
AN980/1098 1/10

APPLICATION NOTE

ST7 KEYPAD DECODING TECHNIQUES, IMPLEMENTING
WAKE-UP ON KEYSTROKE

by Microcontroller Division Application Team

INTRODUCTION

The goal of this application note is to present an example of the use of the HALT mode.

In this application, the MCU (here a ST72251) is waked up by an external interrupt caused by
someone pressed a key on the 4x4 matrixed keypad.

1 ST7 / KEYBOARD INTERFACE

Rows are connected to inputs with pull-up and interrupts (Port C). Columns are connected to
Port A configured as output. The result of the interrupt (the value of the pressed key) is sent on
LEDS (Port B) and stored into the X register. In our configuration, we have to add 4 pull-up re-
sistors on Port A (from PA0 to PA3) to be able to apply a high level on the corresponding pads.

Figure 1. ST7 / keypad interface set-up

ST7

8x560
PC0
PC1
PC2

PC3

PA0

PA1
PA2

PA3

VDD

GND

4x100k

1

ST72251 CONFIGURATION

2/10

2 ST72251 CONFIGURATION

The application has been validated with a ST72251. Its configuration is described in this part.
Refer to your datasheet for more details.

2.1 I/O CONTROL

Rows are connected to pins configured as inputs (Port C as input with pull up and interrupts).
Columns are connected to pins configured as outputs (Port A).

External interrupts are caused by a low level applied to a pin of Port C (caused by a key
pressed), they wake up the MCU which was in HALT mode.

Port B is configured as outputs to send the value of the pressed key on LEDS.

Please, refer to the Data Book to configure pins properly.

2.2 MISCELLANEOUS REGISTER

Bits 7 and 6 have to be set to configure events correctly: the external interrupt (EI1) has here
to be caused by a falling edge only.

Please, refer to the datasheet for more details.

2.3 HALT MODE

The HALT instruction places the ST72251 in its lowest power consumption mode. The core
and all peripherals are frozen. In this mode, the internal oscillator is turned off, causing all in-
ternal processing to be halted. The data remain unchanged. During the HALT mode, external
interrupts are still enabled. The MCU stays in this state until an external interrupt or a reset oc-
curs. Then the internal oscillator is restarted and the core waits for 4096 CPU clock cycles
(512 µs for a fCPU = 8MHz) before running the external interrupt subroutine. Then the MCU
comes back to the main program (in our application to the HALT state).

Please, refer to the datasheet for more details.

3 EXTERNAL INTERRUPTS

The MCU is in HALT mode. When a key is pressed, a low level is applied to the pin corre-
sponding to the row the key belongs (pins configured as inputs with pull-up). It’s a falling edge
applied to a pin of Port C which creates an external interrupt (EI1) and wakes up the MCU. The
MCU executes then the external interrupt subroutine (decoding the pressed key) and comes
back to its previous state (HALT state in the main program).

3/10

KEYPAD

4 KEYPAD

The keypad used is a 4x4 matrixed keypad. Rows are connected to pins configured as inputs
with pull-up. So the initial state of these pins are a high level (1). When a key is pressed, a low
level is applied to the corresponding pin. For this reason, the keypad is coded as follows:
Table 1. Key values

You have to press the chosen key at least 0.5 to 1 second depending on which key you
choose (table read from keypad_top to keypad). The faster the key is read into the table, the
faster it will be decoded and the faster the result will be sent on LEDS.

KEY
row

value

column

value
KEY

row

value

column

value

1 0x0E 0x0E 7 0x0B 0x0E

2 0x0E 0x0D 8 0x0B 0x0D

3 0x0E 0x0B 9 0x0B 0x0B

F 0x0E 0x07 D 0x0B 0x07

4 0x0D 0x0E A 0x07 0x0E

5 0x0D 0x0D 0 0x07 0x0D

6 0x0D 0x0B B 0x07 0x0B

E 0x0D 0x07 C 0x07 0x07

1 2 3 F

4 5 6 E

7 8 9 D

A 0 B C

PC0

PC1

PC2

PC3

PA0 PA1 PA2 PA3

KEYPAD

4/10

The keypad code is in the file constant.asm as follows:

.keypad DC.B $0E,$0E,$1 ;PC0PA0

DC.B $0E,$0D,$2 ;PC0PA1

DC.B $0E,$0B,$3 ;PC0PA2

DC.B $0E,$07,$F ;PC0PA3

DC.B $0D,$0E,$4 ;PC1PA0

DC.B $0D,$0D,$5 ;PC1PA1

DC.B $0D,$0B,$6 ;PC1PA2

DC.B $0D,$07,$E ;PC1PA3

DC.B $0B,$0E,$7 ;PC2PA0

DC.B $0B,$0D,$8 ;PC2PA1

DC.B $0B,$0B,$9 ;PC2PA2

DC.B $0B,$07,$D ;PC2PA3

DC.B $07,$0E,$A ;PC3PA0

DC.B $07,$0D,$0 ;PC3PA1

DC.B $07,$0B,$B ;PC3PA2

keypad_top DC.B $07,$07,$C ;PC3PA3

5/10

FLOWCHARTS

5 FLOWCHARTS

Figure 2. Flowchart: Main program

Figure 3. Flowchart: external interrupt (EI1)

Initializations

HALT
infinite
loop

X = 48 (3x16 coded values)

one column activated

yes

corresponding value of the pressed key

stored into A, X and sent on LEDS

EXIT

no

store into X
next column

Is there a low level on the
intersection of the stored

row and column?

value

(PA0...PA3)

SOFTWARE

6/10

6 SOFTWARE

The assembly code given below is guidance only. The complete software with all the files can
be found in the software library.

st7/ ; the first line is reserved

; for specifying the instruction set

; of the target processor

;*************** ***

; TITLE: WAKE.ASM

; AUTHOR: PPG Microcontroller Applications Team

; DESCRIPTION: Main program (use of the Halt mode for decoding

; a keypad).

;

;*************** ***

TITLE ”WAKE.ASM”

; this title will appear on each

; page of the listing file

MOTOROLA ; this directive forces the Motorola

; format for the assembly (default)

#INCLUDE “st72251.inc” ; include st72251 registers and memory mapping file

#INCLUDE “constant.inc”; include general constants file

;*************** **

; Variables, constants defined and referenced locally

; You can define your own values for a local reference here

;*************** **

;*************** ***

; Public routines (defined here)

;*************** ***

WORDS

segment ’rom’

.Init

LD A,#$80 ; interrupts are caused by falling edge (on Port C).

LD MISCR,A

LD A,#$0F

LD PBDDR,A

LD PBOR,A ; PB0 to PB3 configures as outputs(LEDS).

LD PADDR,A

CLR PAOR ; PA0 to PA3 configured as outputs.

CLR PADR

LD A,#$0F

7/10

SOFTWARE

LD PCOR,A

CLR PCDDR ; PCO to PC3 configured as input with pull-up and interrupt.

CLR PCDR

RET

.delay_45

LD A,#200

loop2 LD X,#$FF

loop1 DEC X

JRNE loop1

DEC A

JRNE loop2

RET

;*************** ***

; Program code

;*************** ***

.main

CALL Init

loop

HALT ; MCU put in lowest power mode.

JRA loop ; Infinite loop, wait an interrupt occurs.

; ***

; This set of instructions uses simple assembly mnemoniques.

; We can notice that the loop label is defined only locally (no dot

; in front of it) so it can not be seen by others modules linked

; with this file.

; ***

; **

; * *

; * INTERRUPT SUB-ROUTINES LIBRARY SECTION *

; * *

; **

.dummy iret

.sw_rt iret ; Empty subroutine. Go back to main (iret instruction)

.ext0_rt iret

.ext1_rt

LD X,#48 ; Size of the table stored in X.

; 3 x 16 coded values.

begin

SOFTWARE

8/10

LD A,PADR

OR A,#$0F ; Outputs forced to 1 (init ial value).

AND A,({keypad+1},X)

LD PADR,A ; one column of the tested row is activated.

PUSH X

CALL delay_45 ; wait 45ms (debouncing procedure).

POP X

LD A,PCDR

AND A,#$0F ; value of Port C stored into A.

CP A,(keypad,X) ; search of the low level column after column.

JREQ OK ; if key found -> OK.

DEC X

DEC X

DEC X ; 3 times to have next value of the column.

JRPL begin ; do it again to read the whole table(matrix).

JRA exit

OK

LD A,({keypad+2},X) ; Store the key value in A.

LD X,A ; Copy it into X.

LD PBDR,X ; Output the result on LEDS.

exit

CLR PADR

CLR PCDR

iret

.spi_rt iret

.tima_rt iret

.timb_rt iret

.i2c_rt iret

segment ’vectit’

; ***

; This last segment should always be there in your own programs.

; It defines the interrupt vector adresses and the interrupt routines’ labels

; considering the microcontroller you are using.

; Refer to the MCU’s datasheet to see the number of interrupt vector

; used and their addresses.

; Remind that this example is made for a ST72251 based application.

; ***

9/10

SOFTWARE

; ***

; Each interrupt vector uses two addresses in rom, that’s what the directive

; DC.W means. It says ”reserve a word location (.W) in rom (DC) and code

; the routine’s label in those two addresses.

; Yet, when an interrupt occurs, for example from the timerB, timerb’s routine

; address (timb_rt) will be loaded in the PC and the program will jump to this

; label if allowed. It will execute this routine and then will go back to the main

; program (see interrupt chapter in the datasheet for a more precise description

; of how to handle interrupts in ST72 micros).

; ***

DC.W dummy ;FFE0-FFE1h location

DC.W dummy ;FFE2-FFE3h location

.i2c_it DC.W i2c_rt ;FFE4-FFE5h location

DC.W dummy ;FFE6-FFE7h location

DC.W dummy ;FFE8-FFE9h location

DC.W dummy ;FFEA-FFEBh location

DC.W dummy ;FFEC-FFEDh location

.timb_it DC.W timb_rt;FFEE-FFEFh location

DC.W dummy ;FFF0-FFF1h location

.tima_it DC.W tima_rt;FFF2-FFF3h location

.spi_it DC.W spi_rt ;FFF4-FFF5h location

DC.W dummy ;FFF6-FFF7h location

.ext1_it DC.W ext1_rt;FFF8-FFF9h location

.ext0_it DC.W ext0_rt;FFFA-FFFBh location

.softi t DC.W sw_rt ;FFFC-FFFDh location

.reset DC.W main ;FFFE-FFFFh location

; This last line refers to the first line.

; It used by the compiler/linker to determine code zone

END ; Be aware of the fact that the END directive should not

; stand on the left of the page like the labels’s names.

SOFTWARE

10/10

THE PRESENT NOTE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS WITH INFORMATION
REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME. AS A RESULT, STMICROELECTRONICS
SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO
ANY CLAIMS ARISING FROM THE CONTENT OF SUCH A NOTE AND/OR THE USE MADE BY CUSTOMERS OF
THE INFORMATION CONTAINED HEREIN IN CONNEXION WITH THEIR PRODUCTS.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without the express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

 1998 STMicroelectronics - All Rights Reserved.

Purchase of I2C Components by STMicroelectronics conveys a license under the Philips I2C Patent. Rights to use these components in an
I2C system is granted provided that the system conforms to the I2C Standard Specification as defined by Philips.

STMicroelectronics Group of Companies
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands -

Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

http:/ /www.st.com

