)

(0.5)

0

0.5

1

1.5

(1.5)

(1)

(0.5)

0

0.5

1

1.5

VA2-A1

Il

180 360
0 0

α

γ

Phase Angle

Current Flow Angle

L

N

Load

A2

A1

Il

Figure 10.8. Phase Angle Partialization Mode

10.3 PHASE ANGLE PARTIALIZATION WORK-
ING MODE

When REG_CONF10 (3:2) bits, MODE, are ”11”
the peripheral is programmed to work in PHASE
ANGLE PARTIALIZATION mode.

In this mode Triac is controlled each period of the
main voltage. The power transferred to the load is
proportional to the CURRENT FLOW ANGLE γ.
Thiskind ofTriac control is suitable to drivethe Triac

TCMSK MaskingTime

0000 0 µs

0001 0.5 µs

0010 0.9 µs

0011 1.7 µs

0100 3.3 µs

0101 6.5 µs

0110 12.9 µs

0111 25.7 µs

1000 51.3 µs

1001 102.5 µs

1010 204.9 µs

1011 409.7 µs

1100 819.3 µs

1101 1638.9 µs

1110 3276.9 µs

1111 6553.7 µs

50/99

ST52T301/E301

with inductive load (i.e. universal or monophase
motors). In the figure 10.8 is shown the relation
between the Phase Angle α and the Current flow
angle γ . The peripheral allows to control the Phase
Angle or equivalentlythe time T1 (see Figure10.9).
It ispossibleto changeTime T1settingthe contents
of the peripheral register PERIPH_REG_1. This
value could be directly loaded by using one of the
two fuzzy outputs or by using a value coming from
the RegistersFile, accordingwith INPSL and FZSL
configurationbits ofREG_CONF12(seeTable10.6
and Figure 10.13).
In order to synchronizethe peripheralwith the zero
crossing of the main voltage the two pins MAIN1
and MAIN2 must be connected together if the
externalcircuit is the one shownin the Figure10.10.
It is possible to use different circuits for the zero
crossing detection, but the MAIN1 signal rising
edge must be synchronized with a main voltage
zero crossing and the MAIN2 signal falling edge

(1.5)

(1)

(0.5)

0

0.5

1

1.5
Mains

Voltage

10 mS 20 mSec

T1

T1

Tmax

8 mS

Tr

Tr/2

Ti

Figure 10.9 Phase Angle Partialization mode

Figure 10.10 Phase Angle Partialization Zero Crossing

must be synchronized with the following main
voltage zero crossing, always.
Theperipheral canbeprogrammedin order to work
with 50 or 60 Hz main voltage frequencyby setting
the REG_CONF10(6) bit, PSF (see Table 10.4).
If main voltage frequencyis equal to 50 Hz, then Tr,
see figure 10.9, is equal to 20 mSec and T1 is:
T1 = PERIPH_REG_1(0:7)*(1/25.5)ms.
The length of the semiperiod Ti/2 is programmable
by using the registers REG_CONF12(0:5) and
REG_CONF13,(see figure10.12).By usinga clock
master equal to 20 MHz the pulse width is in the
range from 0.2 to 250 µs. The duty cycle of Ti is
always 50 %.
In order to avoid problems for the Triac firing when
the load is inductive 8 different pulses are
generatedby the peripheral.
If the time T1 is bigger than a fixed time Tmax then
nopulsesare generatedand the Triacis maintained
off.This feature was implemented in order to avoid
the firing of the Triac in the second half period of
the main voltage. The firing pulses are generated
when the contents of the PERIPH_REG_1 is less
or equal to 204, otherwise they are not generated.
When the frequency of the main voltage is 50 Hz,
T1max is equal to 8 mSec.
It is possible to generatea programmable interrupt
in four different ways:
1) no Interrupt;
2) Interrupt on the rising edge of the signal MAIN1
3)Interrupt on the falling edge of the signal MAIN2
4) Interrupt on both the edgesof the signal MAIN1.
The Interrupt is programmablebyusing the register
REG_CONF11(7:6), INTSL
10.4.TRIAC/PWM DRIVER PROGRAMMING

51/99

ST52T301/E301

Bit Name Value Description

0 TCRST
0 Triac Reset

1 Triac Set

1 TCST
0 Triac Stop

1 Triac Start

2

MODE

00 not used

01 PWM signal Generator

3
10 Burst Mode (1)

11 Phase Partialization

4

CKSL

00 Clock Master

01 External Clock on MAIN1

5 1x Main Voltage Frequency

6 PSF
0 Main Power at 50 Hz

1 Main Power at 60 Hz

7 IOSL
0 MAIN2 Input pin

1 MAIN2 Output pin

Note: (1) CKSL must be set to ”1x”

Table 10.4 Configuration Register 10 Description

Bit Name Value Description

0 POL

0
Output pulse Polarity =
positive

1
Output pulse Polarity =
negative

1 TCTRS
0 TRIACOUT status = Tristate

1 TRIACOUT status = Enabled

2

TCMSK
Masking time
=(2^TCMSK*200 +100) nS.
TCMSK=0 →Masking time=0

3

4

5

6

INTSL

00 No Interrupt source selected

01
Interrupt on falling edge of
the TRIAC/PWM signal, or of
the Main Voltage

7

10
Interrupt on rising edge of
the TRIAC/PWM signal, or of
the Main Voltage

11
Interrupt on both of edges of
the TRIAC/PWM signa,l or of
the Main Voltage

Table 10.5 Configuration Register 11 Description

Bit Name Value Description

0 ÷ 5
UTPMSB Output Impulse Width most

significative bits

6 INPSL

0
TRIAC/PWM Input from
Fuzzy Output

1
TRIAC/PWM Input from
Register File

7 FZSL

0
TRIAC/PWM Input from
Fuzzy Output 1

1
TRIAC/PWM Input from
Fuzzy Output 2

Table 10.6. ConfigurationRegister 12 Description

It is possible SET or RESET the TRIAC/PWM
Peripheral by using the REG_CONF10(0) bit,
TCRST (see Table 10.4).
If TRIAC/PWM Peripheral is SET, It is possible
START or STOP it, by using the REG_CONF10(1)
bit, TCST (see Table 10.4), to start or stop the
internal counter without resetting it.
It is possible to enablethe TRIACOUT, byusing the
REG_CONF11(0) bit, TCTRS (see Table 10.5 and
Figure 10.11).
IF TCTRSis 0 the TRIAC/PWM Peripheraloutput
is in tristate status.

52/99

ST52T301/E301

Figure 10.11. TRIAC/PWM ConfigurationRegister 10

Figure 10.12 TRIAC/PWM Configuration Register 11

Figure 10.13 TRIAC/PWM Configuration Registers 12 and 13

53/99

ST52T301/E301

Symbol Parameter Value Unit

VDD Supply Voltage -0.5 to 7 V

VI Input Voltage VSS-0.3 to VDD+0.3 (1) V

VO Output Voltage VSS-0.3 to VDD+0.3 (1) V

VDDA, VSSA Analog Supply Voltage VSS-0.3 to VDD+0.3 (1) V

VPP EPROM Programming Voltage 13 V

IO
Standard Output Source Sink Current (2) ±20 mA

TRIACOUT Output Source Sink Current ±80 (3) mA

TOPT Operating Temperature 0 to +85 °C

TSTG Storage Temperature -65 to +150 °C

Table 11.1. Absolute Maximum Ratings

Note: Stresses above those listed in the Table ”Absolute Maximum Ratings” may cause permanent damage to the device.
These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating
sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect
device reliability.Refer also to the SGS-THOMSON SURE Program and other relevant quality documents.
1. Within these limits, clamping diodes are garanteed to be not conductive.
2. All except TRIACOUT pin
3. For not more than 1 sec.

11 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings
This product contains devices to protect the inputs
against damage due to high static voltages,
however it is advised to take normal precaution to
avoid any voltage higher than maximum rated
voltagees.
For proper operation it is recommended that VI and
VO must be higher than VSS and smaller than VDD.
Reliability is enhanced if unused inputs are
connected to an appropriated logic voltage level

54/99

ST52T301/E301

(VSS or VDD) RECOMMENDED OPERATING CONDITIONS
(Operating Condition: VDD=5V±5%-TA=0 °C to 85 °C, unless otherwise specified)

Symbol Parameters Test Conditions Min Typ Max Unit

VDD Operating Supply Voltage 4.75 5.0 5.25 V

VPP Programming Voltage 11.4 12 12.6 V

VO Ouput Voltage VSS VDD V

VDDA, VSSA Analog Supply Voltage Vss ≤ VSSA < VDDA ≤ VDD VSS VDD V

fOSC Oscillator Frequency (1) 5 10 20 MHz

Table 11.2. Recommended Operation Condition

Notes: 1. For correct behaviour of some peripherals, it is possible to work only with one of the 5 - 10 - 20 MHz frequencies.

55/99

ST52T301/E301

Symbol Parameter Test Conditions Min Typ Max Unit

VIL

TTL type Schmitt trig. Low Level Input
Voltage

VDD =4.75 V
see fig.11.6 0.7 V

CMOS type Schmitt trig. Low Level Input
Voltage

VDD =4.75 V
see fig.11.7 1.2 V

VIH

TTL type Schmitt trig. High Level Input
Voltage

VDD =5.25 V
see fig.11.6 2 V

CMOS type Schmitt trig. High Level Input
Voltage

VDD =5.25 V
see fig.11.7 3.5 V

VOL

Standard Low Level Output Voltage IOL =4mA 0.4 V

TRIACOUT Low Level Output Voltage IOL =50mA 2 V

VOH

Standard High Level Output Voltage(1) IOL =-4mA VDD-0.5 V

TRIACOUT High Level Output Voltage(1) IOL =50mA VDD-2 V

VHys

TTL type Schmitt trig. Hysteresis Voltage see fig.11.6 1.2 V

CMOS type Schmitt trig.Hysteresis Voltage see fig.11.7 2.0 V

IIL Low Level Leakage Input Current VI=VSS -1 µA

IIH High Level Leakage Input Current VI=VDD +4 µA

IOL Tri-State Output Leakage Current VO=VSS or VDD ±10 mA

IDD

Supply Current in RESET mode

VPP connected with
VDD;

VRESET =VSS
FOSC= 10 MHz

11 mA

Supply Current in RUN mode
VPP connected with

VDD;
FOSC= 10 MHz

11 mA

IDDA

Analog Supply Current in RESET mode

VPP connected with
VDD;

VRESET =VSS
FOSC= 10 MHz

3 mA

Analog Supply Current in RUN mode
VPP connected with

VDD;
FOSC= 10 MHz

10 mA

Table 11.3 DC Electrical Characteristics

DC ELECTRICAL CHARACTERISTICS
(Operating Condition: VDD=5V±5%-TA=0 °C to 85 °C, unless otherwise specified)

56/99

ST52T301/E301

Symbol Parameter Test Conditions Min Typ Max Unit

RS Input protection Resistor All Input Pins 1 kΩ

CIN Input Capacitance All Input Pins 10 pF

COUT Output Capacitance All Ouput Pins 10 pF

Table 11.4. AC Electrical Characteristics

AC ELECTRICAL CHARACTERISTICS
(Operating Condition: VDD=5V±5%-TA=0 °C to 85 °C, unless otherwise specified)

Symbol Parameters Test Conditions Min Typ Max Unit

fOSC Oscillator Frequency 20 MHz

tCLH Clock High 25 ns

tCLL Clock Low 25 ns

tSET Setup see fig 11.1 5 ns

tHLD Hold see fig.11.1 5 ns

tWRESET Minimum Reset Pulse Width 100 ns

tWINT Minimum External Interrupt Pulse Width 100 ns

tIR Input Rise Time see fig.11.2 15 ns

tIF Input Fall Time see fig.11.2 15 ns

tOR Output Rise Time CLOAD=10 pF
see fig.11.2 10 ns

tOF Output Fall CLOAD=10 pF
see fig.11.2 10 ns

Table 11.5. Timing Parameters

Figure 11.1. Data Input Timing Figure 11.2. I/O Rise and Fall Timing

57/99

ST52T301/E301

Figure 11.3. Input Pin Equivalent Circuit

Figure 11.4. Equivalent Tristate Output Circuit Figure 11.5. Equivalent Output Circuit

58/99

ST52T301/E301

Figure 11.6. TTL-level Input Schmitt Trigger Figure 11.7. CMOS-level Input Schmitt Trigger

Note: Only for RETE1 and RETEIO signals

TIMER CHARACTERISTICS
(Operating Condition: VDD=5V±5%-TA=0 °C to 85 °C, unless otherwise specified)

Symbol Parameter Min Typ Max Unit

tRES Resolution 1/FOSC µs

fIN
External Input Frequency on timer
Internal Input Frequency on timer

20 MHz

tW Pulse Width on TIMEROUT pin 1/FOSC µs

Table 11.7. Timer Characteristics

59/99

ST52T301/E301

A/D CONVERTER CHARACTERISTICS
(Operating Condition: VDD=5V±5%-TA=0 °C to 85 °C, unless otherwise specified)

Symbol Parameter Test Conditions Min Typ Max Unit

Res Resolution 8 bit

ATOT Total Accuracy (1)
FOSC > 5 MHz
FOSC > 10 MHz
FOSC > 20 MHz

±2 LSB

tC Conversion Time FOSC =5 - 10 - 20 MHz 32 µs

VAN Conversion Range VSSA 2.5 V

VZI Zero Scale Voltage Conversion result=
00 Hex VSSA V

VFS Full Scale Voltage (bandgap) Conversion result=
FF Hex 2.474 V

∆VFS%
Full Scale Voltage (bandgap) precision
v/s VDDA variation VDDA=5V±5% 1 %

ADI Analog Input Current during Conversion fOSC = 20 MHz 2 µΑ

ACIN
(2) Analog Input Capacitance 2 pF

ASI Analog Source Impedance 1 kΩ

ORI Output Reference Impedance 100 Ω

ORL Output Reference Load 0.1 mA

ORLC Analog Reference Load Capacitance 10 pF

Source-Off and Drain-Off Leakage Currents are in the range of nA.

Notes: 1. Noise at VDDA, VSSA <40 mV

2. Excluding Pad Capacitance.

Table 11.8. A/D Converter Characteristics

60/99

ST52T301/E301

ADD
Addition

Format: ADD regi, regj

Operation: regi <- regi + regj

Description: The contents of the Register File j-th register specified as source is added to the destina-
tion i-th register, leaving the result in the destination register.The result is 255 if overflow
occurs.

Flags: Z set if result is zero, cleared otherwise.
S set if overflow, cleared otherwise.

Bytes: 2

Cycles: 7

Example: If the register 4 contains the value 45 and the register 11 contains the value 15, then the
instruction
ADD 4,11 1001000 0100|1011
causes the register 4 of the Register File to be loaded with the value 60.
If the register 4 contains the value 200 and the register 11 contains the value 100, the in-
struction causes the register 4 to be loaded with the value 44 (result-256) and the S flag
to be set

INSTRUCTION SET

61/99

ST52T301/E301

AND
Logical AND

Format: AND regi, regj

Operation: regi <- regi AND regj

Description: The instruction logically ANDs the contents of the Register File j-th register specified as
source and the destination i-th register in the Register File, leaving the result in the desti-
nation register.

Flags: Z set if result is zero, cleared otherwise.
S not affected.

Bytes: 2

Cycles: 7

Example: If the register 4 contains the value 10011100 and the register 12 contains the value

01010101, then the instruction

AND 4,12 10010001 0100|1100
causes the register 4 of the Register File to be loaded with the value 00010100.

62/99

ST52T301/E301

CON
Consequent

Format: CON cost

Operation: Dividend Register <- Dividend Register + cost*teta
Divisor <- Divisor + teta

Description: This intruction computes the values to add in the defuzzification registers, at the end of
the single rule. The specified constant is the crisp value representing the output crisp
membership function: it is multiplied by the last fuzzy operation result.

63/99

ST52T301/E301

DATA
Membership Functions data

Format: DATA var mbf lvd vtx rvd

Operation: ADM location 16*var+mbf <- lvd
ADM location 16*var+mbf+64 <- vtx
ADM location 16*var+mbf+128 <- rvd

Description: This instruction is a pseudo instruction (it does not correspond to any operation executed
by the processor) that allows to store membership functions data in the ADM (Antece-
dent Data Memory).The var and the mbf data identify the membership function.The lvd
data is the left semibase distance of the M.F., the vtx data is the position of the vertex
and rvd is the right semibase distance.

64/99

ST52T301/E301

FZAND
Fuzzy AND

Format: FZAND

Operation: K <- stack0 AND stack1

Description: This instruction computes the AND operation between the two values stored in the fuzzy
stack, previously loaded with LDP, LDN or LDK instructions, and stores it in the register
K.

65/99

ST52T301/E301

FZOR
Fuzzy OR

Format: FZOR

Operation: K <- stack0 OR stack1

Description: This instruction computes the OR operation between the two values stored in the fuzzy
stack, previously loaded with LDP, LDN or LDK instructions and stores it in the register K.

66/99

ST52T301/E301

IRQ
InterruptVector

Format: IRQ int label

Operation: interrupt vector <- label (PC = Program Counter)

Description: This instruction allows to specify the interrupt int service routine start address at label lo-
cation.

Flags: Z,S not affected.

Bytes: 2

Cycles: 6

Example: The instruction:
IRQ 1 IntRout1
determinates that if interrupt 1 is serviced, the program counter (PC) is loaded with the
memory address value labelled with IntRout1.

Remark: The instruction IRQ is a dummy instruction used to store data in the chip memory. It is
neither stored in memory nor executed.A series of IRQ instructions must be ended by a
dummy end operation.

67/99

ST52T301/E301

IRQM
Mask Interrupt

Format: IRQM mask

Operation: interrupt mask register <- mask

Description: The interrupts are masked with the specified mask.

Flags: Z,S not affected.

Bytes: 2

Cycles: 6

Example: The instruction:
IRQM 10 1011|1110 00001010
enables the interrupts 1 and 3 and disables all the others.

68/99

ST52T301/E301

IRQP
Interrupt Priority

Format: IRQP cost

Operation: interrupt priority register <- cost

Description: The interrupts priority is set according the specified values.

Flags: Z,S not affected.

Bytes: 2

Cycles: 6

Example: The instruction:
IRQP 198 1011|1111 11|00|01|10
determines the interrupt 2 to have highest priority, interrupt 1 medium priority and inter-
rupt 0 lower priority.

Remark: each couples of bits must have different values, that is interrupts must have different
priority level.enables the interrupts 1 and 3 and disables all the others.

69/99

ST52T301/E301

JP
Unconditional Jump

Format: JP addr

Operation: PC <- addr (PC = ProgramCounter)

Description: The instruction replaces the PC value with the specified value causing an unconditional
jump to another location in the program memory.

Flags: Z,S not affected.

Bytes: 2

Cycles: 6

Example: The instruction:
JP 1123 1010|0100 01100011
causes the PC to be loaded with the value 1123 and the program to continue
from that location.

70/99

ST52T301/E301

JPNS
Jump on Non Sign Flag

Format: JPNS addr

Operation: if S=0,PC <- addr (PC = Program Counter)

Description: If the S flag is cleared then the PC value is replaced with the specified value, causing a
jump to another location in the program memory.

Flags: Z,S not affected.

Bytes: 2

Cycles: 6

Example: If the S flag is cleared then the instruction:
JPNS 1123 1111|0100 01100011
causes the PC to be loaded with the value 1123 and the program to continue from that
location.

71/99

ST52T301/E301

JPNZ
Jump on Non Zero Flag

Format: JPNZ addr

Operation: if Z=0, PC <- addr (PC = Program Counter)

Description: If the Z flag is cleared then the PC value is replaced with the specified value, causing a
jump to another location in the program memory.

Flags: Z,S not affected.

Bytes: 2

Cycles: 6

Example: If the Z flag is cleared then the instruction:
JPNZ 1123 1101|0100 01100011
causes the PC to be loaded with the value 1123 and the program to continue from that
location.

72/99

ST52T301/E301

JPS
Jump on Sign Flag

Format: JPS addr

Operation: if S=1,PC <- addr (PC = Program Counter)

Description: If the S flag is set then the PC value is replaced with the specified value, causing a jump
to another location in the program memory.

Flags: Z,S not affected.

Bytes: 2

Cycles: 6

Example: If the S flag is set then the instruction:

JPS 1123 1110|0100 01100011

causes the PC to be loaded with the value 1123 and the program to continue from that
location.

73/99

ST52T301/E301

JPZ
Jump on Zero Flag

Format: JPZ addr

Operation: if Z=1, PC <- addr (PC = Program Counter)

Description: If the Z flag is set then the PC value is replaced with the specified value, causing a jump
to another location in the program memory.

Flags: Z,S not affected.

Bytes: 2

Cycles: 6

Example: If the Z flag is set then the instruction:

JPZ 1123 1110|0100 01100011

causes the PC to be loaded with the value 1123 and the program to continue from that
location.

74/99

ST52T301/E301

LDCF
Load Constant into Configuration Register

Format: LDCF conf, const

Operation: conf <- const

Description: The immediate constant value (const) specified as source is loaded into the destination
peripheral configuration register (conf).

Flags: Z,S not affected.

Bytes: 2

Cycles: 6

Example: The instruction:

LDCF 5,43 1011|0101 00101011

causes the peripheral configuration register 5 to be loaded with the value 43.

75/99

ST52T301/E301

LDK
Load Stack with K register

Format: LDK

Operation: stack0 <- K

Description: This instruction loads in the stack the value temporarily stored in the register K that is
the result of the last fuzzy operation.

76/99

ST52T301/E301

LDM
Load Stack with M register

Format: LDM

Operation: stack0 <- M

Description: This instruction loads in the stack the value temporarily stored in the register M with a
SKM operation.

77/99

ST52T301/E301

LDN
Load Negative alpha value

Format: LDN var mbf

Operation: stack <- 15 - computed alpha value related to mbf M.F.of var Variable

Description: This instruction performs the fuzzyfication and loads in the stack the negated alpha
value of the M.F.mbf of var Variable.

78/99

ST52T301/E301

LDP
Load Positive alpha value

Format: LDP var mbf

Operation: stack <- computed alpha value related to mbf M.F. of var Variable

Description: This instruction performs the fuzzyfication and loads in the stack the alpha value of the
M.F. mbf of var Variable.

79/99

ST52T301/E301

LDPR
Load Register into Peripheral Register

Format: LDPR per, reg

Operation: per <- re g

Description: The contents register specified as source (reg) is loaded into the destinationperipheral
register (per).

Flags: Z, S not affected.

Bytes: 1

Cycles: 5 (6 if parallel port with H/S is addressed)

Example: If the register 7 of the Register File contains the value 25 then the instruction:

LDPR 2,7 01|10|0111

causes the register 2 of the Peripheral Register (i.e. parallel port) to be loaded with the
value 25.

80/99

ST52T301/E301

LDRC
Load constant into Register

Format: LDRC reg, const

Operation: reg <- const

Description: The immediate constant value specified as source is loaded into the destination register
in the Register File.

Flags: Z,S not affected.

Bytes: 2

Cycles: 6

Example: The instruction:

LDRC 5,43 1000|0101 00101011

causes the register 5 of the Register File to be loaded with the value 43.

81/99

ST52T301/E301

LDRI
Load Input register into Register file

Format: LDRI reg, inp

Operation: reg <- inp

Description: The contents of a input register specified as source (inp) is loaded into the destination
register in the Register File (reg).

Flags: Z,S not affected.

Bytes: 2

Cycles: 6

Example: If the register 2 of the A/D converter contains the value 25 then the instruction:

LDRI 5,2 000|xxxxx 0101|0010 x = don’t care

causes the register 5 of the Register file to be loaded with the value 25.

82/99

ST52T301/E301

LDRR
Load Register into Register

Format: LDRR regi, regj

Operation: regj <- regi

Description: The contents of the Register File j-th register specified as source is loaded into the desti-
nation i-th register.

Flags: Z,S not affected.

Bytes: 2

Cycles: 6

Example: If the register 2 of the Register File contains the value 25 then the instruction:

LDRR 5,2 100101100101|0010

causes the register 5 of the Register file to be loaded with the value 25.

83/99

ST52T301/E301

MDGI
Macro Disable Global Interrupt

Format: MDGI

Operation: MGI bit <- 0

Description: All the interrupts are disabledby this instruction.This instruction is used by FUZZYSTU-
DIO 3.0 Compiler macros to disable interrupt during macro execution.

Flags: Z,S not affected.

Bytes: 1

Cycles: 4

Example: After the instruction:

MDGI 10011010

all the interrupts cannot be acknowledged and remain pending

84/99

ST52T301/E301

MEGI
Macro Enable Global Interrupt

Format: MDGI

Operation: MGI bit <- 1

Description: The not masked interrupts are enabledby this instruction only if a UDGI instruction has
not specified before, not followed by a UEGI instruction. This instruction is used by
FUZZYSTUDIO 3.0 Compiler macros to disable interrupt during macro execution.

Flags: Z,S not affected.

Bytes: 1

Cycles: 4

Example: After the instruction:

MEGI 10011011

not masked interrupts can be acknowledged if the interrupts are not globally disabled by
the UDGI instruction

85/99

ST52T301/E301

OUT
Output computation

Format: OUT const

Operation: Output Register const <- defuzzyfication result of the const output

Description: This instruction performs the defuzzyfication of the specified output (const can assume
only the values 0 or 1) and loads in the correspondent Fuzzy Output Register the result.

86/99

ST52T301/E301

RETI
Return from Interrupt

Format: RETI

Operation: PC <- stack
Z <- stack
S <- stack

Description: This instruction resumes the program execution exactly at the point it was left when an in-
terrupt occurred.Z and S flag are set to the status they had when the interrupt service
routine was started.

Flags: Z,S restored to the original setting before an interrupt occured.

Bytes: 1

Cycles: 5

Example: If the PC stack contains the value 1123 and the program is processing an interrupt ser-
vice routine, then the instruction

RETI 10010101

causes the PC to be loaded with the value 1123 and the flags to be restored to the
status before the interrupt occurred.

87/99

ST52T301/E301

RINT
Reset Interrupt

Format: RINT int

Operation: cancel pending interrupt n. int

Description: The specified pending interrupt is cancelled if not currently in service.

Flags: Z,S not affected.

Bytes: 1

Cycles: 4

Example: The instruction:

RINT 2 0001|x|010 x = don’t care

causes the bit 2 of the interrupt pending register to be cleared so that the interrupt 2 is
not acknowledged.

Remark: The use of RINT istruction has no effect if a specified interrupt has already been aknowl-
edged and related service routine has not been completed.

88/99

ST52T301/E301

SKM
Store K register in M register

Format: SKM

Operation: M <- K

Description: This instruction stores the result of the last performed fuzzy operation (stored in the tem-
porary register K) in the temporary buffer M.

89/99

ST52T301/E301

SRX
SCI Reception

Format: SRX regi

Operation: regi <- SCDR_RX

Description: The contents of the SCDR_RX block of the SCI receiver block, is transferred in the Reg-
ister File i-th register specified as destination.

Flags: Z,S not affected.

Bytes: 2

Cycles: 5

Example: If the SCDR_RX block of the SCI receiver block contains the value 45, then the instruc-
tion

SRX 4 00101101

causes the register 4 of the Register File to be loaded with the value 45.

90/99

ST52T301/E301

STOP
Stop Program Execution

Format: STOP

Operation: Stop section

Description: This instruction separates arithmetic instructions and fuzzy instructions.Also it ends a
IRQ specification section.

Flags: Z,S not affected.

Bytes: 1

Cycles: 4

Example: The instruction:

STOP 10010111

if put after arithmetic instructions, it allows to start a block of fuzzy instruction and vice
versa.

91/99

ST52T301/E301

STX
SCITransmission

Format: STX regi

Operation: SCDR_TX <- regi

Description: The contents of the Register File i-th register specified as source is transferred in the
SCDR_TX block of the SCI transmitter block, to be transmitted.

Flags: Z,S not affected.

Bytes: 2

Cycles: 5

Example: If the register 4 contains the value 45, then the instruction

STX 4 00101101

causes the serial transmission of 45.

92/99

ST52T301/E301

SUB
Subtraction

Format: SUB regi, regj

Operation: regi <- regi -regj

Description: The contents of the Register File j-th register specified as source is subtractedfrom the
destination i-th register, leaving the result in the destinationregister.

Flags: Z set if result is zero, cleared otherwise.
S set if underflow, cleared otherwise.

Bytes: 2

Cycles: 7

Example: If the register 4 contains the value 45 and the register 11 contains the value 15, then the
instruction

SUB 4,11 10010010 0100|1011
causes the register 4 of the Register File to be loaded with the value 30.

If the register 4 contains the value 100 and the register 11 contains the value 200, the in-
struction causes the register 4 to be loaded with the value 156 (result+256) and the S
flag to be set.

93/99

ST52T301/E301

SUBO
Subtraction with Offset

Format: SUBO regi, regj

Operation: regi <- regi - regj +128

Description: The contents of the Register File register specified as source are subtracted from the
destination register in the Register File, the value 128 is added to the result that is stored
in the destination register.This operation allows the use of the signed byte considering
the values between 0 and 127 as negative,128 as 0, and the values between 129 and
255 as positive.

Flags: Z set if result is zero or if overflow occurs, cleared otherwise.
S set if underflowor overflow, cleared otherwise.

Bytes: 2

Cycles: 7

Example: If the register 4 contains the value 45 and the register 11 contains the value 15, then the
instruction

SUBO 4,11 10010011 0100|1011
causes the register 4 of the Register File to be loaded with the value 158. The value 45
corresponds to -83, the value 11 corresponds to -113; so the operation is equivalent to
perform -83 - (-113) = 30. As a matter of fact the result 158 corresponds to the value 30.
If the register 4 contains the value 50 and the register 11 contains the value 200, the in-
struction causes the register 4 to be loaded with the value 234 (result+256) and the S
flag to be set.
If the register 4 contains the value 200 and the register 11 contains the value 50, the in-
struction causes the register 4 to be loaded with the value 22 (result-256) and the S and
Z flags to be set.

94/99

ST52T301/E301

UDGI
User Disable Global Interrupt

Format: UDGI

Operation: UGI bit <- 0

Description: All the interrupt are disabled by this instruction.

Flags: Z,S not affected.

Bytes: 1

Cycles: 4

Example: After the instruction:

UDGI 10011000
all the interrupts cannot be acknowledged and remain pending.

95/99

ST52T301/E301

UEGI
User Enable Global Interrupt

Format: UEGI

Operation: UGI bit <- 1

Description: All the interrupts are enabledby this instruction.

Flags: Z,S not affected.

Bytes: 1

Cycles: 4

Example: After the instruction:

UEGI 10011001
not masked interrupts can be acknowledged if the interrupt are not globally disabled by
the MDGI instruction.

96/99

ST52T301/E301

WAITI
Wait for interrupt

Format: WAITI

Operation: Wait state

Description: This instruction causes the program to stop, without halting the peripherals, until an inter-
rupt occurs..

Flags: Z,S not affected.

Bytes: 1

Cycles: 4

Example: The instruction:

WAITI 10010100

halts the program execution leaving the peripherals running on, until an interrupt occurs.

97/99

ST52T301/E301

DIM
mm inch.

MIN TYP MAX MIN TYP MAX

A 17.27 17.78 .680 .662

B 16.33 16.81 .643 .662

C 12.01 .475

C1 13.03 .513

c1 1.30 0.52

D 1.82 2.23 0.72 .088

d1 0.889 .035

d2 2.362 .093

E 16.26 16.76 .640 .660

e 1.27 .050

e3 12.50 .500

F 0.431 .017

F1 0.762 .030

F2 0.965 .038

M 0.508 .020

M1 1.016 .040

R 0.762 .030

CLCC44 PACKAGE MECHANICAL DATA

98/99

ST52T301/E301

DIM
mm inch.

MIN TYP MAX MIN TYP MAX

A 17.4 17.65 0.685 0.695

B 16.51 16.65 0.650 0.656

C 3.65 3.7 0.144 1.146

D 4.2 4.57 0.165 0.180

d1 2.59 2.74 0.102 0.108

d2 0.68 0.027

E 14.99 16 0.590 0.630

e 1.27 0.050

e3 1.27 0.500

F 0.46 0.018

F1 0.71 0.028

G 0.101 0.004

M 1.16 0.046

M1 1.14 0.045

PLCC44 PACKAGE MECHANICAL DATA

99/99

ST52T301/E301

Full Product Information at http://www.st.com
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of
use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in lifesupport devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

 1998 STMicroelectronics – Printed in Italy – All Rights Reserved

FUZZYSTUDIO is a registered trademark of STMicroelectronics

DuaLogic is a trademark of STMicroelectronics
MS-DOS , Microsoft andMicrosoftWindows areregistered trademarks of MicrosoftCorporation.

MATLAB is a registered trademark of Mathworks Inc.

STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands -

Singapore - Spain - Sweden- Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

PART NUMBER PACKAGE

ST52E301/C CLCC44-W

ST52T301/P PLCC44

ORDERING INFORMATION

ST52T301/E301

