
AN1042/1098 1/12

APPLICATION NOTE

ST7 ROUTINE FOR I2C SLAVE MODE MANAGEMENT
by Microcontroller Division Application Team

1 INTRODUCTION

The goal of this application note is to present a useful example of communication using the
I2C peripheral of the ST7. The ST7 microcontroller is used as a slave and can communicate
with any master. This slave, through the I2C interface, receives words from the master imple-
menting error management and returns them. This application has been realized with a
ST72E251 and a 7-bit addressing mode.

2 ST7 I2C INTERFACE

The ST7 I2C peripheral allows multi master and slave communication with bus error manage-
ment. In this application, only the single slave mode is used (with error management).

The I2C synchronous communication needs only two signals: SCL (Serial clock line) and SDA
(Serial data line). The corresponding port pins have to be configured as floating inputs (here
PA4 and PA6).

Please refer to the ST7 datasheet for more details.

2.1 COMMUNICATION SPEED

The ST7 I2C peripheral allows to communicate at different speeds. It is able to work in
standard and fast I2C modes up to 400kHz.

It’s the master which imposes the communication speed. For more details, please refer to the
AN971.

2.2 START, STOP CONDITION AND ACKNOWLEDGE GENERATION

The Start and Stop conditions are sent by the master.

An Acknowledge is sent after an address or a data byte is received when the ACK bit is set in
the Control register (CR).

1

2/12

ST7 ROUTINE FOR I2C SLAVE MODE MANAGEMENT

2.3 TRANSFER SEQUENCING

Slave receiver:

Slave transmitter:

Legend: S=Start, P=Stop, A=Acknowledge, NA=Non-Acknowledge, EVx=Event (with inter-
rupt if ITE=1).

EV1: EVF=1, ADSL=1, cleraed by reading SR1 register.

EV2: EVF=1, BTF=1, cleraed by reading SR1 register followed by reading DR register.

EV3: EVF=1, BTF=1, cleraed by reading SR1 register followed by writing DR register.

EV3_1: EVF=1, AF=1, cleraed by reading SR1 register.

EV4: EVF=1, stopf=1, cleraed by reading SR2 register.

Grey cells are events sent by the master whereas blank ones are events sent by the slave.

These frames are sequential and as the SDA line is bidirectional, this line is held sometimes
by the master and sometimes by the slave.

2.4 INTERRUPTS

Figure 1. Event Flags and Interrupt Generation

S Address A Data1 A Data2 A
.....

DataN A P

EV1 EV2 EV2 EV2 EV4

S Address A Data1 A Data2 A
.....

DataN NA P

EV1 EV3 EV3 EV3 EV3_1 EV4

BTF
ADSL

SB
AF

STOPF
ARLO
BERR EVF

INTERRUPT

ITE

*
* EVF can also be set by EV6 or an error from the SR2 register.

2

3/12

ST7 ROUTINE FOR I2C SLAVE MODE MANAGEMENT

3 ST7 I2C COMMUNICATION APPLICATION

3.1 HARDWARE CONFIGURATION

The ST7 I2C communication application hardware is composed by a ST72251 microcontroller
used as a slave which communicates with any master through an I2C bus interface.

Figure 2. ST7 I2C Communication Application

3.2 ST7 I2C PERIPHERAL BASIC DRIVERS

In this chapter all registers refer to the ST7 I2C peripheral ones (otherwise specified).

3.2.1 Initialize the I2C peripheral

In this application the initialization of the ST7 I2C peripheral is done completely by software.

First the Control register (CR) is cleared and the Data (DR) and Status (SR1,SR2) registers
are touched to clear all possible pending event.

Then, the peripheral is enabled through the Control register (CR). This action needs to write
twice in the register due to the fact that the Control register (CR) bits can be set only when the
PE enable bit is already set. To allow the peripheral to acknowledge the received data the
ACK bit of the Control register (CR) is set.

3.2.2 Slave Communication on the I2C Bus

To initiate a I2C communication, first a start condition has to be generated and then the se-
lected slave address has to be sent, both by the master.

When the address received matches, the interface generates in sequence:

- Acknowledge pulse if the ACK bit is set.

- EVF and ADSL are set with an interrupt if ITE bit is set.

Then the interface waits for a read of SR1 register, holdinig the SCL line low. Next, read the
DR register to determine from the least significant bit of I2COAR1 (ADD0) if the slave has to
be reveiver or transmitter.

ST72251

I2C

Vdd

Vss

SCL

5V

2x100Ω

SDA

2x27KΩ master

SCL

SDA

Vss

Vdd

4/12

ST7 ROUTINE FOR I2C SLAVE MODE MANAGEMENT

3.2.3 Receiving Data on the I2C Bus

The slave receives then bytes from the SDA line into the DR register via the internal shift in-
terface. After each byte, the interface generates in sequence:

- Acknowledge pulse if the ACK bit is set.

- EVF and BTF bits are set with an interrupt if ITE bit is set.

Then the interface waits for a read of the SR1 register followed by a read of the DR register
(see Transfer Sequencing).

After each reception, the word received is placed in a table. If an error occurs, the interface is
reinitialized (I2CCR cleared and put to its initial value after having removed pending interrupts)
and the slave waits next transmission.

3.2.4 Sending Data on the I2C Bus

When the slave receives all data from the master (and the stop condition), he becomes trans-
mitter and then sends the master back data he stored into a table. He sends data from DR reg-
ister to the SDA line via the internal shift register.

The slave waits for a read of the SR1 register followed by a read of the DR register(see
Transfer Sequencing).

When the acknowledge pulse is received:

- the EVF and BTF bits are set by hardware with an interrupt if ITE bit is set.

After the last data byte is transferred, a Stop condition is generated by the master. The inter-
face detects this condition and sets:

- EVF and STOPF bits with an interrupt if ITE bit is set.

Then the interface waits for a read of the SR2 register.

In this application, the least significant bit of I2COAR1 (ADD0) is used as a flag to determine
the mode (receiver or transmitter) of the microcontroller.

5/12

ST7 ROUTINE FOR I2C SLAVE MODE MANAGEMENT

3.3 COMMUNICATION

The ST7 slave mode management application is based on two steps driven by the master:

– a reception of data from any master.

– a transmission of received data to the master.

Figure 3. Main Program Flowchart

Events in the following flowchart refer to events defined into the paragraph “Transfer se-
quencing” on page 2.

MASTER SLAVE

3 data

3 data

Init

Infinite loop

Interrupt

6/12

ST7 ROUTINE FOR I2C SLAVE MODE MANAGEMENT

Figure 4. Interrupt Flowchart

I2CST1=I2CSR1
I2CST2=I2CSR2

error?
yes

no

reset I2C EXIT

EV1?
ADD0=0

or
ADD0=1

EXIT
yes

no

EV2?

ADD0=1
no EV2

(receiver)

yes

EV3
(transmitter)

EV4?

EV4
(stop)

EXIT EXIT

EXIT

yes

no

yes

noreset of the
I2C cell

7/12

ST7 ROUTINE FOR I2C SLAVE MODE MANAGEMENT

4 SOFTWARE

The assembly code given below is for guidance only. For missing label declaration please
refer to the register label description of the datasheet or the ST web software library
(“ST72251.inc” file...).

st7/ ; the first line is reserved

; for specifying the instruction set

; of the target processor

;*************** ***

; TITLE: MODULE1.ASM

; AUTHOR: PPG Microcontroller Applications Team

; DESCRIPTION: Short Demonstration Program

;

;

;*************** ***

TITLE “MODULE1.ASM”

; this title will appear on each

; page of the list ing file

MOTOROLA ; this directive forces the Motorola

; format for the assembly (default)

#INCLUDE “st72251.inc” ; include st72251 registers and memory mapping

file

#INCLUDE “constant.inc” ; include general constants file

;*************** **

; Variables, constants defined and referenced locally

; You can define your own values for a local reference here

;*************** **

;* I2C_CR Bit definitions ~~~

#define PE 5 ; Peripheral enable.

#define ENGC 4 ; Enable general call.

#define START 3 ; Start condition generation.

#define ACK 2 ; Acknoledge level./

#define STOP 1 ; Stop condition generation.

#define ITE 0 ; Interrupt enable.

;* I2C_SR1 Bit definit ions ~~

#define SR2F 7 ; Status register 2 flag.

#define ADD10 6 ; 10bit master addressing mode.

#define TRA 5 ; Transmitter / receiver.

8/12

ST7 ROUTINE FOR I2C SLAVE MODE MANAGEMENT

#define BUSY 4 ; Bus busy (between start and stop condi-

tion.

#define BTF 3 ; Byte transfer finished.

#define ADSL 2 ; Addressed as slave.

#define MSL 1 ; Master / slave.

#define SB 0 ; Start bit generated (master mode).

;* I2C_SR2 Bit definit ions ~~

#define AF 4 ; Acknowledge failure.

#define STOPF 3 ; Stop detection flag (slave mode).

#define ARLO 2 ; Arbitration lost.

#define BERR 1 ; Bus error.

#define GCAL 0 ; General call (slave mode).

;* I2C_0AR1 Bit definitions ~~

#define ADD0 0

;* I2C register initial values ~~

;* Control register: I2C_CR --- --- PE ENGC START ACK STOP ITE

#define CR_INIT_VALUE $25 ; 0 0 1 0 0 1 0 1

;*************** ***

; Public routines (defined here)

;*************** ***

WORDS

segment ‘rom’

;*************** **

;ROUTINE NAME : I2Cm_Init

;INPUT/OUTPUT : None.

;DESCRIPTION : I2C peripheral init ialisation routine.

;*************** **

.I2Cs_Init

LD A,#$30

LD I2COAR1,A ; I2C Bus address of the interface

LD A,#$40

LD I2COAR2,A ; fcpu=8MHz.

TNZ I2CDR ; Touch registers to remove pending interrupt.

CLR I2CCR ; Force reset status of the control register.

LD a,#CR_INIT_VALUE ; Set initial control register value.

LD I2CCR,A ; a first time to set PE.

LD I2CCR,A ; a second time to load the CR value.

9/12

ST7 ROUTINE FOR I2C SLAVE MODE MANAGEMENT

RET

;*************** ***

; Program code

;*************** ***

.main

BRES PADDR,#4

BRES PAOR,#4

BRES PADDR,#6

BRES PAOR,#6 ;PA4 (SCL) and PA6 (SDA) configured as floating inputs.

CLR index

.init CALL I2Cs_Init ;Initial izations.

RIM ;Enable interrupts.

loop JRA loop ;Infinite loop.

; ***

; This set of instructions uses simple assembly mnemoniques.

; We can notice that the loop label is defined only locally (no dot

; in front of it) so it can not be seen by others modules linked

; with this file.

; ***

; **

; * *

; * INTERRUPT SUB-ROUTINES LIBRARY SECTION *

; * *

; **

.dummy iret

.sw_rt iret ; Empty subroutine. Go back to main (iret in-

struction)

.ext0_rt iret

.ext1_rt iret

.spi_rt iret

.tima_rt iret

.timb_rt iret

.i2c_rt

LD A,I2CSR1

LD I2CST1,A ;Store I2CSR1 into I2CST1.

LD A,I2CSR2

10/12

ST7 ROUTINE FOR I2C SLAVE MODE MANAGEMENT

LD I2CST2,A ;Store I2CSR2 into I2CST2.

BCP A,#%00010010 ; Acknowledge Failure or Bus Error?

JREQ test_EV1 ; if not -> test_EV1.

BCP A,#%00000010

JRNE rst ; if BERR, jump to rst

LD A,index ; if AF and index=last byte to transmit -> EV3_1.

CP A,#3

JRPL EV3_1

; if error, reinit ialization:

rst CLR I2CCR ; Force reset status of the control register.

TNZ I2CDR ; Touch registers to remove pending interrupt.

BRES I2CCR,#PE

BSET I2CCR,#PE ;reset I2C cell

LD a,#CR_INIT_VALUE ; Set initial control register value.

LD I2CCR,A

IRET

test_EV1

BTJF I2CST1,#ADSL,test_EV2 ;own address is recognized

BTJT I2CDR,#ADD0,exit

BSET I2COAR1,#ADD0 ;set ADD0 used as a flag to indicate

; the slave transmitter mode.

IRET

EXIT BRESI2COAR1,#ADD0 ;slave receiver mode : ADD0=0.

IRET

test_EV2 ;or EV3

BTJF I2CST1,#BTF,test_EV4 ;if BTF=0 -> test if a Stop is received.

BTJT I2COAR1,#ADD0,EV3 ;if the slave is in transmitter mode -> EV3.

EV2 LD A,I2CDR ;if not, the slave is the receiver.

LD X,index

LD (tab,X),A ;store the received value into tab.

INC index

end_EV2 IRET

EV3 LD X,index

LD A,(DATA,X) ;the slave transmitter mode

LD I2CDR,A ;transmission of values the slave received.

INC index

end_ev3 IRET

EV3_1 LDA,#$FF ; Non acknowledge (AF=1).

11/12

ST7 ROUTINE FOR I2C SLAVE MODE MANAGEMENT

LD I2CDR,A ; The last byte has been transmitted.

IRET

test_EV4

BTJF I2CST2,#STOPF,rst ;end of reception or transmission.

EV4 CLR index

BTJF I2COAR1,#ADD@,end_it ;clear the table if ADD0=1 (end of transmission).

.end_it IRET

segment ‘vectit’

; ***

; This last segment should always be there in your own programs.

; It defines the interrupt vector adresses and the interrupt routines’ labels

; considering the microcontroller you are using.

; Refer to the MCU’s datasheet to see the number of interrupt vector

; used and their addresses.

; Remind that this example is made for a ST7225 based application.

; ***

DC.W dummy ;FFE0-FFE1h location

DC.W dummy ;FFE2-FFE3h location

.i2c_it DC.W i2c_rt ;FFE4-FFE5h location

DC.W dummy ;FFE6-FFE7h location

DC.W dummy ;FFE8-FFE9h location

DC.W dummy ;FFEA-FFEBh location

DC.W dummy ;FFEC-FFEDh location

.timb_it DC.W timb_rt ;FFEE-FFEFh location

DC.W dummy ;FFF0-FFF1h location

.tima_it DC.W tima_rt ;FFF2-FFF3h location

.spi_it DC.W spi_rt ;FFF4-FFF5h location

DC.W dummy ;FFF6-FFF7h location

.ext1_it DC.W ext1_rt ;FFF8-FFF9h location

.ext0_it DC.W ext0_rt ;FFFA-FFFBh location

.softi t DC.W sw_rt ;FFFC-FFFDh location

.reset DC.W main ;FFFE-FFFFh location

; This last line refers to the first line.

; It used by the compiler/linker to determine code zone

END

12/12

ST7 ROUTINE FOR I2C SLAVE MODE MANAGEMENT

THE PRESENT NOTE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS WITH INFORMATION
REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME. AS A RESULT, STMICROELECTRONICS
SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO
ANY CLAIMS ARISING FROM THE CONTENT OF SUCH A NOTE AND/OR THE USE MADE BY CUSTOMERS OF
THE INFORMATION CONTAINED HEREIN IN CONNEXION WITH THEIR PRODUCTS.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without the express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

 1998 STMicroelectronics - All Rights Reserved.

Purchase of I2C Components by STMicroelectronics conveys a license under the Philips I2C Patent. Rights to use these components in an
I2C system is granted provided that the system conforms to the I2C Standard Specification as defined by Philips.

STMicroelectronics Group of Companies
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands -

Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

http:/ /www.st.com

