
AN1044/1098 1/12

APPLICATION NOTE

MULTIPLE INTERRUPT SOURCES MANAGEMENT
FOR ST7 MCUS

by Microcontroller Division Application Team

INTRODUCTION

The goal of this application note is to present a technique for managing several external I/O in-
terrupts with a member of the ST7 series of MCUs (here a ST72251).

1 I/O CELL STRUCTURE

Each pin of the microcontroller I/O port can be programmed independently as digital input
(with or without interrupt generation) or digital output. Some have also alternate function (SPI,
SCI, Timers...). If you want to change the I/O port configuration, take care to respect the state
transition diagram (please, refer to the datasheet for more details).

Figure 1 . I/O Block Diagram

DR

DDR

LATCH

LATCH

D
A

T
A

B
U

S

DR SEL

DDR SEL

VDD

PAD

ANALOG
SWITCH

ANALOG ENABLE

(ADC)

M
U
X

ALTERNATE

ALTERNATE

ALTERNATE ENABLE

C
O

M
M

O
N

A
N

A
LO

G
R

A
IL

ALTERNATE

M
U
X

ALTERNATE INPUT

PULL-UP (SEE TABLE BELOW)

OUTPUT

P-BUFFER
(SEE TABLE BELOW)

N-BUFFER

1

0

1

0

OR
LATCH

OR SEL

FROM
OTHER
BITS

EXTERNAL

PULL-UP
CONDITION

ENABLE

ENABLE

GND

(SEE TABLE BELOW)

(SEE NOTE BELOW)

CMOS
SCHMITT TRIGGER

SOURCE (EIx)
INTERRUPT

POLARITY
SEL

1

INTERRUPT GENERATION

2/12

2 INTERRUPT GENERATION

When you use several pins as interrupt pull up inputs, problems may occur if more than one
input generates an interrupt within the same period of time. Some will be “masked”, and then
won’t be taken into account.

All pins configured as external interrupt mode are connected together in a logical “NAND”
function to the same core interrupt vector (see figure 1). An external interrupt is an edge and/
or a low level applied on a pin configured as an input with pull up and interrupt.

To get a high level at the interrupt line, all interrupt pins must be high.

The sensitivity chosen for interrupts in our application is falling edge (please, refer to the mis-
cellaneous register).

Let’s take a look on the possible problem:

As we can see, some interrupts may be inhibited by others if the software doesn’t prevent
such events. It’s because of the logical NAND performed in the chip that the interrupt vector
won’t be able to treat a nested interrupt.

This application note presents then a solution in order to detect and to treat all falling edges of
potential interrupt pins.

3 DETECTING INTERRUPTS

The interrupt’s edge or level sensitivity has to be programmed by software using the miscella-
neous register. In this application note, we then chose “falling edge”.

We use the Port C (PC0 to PC4) as input with pull-up and interrupt (external interrupt 1). To
configure it correctly, please refer to the datasheet. We use PA0 as output to apply on Port C
pins a low level to create an interrupt.

Pin 1

Pin 2

Interrupt signal to the

interrupt controller

3/12

DETECTING INTERRUPTS

The main point of the technique used here consists on enabling and disabling inputs which are
potential sources of interrupt. Once an interrupt is detected (its falling edge), it’s automatically
treated (the main program goes to the interrupt subroutine) and then disabled. If another inter-
rupt occurs, all pins are tested (if the OR register bit is set, the interrupt is enabled) in order to
see a falling edge which hasn’t been treated yet. Once a high level is detected (by polling) on
a pin which previously generated an interrupt, the interrupt mode is enabled once again (set-
ting OR bit).

You can have a different interrupt subroutine depending on the pin responsible of the interrupt.

When using this technique, the user is able to detect every single falling edge interrupt with no
risk of overlapping between them.

The interrupt subroutine must test every pin and make the right relative jump to the interrupt
procedure according to the pin which generated the interrupt.

Pin 1

Pin 2

Pin 1 interrupt
mode disabled

mode disabled
Pin 2 interrupt

Pin 1 interrupt
mode enabled

Pin 2 interrupt
mode enabled

:Enable interrupt
OR=1

:Disable interrupt
OR=0

Interrupt signal

Interrupts

detection

to the core

FLOWCHARTS

4/12

4 FLOWCHARTS

Figure 1. Polling subroutine

n is the number of pins able to generate an interrupt.

Begin

Polling
on pin0

Pin0=1

OR0=1?

Set OR0
Yes

No

Polling
on pin n

No
ORn=1?

Set ORn

user’s program

Yes

Pin n=1

5/12

FLOWCHARTS

Figure 2. interrupt subroutine

n still represents the number of pins able to generate an interrupt.

In the main program, port C pins are tested to be enabled and the LED corresponding to the
last pin which caused the interrupt toggles until another interrupt occurs.

OR0=0?

Reset OR0DR0=0?

No

Yes

Yes

ORn=0?

Yes

Yes Reset ORnDRn=0?No

iret

Yes

int specific routine
for pin n, here

setting of PBn.

iret
int specific routine

for pin0, here

iret

setting of PB0.

PROCESS0

No

No

PROCESSn

SOFTWARE

6/12

5 SOFTWARE

The assembly code given below is guidance only. The complete software with all the files can
be found in the software library.
st7/ ; the first line is reserved

; for specifying the instruction set

; of the target processor

;*************** ***

; TITLE: SOFTIT.ASM

; AUTHOR: PPG Microcontroller Applications Team

; DESCRIPTION: Main program (use of the Halt mode for decoding

; a keypad).

;

;*************** ***

TITLE “SOFTIT.ASM”

; this title will appear on each

; page of the listing file

MOTOROLA ; this directive forces the Motorola

; format for the assembly (default)

#INCLUDE “st72251.inc”; include st72251 registers and memory mapping file

#INCLUDE “constant.inc”; include general constants file

;*************** **

; Variables, constants defined and referenced locally

; You can define your own values for a local reference here

;*************** **

;*************** ***

; Public routines (defined here)

;*************** ***

WORDS

segment ‘rom’

;*************** ***

; Init ializations routines

;*************** ***

.Init LD A,#80

LD MISCR ,A ; falling edge sensitive , normal mode.

LD A,#$1F

LD PCOR,A ; Port C defined as input with pull up

CLR A

LD PCDDR,A ; and interrupt (PC0 to PC4).

7/12

SOFTWARE

LD A,#$3F

LD PBDDR,A ; PortB defined as output push-pull

LD PBOR,A ; (to make corresponding LEDS toggle).

BSET PADDR,#0

BRES PAOR,#0 ; PA0 defined as output (source of the it).

RET

;*************** ***

; Tempo routine

;*************** ***

.delay ; waiting loop of 45ms for fcpu=8MHz.

LD Y,#200

loop2 LD X,#$FF

loop1 DEC X

JRNE loop1

DEC Y

JRNE loop2

RET

;*************** ***

; Macro routine to enable interrupts on the considered pin.

;*************** ***

enable_it MACRO num,label

btjt PCOR,#num,label ;if PCnum is in it mode, jump to label

bset PCOR,#num ;else end of it and PCnum interrupt enable.

jra label

MEND

;*************** ***

; Program code

;*************** ***

.main

CALL Init

RIM ; Enable interrupts.

loop

bset PADR,#0

btjt PCDR,#0,enb0 ; Enable PCx if previous IT is over.

.go0 btjt PCDR,#1,enb1

SOFTWARE

8/12

.go1 btjt PCDR,#2,enb2

.go2 btjt PCDR,#3,enb3

.go3 btjt PCDR,#4,enb4

.go4 LD A,PBDR

CLR PBDR

CALL delay

LD PBDR,A ; Toggling of PBx(LEDx), responsible of the IT.

CALL delay

CLR PBDR

CALL delay

LD PBDR,A

CALL delay

BRES PADR,#0 ; falling edge and low level (PA0=0).

CALL delay

JRA loop ; Infinite loop, wait an interrupt occurs.

.enb0

enable_it 0,go0

.enb1

enable_it 1,go1

.enb2

enable_it 2,go2

.enb3

enable_it 3,go3

.enb4

enable_it 4,go4

.enb5

enable_it 5,go5

; ***

; This set of instructions uses simple assembly mnemoniques.

; We can notice that the loop label is defined only locally (no dot

; in front of it) so it can not be seen by others modules linked

; with this file.

; ***

; **

; * *

; * INTERRUPT SUB-ROUTINES LIBRARY SECTION *

9/12

SOFTWARE

; * *

; **

.dummy iret

.sw_rt jp main ; Empty subroutine. Go back to main (iret instruction)

.ext0_rt iret

.ext1_rt

btjt PCOR,#0,it0 ; if OR=0, pin disabled (floating input).

p1 btjt PCOR,#1,it1 ; if OR=1 -> interrupt subroutine.

p2 btjt PCOR,#2,it2

p3 btjt PCOR,#3,it3

p4 btjt PCOR,#4,it4

.return iret

.it0

btjt PCDR,#0,p1 ; if no low level on the pin -> no IT.

bres PCOR,#0 ; if IT -> disable the pin.

jra process0 ; IT process.

.it1

btjt PCDR,#1,p2

bres PCOR,#1

jra process1

.it2

btjt PCDR,#2,p3

bres PCOR,#2

jra process2

.it3

btjt PCDR,#3,p4

bres PCOR,#3

jra process3

.it4

btjt PCDR,#4,return

bres PCOR,#4

jra process4

.process0

clr PBDR ; clear LEDS.

SOFTWARE

10/12

bset PBDR,#0 ; Set the LED corresponding to the pin responsible of

iret ; the IT.

.process1

clr PBDR

bset PBDR,#1

iret

.process2

clr PBDR

bset PBDR,#2

iret

.process3

clr PBDR

bset PBDR,#3

iret

.process4

clr PBDR

bset PBDR,#4

iret

.spi_rt iret

.tima_rt iret

.timb_rt iret

.i2c_rt iret

segment ‘vectit’

; ***

; This last segment should always be there in your own programs.

; It defines the interrupt vector adresses and the interrupt routines’ labels

; considering the microcontroller you are using.

; Refer to the MCU’s datasheet to see the number of interrupt vector

; used and their addresses.

; Remind that this example is made for a ST72251 based application.

; ***

; ***

11/12

SOFTWARE

; Each interrupt vector uses two addresses in rom, that’s what the directive

; DC.W means. It says “reserve a word location (.W) in rom (DC) and code

; the routine’s label in those two addresses.

; Yet, when an interrupt occurs, for example from the timerB, timerb’s routine

; address (timb_rt) will be loaded in the PC and the program will jump to this

; label if allowed. It will execute this routine and then will go back to the main

; program (see interrupt chapter in the datasheet for a more precise description

; of how to handle interrupts in ST72 micros).

; ***

DC.W dummy ;FFE0-FFE1h location

DC.W dummy ;FFE2-FFE3h location

.i2c_it DC.W i2c_rt ;FFE4-FFE5h location

DC.W dummy ;FFE6-FFE7h location

DC.W dummy ;FFE8-FFE9h location

DC.W dummy ;FFEA-FFEBh location

DC.W dummy ;FFEC-FFEDh location

.timb_it DC.W timb_rt ;FFEE-FFEFh location

DC.W dummy ;FFF0-FFF1h location

.tima_it DC.W tima_rt ;FFF2-FFF3h location

.spi_it DC.W spi_rt ;FFF4-FFF5h location

DC.W dummy ;FFF6-FFF7h location

.ext1_it DC.W ext1_rt ;FFF8-FFF9h location

.ext0_it DC.W ext0_rt ;FFFA-FFFBh location

.softi t DC.W sw_rt ;FFFC-FFFDh location

.reset DC.W main ;FFFE-FFFFh location

END ; Be aware of the fact that the END directive should not

; stand on the left of the page like the labels’s names.

SOFTWARE

12/12

”THE PRESENT NOTE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS WITH INFORMATION
REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME. AS A RESULT, STMICROELECTRONICS
SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO
ANY CLAIMS ARISING FROM THE CONTENT OF SUCH A NOTE AND/OR THE USE MADE BY CUSTOMERS OF
THE INFORMATION CONTAINED HEREIN IN CONNEXION WITH THEIR PRODUCTS.”

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without the express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

 1998 STMicroelectronics - All Rights Reserved.

Purchase of I2C Components by STMicroelectronics conveys a license under the Philips I2C Patent. Rights to use these components in an
I2C system is granted provided that the system conforms to the I2C Standard Specification as defined by Philips.

STMicroelectronics Group of Companies
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands -

Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

http:/ /www.st.com

